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Abstract

Immunological mechanisms have come into the focus of current
translational stroke research, and the modulation of neuroinflam-
matory pathways has been identified as a promising therapeutic
approach to protect the ischemic brain. However, stroke not only
induces a local neuroinflammatory response but also has a pro-
found impact on systemic immunity. In this review, we will sum-
marize the consequences of ischemic stroke on systemic immunity
at all stages of the disease, from onset to long-term outcome, and
discuss underlying mechanisms of systemic brain-immune commu-
nication. Furthermore, since stroke commonly occurs in patients
with multiple comorbidities, we will also overview the current
understanding of the potential role of systemic immunity in com-
mon stroke-related comorbidities, such as cardiac dysfunction,
atherosclerosis, diabetes, and infections. Finally, we will highlight
how targeting systemic immunity after stroke could improve long-
term outcomes and alleviate comorbidities of stroke patients.
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Introduction

Stroke is a major public health concern with a vast socioeconomic

burden (Virani et al, 2021). Stroke is also the second leading cause

of death and a leading cause of long-term disability worldwide

(Feigin et al, 2021). Despite enormous improvements on diagnosis

and therapeutic strategies, the number of incident strokes is

expected to more than double by 2050, and the prevalence of long-

term disabilities after stroke is anticipated to equally increase due to

demographic changes and the growing number of stroke survivors

(Howard & Goff, 2012). Stroke can be of ischemic or hemorrhagic

nature. Approximately 70% of strokes are ischemic strokes, caused

by the occlusion of a major cerebral artery, whereas others are

hemorrhagic strokes, characterized by bleedings in the brain sub-

stance (intraparenchymal hemorrhages) or the subarachnoid space

(SAHs). This review specifically deals with ischemic stroke.
At present, treatment interventions for ischemic stroke are limited

to acute revascularization strategies, via the administration of throm-

bolytic agents or through endovascular therapy (catheter-based

mechanical thrombectomy). Both types of therapies aim at restoring

blood flow to the hypo-perfused brain tissue and need to be applied

to patients as early as possible after stroke onset. This narrow thera-

peutic time window and several medical contraindications seriously

reduce the number of stroke patients who currently can benefit from

these recanalization therapies; hence, new treatment strategies are

still urgently needed. As alternative methods to treat ischemic stroke,

many neuroprotective agents have been evaluated during past

decades to minimize the destructive pathophysiology of stroke and

protect the ischemic brain (Patel & McMullen, 2017). The vast

majority of these treatments target factors participating in the very

early processes of ischemic cell death in the affected brain area,

which beyond brain cells also comprises a heterogeneous and com-

plex vascular network (Schaeffer & Iadecola, 2021). Compared to

these acute neuroprotective approaches, much less attention has

been given to other biological processes that have emerged in recent

years as critical pathophysiological processes of stroke, such as sys-

temic inflammation. Systemic poststroke inflammation has been

identified as an important determinant of acute and long-term prog-

nosis of stroke patients (Dziedzic, 2015; Anrather & Iadecola, 2016).

As such, systemic inflammation after stroke has become a novel tar-

get for translational research. Some first clinical trials aiming to

tackle inflammation to minimize patients’ functional disabilities and

also prevent secondary comorbidities have been already conducted

(Iadecola et al, 2020).

On this basis, this review focuses on the consequences of stroke

on different branches of the systemic immune response. We will

review current knowledge of the systemic changes of the immune

system after ischemic stroke and how they might impact on post-

stroke acquired or pre-existing comorbidities. We will mainly focus

on modifiable comorbidities including infections, cardiovascular

events, atherosclerosis and diabetes—although other no-modifiable

factors such as age and sex can also modulate the inflammatory

response to stroke and determine the impact of inflammation on the

outcome. Our review will also highlight the increasing and indis-

putable importance of poststroke systemic immunity on patients’
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long-term outcome and its potential therapeutic value for the pre-

vention of poststroke adverse events.

Systemic poststroke inflammation: a multi-phasic cascade

Ischemic stroke is caused by an abrupt loss of local cerebral blood

flow in the brain. The lack of oxygen and nutrient supply evolves in

a complex chain of biochemical and molecular events, leading to

ischemic pan-necrosis of the affected brain tissue (Iadecola

et al, 2020). This ischemic brain injury results in the release of

immunoactive molecules (damage-associated molecular patterns,

DAMP) that, on one side, locally activate immunocompetent cells,

such as microglia and astrocytes. On the other side, DAMP release

to the blood circulation can promote the recruitment of circulating

immune cells to the brain and activate a complex peripheral

immune response to stroke (Iadecola et al, 2020).

During past decades, systemic immune changes after stroke were

mainly studied in the context of subacute immunosuppression due

to its association with the increased susceptibility to bacterial infec-

tions in stroke patients (Faura et al, 2021). More recent findings

from numerous independent studies, however, have highlighted a

previously less recognized multiphasic immune response to stroke,

pointing out the importance of systemic inflammation throughout

all stages of the disease, from onset to long-term outcome. In the

hyperacute phase after stroke, the peripheral immune system

rapidly activates as a response to the stroke-induced brain injury.

This first acute systemic response is followed by a state of immuno-

suppression, which is characterized by loss and unresponsiveness

of immune cells. Later in the chronic phase after stroke, a third and

less well-understood phase is characterized by a low-grade sus-

tained residual inflammation that might potentially impact on the

long-term outcome of stroke patients (Fig 1).

Acute systemic inflammatory response
The peripheral immune response to stroke is initiated within min-

utes after stroke onset by DAMP originated from dying or stressed

cells within the ischemic brain or actively secreted by macrophages

and other immune cells (Muhammad et al, 2008; Schulze

et al, 2013; Kunze et al, 2014; Richard et al, 2016; Schuhmann

et al, 2021). Poststroke circulating DAMP comprise a diverse group

of molecules. During past decades, converging evidence has shown

that DAMP levels rapidly increase in blood within the first hours

after stroke onset, both in preclinical and clinical studies of ischemic

stroke (Table EV1). For instance, this is the case of the high-

mobility group box 1 protein (HMGB1), a nuclear chaperone pro-

tein, and calprotectin (S100A8/A9), a heterodimeric complex of the

S100 family of proteins (Kim et al, 2006, 2018; Schulze et al, 2013;

Liesz et al, 2015; Tsukagawa et al, 2017; Schuhmann et al, 2021;

Roth et al, 2021a; Denorme et al, 2022). Similarly, peroxiredoxins

(Prx), including Prx-1 and Prx-5, which function as peroxide scav-

engers under physiological conditions, and heat shock proteins

(Hsp), that encompass a large family of chaperones, are also known

to become danger signals that propagate inflammation within the

first 24 h after stroke onset (Gruden et al, 2013; Kunze et al, 2014;

Richard et al, 2016). More recently, circulating levels of cell-free

DNA (cfDNA), which increase in stroke patients as early as 4.5 h

after stroke onset (Tsai et al, 2011; O’Connell et al, 2017; Roth

et al, 2021a), have also been characterized as another type of circu-

lating DAMP involved in the post-stroke inflammatory response.

The exact mechanisms whereby the injured brain sends out these

first DAMP signals to trigger acute systemic inflammation still

remain unclear. The primary efflux route for the transiting of these

molecules from brain to blood is thought to be the passive diffusion

across the disrupted blood–brain-barrier (BBB). The proteolytic

degradation of the tight junction protein complexes and basement

membranes, the loss of vascular cells and the increase in transcyto-

sis of leukocytes are key factors contributing to the opening of the

BBB, and thus facilitating a passive exit of brain-derived DAMP as

early as within hours after stroke onset (Abdullahi et al, 2018; Li

et al, 2018). Besides this passive diffusion, the glymphatic and

meningeal lymphatic systems have been also recently described as

complementary candidate routes for the clearance of immune cells

and macromolecules out of the brain (Bower & Hogan, 2018;

Glossary

Atherosclerosis
The clogging or hardening of arteries caused by
atheromatous plaques (accumulations of lipid deposits, usually
cholesterol).
Cardioembolic stroke
A subtype of ischemic stroke caused by a blood clot that forms in the
heart and travels through the bloodstream to the brain.
Comorbidity
Any coexisting health condition in addition to a primary disease.
Cryptogenic stroke
A subtype of ischemic stroke of unknown etiology (clinically
undetermined cause).
Cytokines
Soluble mediators (peptide or protein) that are used for cell–cell
communication between immunocompetent cells; directs their cell
function and proliferation.
Diabetes
Disorder of the carbohydrate metabolism characterized by impaired
ability of the body to produce or respond to insulin and thereby
maintain physiological blood glucose levels.

Endovascular therapy
Therapeutic approach for cardiovascular diseases that uses minimally
invasive, catheter-based procedures to remove obstructive clots from
inside the artery.
Intraparenchymal hemorrhage
A type of bleeding that occurs within the brain parenchyma.
Ischemic stroke
The most common type of vascular brain injury; brain lesion is caused
by occlusion of a brain-supplying artery.
Lymphopenia/lymphocytopenia
A condition of pathologically reduced blood lymphocyte counts.
Recanalization
Spontaneous or induced restoration of the blood flow in an occluded
vessel or artery.
Subarachnoid hemorrhage
A type of bleeding that occurs in the subarachnoid space, the space
between the membranous layers of the arachnoid mater and the pia
mater surrounding the brain.
Sympathetic hyperactivity
Increased activity of the sympathetic nervous system.
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Rasmussen et al, 2018; Lv et al, 2021). In this regard, clinical evi-

dence also supports the involvement of these newly described path-

ways in the context of ischemic stroke, since neuronal antigens,

including microtubule-associated protein-2 (MAP-2) and N-methyl

D-aspartate (NMDA) receptor subunit NR-2A have been also

observed in the draining lymph nodes of patients within the suba-

cute phase after ischemic stroke (mean collection time:

76 h � 34 h) (Planas et al, 2012).

DAMP are also produced and released into circulating by other

cell types that rapidly become compromised and activated after

stroke, including endothelial cells and distinct types of immune

cells. For instance, HMGB1 or Prx-2 are known to be released by

monocytes and macrophages (Andersson & Tracey, 2011; Salzano

et al, 2014), as well as by activated endothelial cells (Kang

et al, 2014). Similarly, activated neutrophils release reactive oxygen

and nitrogen species, myeloperoxidase (MPO), and neutrophil extra-

cellular traps (NETs), scaffolds of nuclear or mitochondrial cfDNA

surrounded by proteases and cytotoxic histones, among others

(Garcia-Bonilla et al, 2014; Kim et al, 2019). All these DAMP

rapidly trigger a massive release of pro-inflammatory cytokines by

activated immune cells, another main hallmark of this first phase of

the peripheral immune response to stroke (Fig 2). Circulating DAMP

are recognized by pattern recognition receptors (PRRs) such as toll-

like receptors (TLRs) or the receptor for advanced glycation end

products (RAGE), expressed by diverse immune cell subpopula-

tions. Signaling through these PRRs activates diverse downstream

signaling pathways, including the nuclear factor (NF)-jB, mitogen-

activated protein kinase (MAPK), interferon regulatory factors (IRF)

or the inflammasome signaling pathways (Roth et al, 2018; Alishahi

et al, 2019; Li & Wu, 2021). The activation of these pathways

directly leads to an increased expression of pro-inflammatory cyto-

kines. In experimental stroke, this early up-regulation of pro-

inflammatory mediators has been well-documented in the blood but

also in lymphatic organs, including the lymph nodes and the spleen

(Offner et al, 2006a; Esposito et al, 2019). For instance, several pre-

clinical studies documented that the hyperacute (<4 h) peripheral
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Figure 1. Main hallmarks of poststroke systemic inflammation over time.

The peripheral immune response to stroke is initiated within minutes after stroke onset. DAMP are originated from dying or stressed cells within the ischemic brain or
actively secreted by immune cells upon activation. Circulating DAMPs activate peripheral immune cells and provoke a massive expression and release of pro-
inflammatory cytokines into the bloodstream. Within the acute phase, stroke also induces the mobilization of more leukocytes from the spleen and the bone marrow as
well as the activation of neurogenic pathways. In the subacute phase, within hours to days after stroke onset, a state of immunosuppression is triggered. The prolonged
overactivation of neurogenic pathways as well as DAMP and other pro-inflammatory mediators acutely released after stroke gradually induce lymphopenia due to mas-
sive cell death and the pronounced bias towards the monocyte differentiation pathway in bone marrow hematopoiesis. The is also a disbalance between Type 1 (Th1)
and Type 2 (Th2) helper T cells and circulating monocytes are less capable of providing costimulatory signals. Later in time, a long-term phase compromising peripheral
immunity is characterized by chronic and sustained high levels of DAMP and pro-inflammatory cytokines.
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inflammatory response in mice is dominated by the upregulation of

pro-inflammatory cytokines such as IL-1b, IL-6, TNF-a, and IFN-c,
as well as pro-inflammatory chemokines, including C-C motif

chemokine ligand (CXCL)-1 and CXCL-2 (Offner et al, 2006a; Seifert

et al, 2012; Esposito et al, 2019). Several of these upregulated pro-

inflammatory cytokines are key mediators of the stroke-induced

BBB breakdown and their levels have been associated with

increased vascular permeability and larger infarct sizes (Yang

et al, 2019). Similarly, high systemic levels of such pro-

inflammatory cytokines (IL-6, TNF-a and IL-1b) have been directly

related to cytokine-induced sickness behavior after experimental

stroke (Roth et al, 2021b).

In humans, it is now clear that within the first 12 h after stroke,

there is also a pronounced increase in the circulating levels of such

pro-inflammatory cytokines, including TNF-a and IL-6 (Zaremba &

Losy, 2001; Waje-Andreassen et al, 2005; Basic Kes et al, 2008;

Tuttolomondo et al, 2009). In addition, blood levels of these cytoki-

nes have been also positively correlated with stroke severity and

unfavorable prognosis of stroke patients (Basic Kes et al, 2008; Aref

et al, 2020).

Beyond the massive release of pro-inflammatory cytokines,

leukocytes are also rapidly mobilized from the spleen and the bone

marrow, two major reservoirs of immune cells (Seifert et al, 2012;

Courties et al, 2015). These cell reservoirs are however limited, and

rapidly exhaust within hours after stroke. Thus, at this early time-

point after stroke, the bone marrow also increases hematopoiesis to

replenish the pool and meet the demand of leukocytes in circulation

(Courties et al, 2015). Mechanistically, the stroke-induced activa-

tion of neurogenic pathways, including the sympathetic innervation,

hypothalamic–pituitary–adrenal (HPA) axis and parasympathetic

innervation, play a major role in the release of immune cells from

these two peripheral reservoirs (Fig 2). It is now known that the

observed increase in circulation of norepinephrine and epinephrine

levels acutely after stroke contributes to spleen shrinkage and mas-

sive exiting of immune cell populations from this organ (Ajmo

et al, 2009). Similarly, in the bone marrow, the early activation of
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Figure 2. Mechanisms contributing to post-stroke immune system activation.

Key effects triggered by the activation of the autonomic nervous system (black) or the circulating DAMP (red) in blood, spleen, bone marrow and gut, primary organs of
the immune system.
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sympathetic innervation is observed by an abrupt increase in the

levels of tyrosine hydroxylase and norepinephrine within the first

day after stroke (Courties et al, 2015). The early activation of

hematopoietic stem cells proliferation and differentiation has been

attributed to this post-stroke increased sympathetic tone. Likewise,

in bone marrow mesenchymal stromal cells, activation of

b3-adrenergic receptors further results in a downregulation of

homeostatic and cell retention factors, including IL-7, C-X-C motif

chemokine 12 (also known as stromal cell-derived factor 1), VCAM-

1 and angiopoietin-1, which enables the exiting of leukocytes into

the bloodstream (Courties et al, 2015).

Recently, the gut and gastrointestinal tract has been described as

an another important reservoir of immune cells, from which leuko-

cytes are also mobilized to the circulation following stroke and even

recruited to the ischemic brain (Benakis et al, 2016; Singh

et al, 2016; Brea et al, 2021). In addition, increasing data also indi-

cates that the intestinal microbiota also plays a role in modulating

the phenotype of the immune cells within the acute inflammatory

response to stroke (Benakis et al, 2016; Singh et al, 2016; Lee

et al, 2020). Despite the exact mechanisms whereby the micro-

biome sense the ischemic brain injury and primes the post-stroke

inflammatory response are not fully understood, several studies

have already described that neurohumoral signals generated by the

ischemic brain perturb immune homeostasis in the gut and lead to

changes in the gut microbiota composition (Benakis et al, 2016;

Houlden et al, 2016; Singh et al, 2016). Moreover, stroke-induced

alterations in gut microbiome composition have been associated

with worse stroke outcome, larger infarct volumes and poorer

scores in functional tests (Benakis et al, 2016, 2020; Singh

et al, 2016; Xu et al, 2021; Honarpisheh et al, 2022). This effect

was largely attributed to polarization of circulating immune cells by

the microbiome in the acute post-stroke phase (Benakis et al, 2016;

Singh et al, 2016; Lee et al, 2020). Likewise, poststroke dysbiosis

has been also linked to reduced intestinal motility and intestinal bar-

rier dysfunction, even leading to the translocation of intestinal bac-

teria into circulation and peripheral organs (Swidsinski et al, 2012;

Yin et al, 2015; Houlden et al, 2016; Singh et al, 2016; Stanley

et al, 2016; Liu et al, 2019). In this regard, the dissemination of

selective bacterial species from the gut microbiota after the occur-

rence of stroke has been proposed to be a plausible source of post-

stroke infection, and might even potentially contribute further to the

systemic pro-inflammatory immune activation after stroke (Stanley

et al, 2016). However, it is neither clear yet whether other factors

also influence bacterial translocation after experimental stroke, nor

whether these findings also occur in stroke patients.

Recent evidence suggests that activated endothelial and circulat-

ing innate immune cells after stroke could also promote

immunothrombosis, the inflammation-dependent activation of the

coagulation system, and thromboinflammation, the aberrant and

excessive activation of immunothrombosis (Stark & Massberg,

2021). Similar to immunothrombosis in response to systemic infec-

tions, evidence is accumulating that poststroke sterile inflammation

and activation of innate immune cells, such as monocytes and neu-

trophils, lead to the activation of the coagulation cascade and pro-

mote thrombosis (Engelmann & Massberg, 2013; De Meyer

et al, 2016). These two functional interdependent processes (inflam-

mation and coagulation) have the ability to potentiate each other

and together are known to aggravate ischemic stroke injury and

contribute to secondary thrombotic complications of stroke, includ-

ing recurrent strokes or myocardial infarctions.

Systemic immunosuppression
The early activation of the immune system is rapidly followed by a

state of systemic immunodepression. The most distinguished feature

of this systemic immunosuppressive phase is the reduction in circu-

lating T, B and NK cell counts. In this line, early studies on the

immune profile of stroke patients already described profound

peripheral lymphopenia as early as one day after ischemic stroke

(Haeusler et al, 2008; Klehmet et al, 2009). In mice, reduced levels

of T, B and NK cells, and T cell responsiveness have been similarly

documented both in circulation and in the spleen and lymph nodes

already within 12 h after experimental stroke (Prass et al, 2003).

This reduction of lymphocyte counts partly results from a drastic

apoptotic death of immune cell populations in spleen (Offner

et al, 2006b), which is also reflected by a reduction of spleen size

(Yan & Zhang, 2014; Chiu et al, 2016). In the bone marrow after

stroke, a suppression of the lymphoid lineage progression, which

contributes further to decreasing lymphocyte counts in circulation,

and a subsequent bias toward the monocyte differentiation pathway

is observed (Courties et al, 2015).

Another characteristic trait of this systemic immunosuppressive

state is the shift in the Type 1 (Th1) to Type 2 (Th2) helper T cell

ratio. This phenomenon represents the disbalance between proin-

flammatory and cellular (Th1) and anti-inflammatory and humoral

(Th2) predominant mechanisms and is reflected by an increase in

the circulating levels of anti-inflammatory cytokines, such as IL-10

and IL-4, and a consequent reduction of pro-inflammatory factors,

including IFN-c and TNF-a, among others (Jiang et al, 2017).

During this immunosuppressive state, circulating monocytes are

also less capable of providing costimulatory signals required for

activating T cells. In mice, this monocytic loss of function after

experimental stroke has even been characterized by a reduction in

the expression of genes associated with macrophage activation sta-

tus (MHC Class II genes) and pathogen recognition ability (TLR

genes) (McCulloch et al, 2018). In humans, the stroke-induced

monocytic loss of function is reflected by a reduction in the expres-

sion of human leukocyte antigen D- related (HLA-DR) and CD64 on

monocytes and dendritic cells (Krishnan et al, 2021).

Mechanistically, the suppression of the immune response is

thought to be partly caused by the prolonged overactivation of the

sympathetic nervous system (SNS) (Fig 2). In the spleen, the activa-

tion of both a and b adrenergic receptors in splenocytes by circulat-

ing catecholamines, rather than a direct effect of the sympathetic

neurotransmission via the splenic nerves, is thought to be one

potential mechanism that triggers splenic atrophy and T cell apopto-

sis (Prass et al, 2003; Ajmo et al, 2009). In bone marrow, the acti-

vation of the SNS results in the upregulation of a specific subset of T

cells (regulatory T cells, Tregs) which display immunosuppressive

traits and have been strongly associated with poststroke lymphocy-

topenia and immunosuppression (Wang et al, 2015). Moreover, the

overactivation of the sympathetic tone also results in a substantial

increase in the expression of myeloid transcription factors, such as

PU.1 (Courties et al, 2015). This concludes with a pronounced

increase in the myeloid lineage proliferation, a subsequent egress of

myeloid cells to circulation and a suppression of the lymphoid lin-

eage progression.
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Beyond the SNS, the (over)activation of the hypothalamic pitu-

itary adrenal (HPA) axis also has been proposed to participate in

triggering immunosuppression after stroke. In a similar manner to

catecholamines, high levels of glucocorticoids after stroke further

contribute to lymphocyte apoptosis in spleen (Prass et al, 2003).

Glucocorticoids also promote the production of anti-inflammatory

cytokines, like transforming growth factor b (TGF-b), and suppress

the secretion of pro-inflammatory cytokines, such as IL-1b, IL-8,

and TNF-a. Involvement of both the SNS and HPA pathways in

poststroke immunosuppression was further demonstrated in experi-

ments blocking the respective pathways using propranolol and the

glucocorticoid receptor inhibitor RU486, which resulted in a reduc-

tion of lymphocyte apoptosis and monocyte deactivation after

experimental stroke (Prass et al, 2003). Recently, the glucocorticoid

signaling pathway has been also involved in mediating brain-bone

marrow endocrine interaction, which negatively impact on lympho-

cyte production after stroke (Courties et al, 2019).

The parasympathetic nervous system (PNS) might also partici-

pate in promoting this immunosuppressive state. Although less well

characterized than the SNS, the parasympathetic activity also

increases after stroke (Engel et al, 2015). In response to infection or

tissue damage, the cholinergic pathway is known to also act as an

anti-inflammatory protective mechanism to prevent the overactiva-

tion of the immune system (Rosas-Ballina & Tracey, 2009). In par-

ticular, acetylcholine has been shown to inhibit macrophages and

attenuate their release of pro-inflammatory cytokines, including IL-

1b, IL-6, and TNF-a (Borovikova et al, 2000). Also, vagal nerve

stimulation (VNS) has been shown to suppress the LPS-induced

increase in TNF-a levels (Borovikova et al, 2000). Moreover, it has

been also documented that a subpopulation of splenic T cells can

also produce acetylcholine, which is required in the spleen for the

inhibition of the massive cytokine secretion after VNS (Rosas-

Ballina et al, 2011). Although the connection between the choliner-

gic pathway and the spleen response to VNS is not fully understood,

these findings suggest a possible role of the PNS in cell-mediated

immune suppression after stroke.

While several studies support the concept of the stress-induced

immunosuppression after stroke, clinical and experimental data

reporting altered circulating levels of catecholamines after stroke are

still controversial (Liesz et al, 2013; Mracsko et al, 2014). Hence,

other mechanisms have been also been proposed to systemically

contribute to lymphopenia and immunosuppression. In this regard,

brain-released DAMP and other pro-inflammatory mediators such as

cytokines in circulation early after stroke might also play a direct

role in the subacute suppression of cellular immunity (Fig 2). For

instance, the signaling pathway triggered by HMGB1 and its PRR

RAGE, expressed on the surface of many immune cells, is known to

participate in the bone marrow egress and splenic proliferation of

immature monocytes, with lymphocyte-suppressing traits (Liesz

et al, 2015). Also, activation of the HMGB1-RAGE axis has been

shown to promote functional exhaustion of mature monocytes and

lymphopenia, hallmarks of cell-mediated immunosuppression (Liesz

et al, 2015). High levels of circulating IL-1b as a result of systemic

inflammasome activation in the acute phase has been shown to

induce the expression of Fas ligand (FasL). This is a ligand to the

death receptor Fas (CD95), consequently resulting in Fas-dependent

T cell apoptosis. This mechanism might already initiate cell death of

lymphocytes in the very early phase after stroke, when

catecholamine concentrations in circulation might not even be

increased yet (Roth et al, 2021a). Likewise, another stress-

independent mechanism directly affecting immunocompetence after

stroke via immune mechanisms is known to be the release of argi-

nase I (Arg1) from activated neutrophils. Arg1-release from neu-

trophil granules has been associated with T-cell dysfunction

following a number of diverse pathologies, including ischemic

stroke (Sippel et al, 2015).

Chronic systemic inflammation after stroke
Little is known about the systemic immune state beyond the well-

described immunosuppression phase. Most clinical studies that do

evaluate long-term consequences of stroke are mainly centered on

clinical data on patients’ disabilities, functional outcome, and the

development of secondary comorbidities and recurrent events, with

limited records on molecular and biochemical data in these patient

cohorts. Yet, few retrospective clinical studies have provided evi-

dence that pro-inflammatory mediators such as IL-6 and IL-1b
remained elevated in circulation even 3 months after stroke onset

(Liesz et al, 2013; Stanne et al, 2022). Levels of such cytokines

showed a more pronounced increase in large strokes compared to

small strokes, as dichotomized by the median of the lesion volume

in the ischemic stroke group (Liesz et al, 2013). Similarly, plasma

HMGB1 levels were also found to be increased in ischemic stroke

patients from 24 h up to 90 days after stroke (Schulze et al, 2013;

Roth et al, 2018). HMGB1 levels were also higher in patients with

severe strokes (NIHSS ≥17), indicating an important role of stroke

severity and volume on the magnitude of systemic immune alter-

ation long-term after stroke. Serum levels of monocyte chemoat-

tractant protein (MCP)-1 and circulating C-reactive protein (CRP)

have been also shown to persist at high levels in stroke patients at

the 3-month follow-up compared to baseline (Garlichs et al, 2003;

Ladenvall et al, 2006). Interestingly, blood CRP levels differ

between stroke subtypes, since large-vessel strokes had higher CRP

levels at follow-up compared with all other stroke subtypes,

including small-vessel strokes, cardioembolic strokes, cryptogenic

strokes, and others (Ladenvall et al, 2006). More recent findings

also reported a higher frequency of activated human leukocyte

antigen (HLA� DR+) cells in blood 2 months after ischemic stroke

(Roth et al, 2018), and found that circulating IL-4 and IFN-c levels

persisted elevated up to 3 months poststroke, regardless of stroke

etiology (Holmegaard et al, 2021). Hence, whether post-stroke

chronic inflammation could be influenced by the infarct topogra-

phy and/or the co-existence of any other comorbidity still needs to

be elucidated.

Beyond stroke, this chronic inflammatory milieu has been also

characterized in patients suffering from other acute brain lesions,

including traumatic brain injury (TBI). Plasma IL-6 levels were

found to be substantially increased in patients 6 months after mild

TBI, compared to orthopedic injury controls (Vedantam et al, 2021).

Similarly, Chaban and colleagues found that other pro-inflammatory

cytokines, including IFN-c, IL-8, MCP-1 and macrophage inflamma-

tory protein (MIP)-1b, also remained increased for up to 1 year

post-TBI (Chaban et al, 2020).

Altogether, all these clinical findings suggest that after stroke, a

third long-term phase compromising peripheral immunity character-

ized by a chronic and sustained inflammatory milieu might also take

place. Therefore, a complete understanding of these chronic
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systemic immune consequences of stroke and their modulation is of

high translational relevance for ensuring better chronic patient out-

comes.

Stroke comorbidities: role of systemic immunity

The incidence for ischemic stroke is increasing, in part because the

world’s older population is dramatically growing. Besides age, the

prevalence of multiple comorbidities and pre-existing medical condi-

tions is also increasing in both, the older and younger population

(Katan & Luft, 2018). These adverse medical conditions further

increase the incidence of stroke and highly worsen its outcome

(Fig 3) (Gallacher et al, 2014). Indeed, stroke survivors especially

in the elderly population commonly become multimorbid, predis-

posing two or more unfavorable medical coconditions. Some of

these conditions, including heart diseases, atherosclerosis, hyperten-

sion, and diabetes mellitus, are pre-existing or acquired disorders

that share pathological mechanisms with stroke. In many cases,

these conditions are as well risk factors for cardio- and cerebrovas-

cular events and could even promote stroke recurrence, still a major

complication of incident strokes. Other coexisting conditions might

have also arisen from the primary stroke itself, such as post-stroke

infections and long-term vascular dementia, among others (Gal-

lacher et al, 2019). Interestingly, many of these pre-existing or

acquired comorbidities after stroke share inflammatory pathophysi-

ological mechanisms among them, which might even potentiate or

aggravate the development of other unfavorable medical conditions

and worsen the long-term outcome. Therefore, in this section, cur-

rent literature on the association between stroke and its main

comorbidities will be reviewed, with special emphasis on the subse-

quent systemic immune alterations as a key common factor in all

these pathologies (Fig 3).

Poststroke infections
Infections represent one of the main life-threatening complications

after stroke, accounting for approximately 30% of stroke patients

(Westendorp et al, 2011). Most common poststroke infections are

pneumonia and urinary tract infections (Bustamante et al, 2017).

Despite advances in the field, effective clinical management of post-

stroke infections remains challenging. Current clinical strategies

against stroke-associated infections are based on treatment with

broad-spectrum antibiotics once infection has already developed

and clinically diagnosed. Preventive antibiotic therapies before the

development of clinical signs are also being evaluated as a manner

to anticipate and prevent the onset of these fatal complications,

although beneficial effects have not been yet demonstrated (Vermeij

et al, 2018).

Several key factors whereby infections might develop after stroke

and lead to an unfavorable outcome of stroke patients have been

proposed so far. Patients’ baseline characteristics, including age,

functional disabilities, and dysphagia increase susceptibility to post-

stroke infections (Hoffmann et al, 2017). Also the use of invasive

devices and clinical procedures, such as central venous and urinary

catheters, secondary surgeries, or mechanical ventilation, might also

be associated with a high incidence of infections (Ashour

et al, 2016).

Beyond these obvious clinical factors, which are a common

source of infections independent of stroke, the subacute immuno-

suppression after stroke discussed above has been tightly associated

with increased susceptibility of stroke patients to infections. Alter-

ations in the blood profile of several cytokines after stroke have

been linked to an increased incidence of infections in stroke

patients. This is the case for the anti-inflammatory cytokine IL-10,

which has been found to be substantially increased at the onset of

stroke in those patients who will develop poststroke infections

within the first week after stroke and has even been proposed as a

robust independent prognostic biomarker for these infectious com-

plications (Chamorro et al, 2006; Ashour et al, 2016). Beyond IL-

10, the development of poststroke infections also correlates with

lower TNF-a levels and the consequent decrease in the TNF-a/IL-10
ratios at day 2 after stroke, this latest supporting a role of the Th1/

Th2 shift in patients suffering from such complications (Chamorro

et al, 2006). Other studies have also shown that patients who

develop secondary infections after ischemic stroke show higher IL-

1b and IL-6 blood concentrations on hospital admission and along

the first 3 days after hospitalization, respectively (Wartenberg

et al, 2011; Bustamante et al, 2014; Roth et al, 2021a). Elevated cir-

culating monocyte counts within the first days after stroke are also

associated with the development of post-stroke infections (Urra

et al, 2009). Moreover, HLA-DR expression on monocytes from

stroke patients was inversely correlated with the development of

infections, and these “exhausted” monocytes of stroke patients also

had a decreased capacity to release TNF-a after stimulation. Indeed,

this subpopulation of monocytes, primarily characterized by

reduced levels of monocytic HLA-DR expression, has become a

©
 E

M
B

O

Cardiac dysfunction

Infection

STROKE

Atherosclerosis

Diabetes

Systemic
inflammation

Unfavourable
outcomes

Risk factors
for stroke

Figure 3. The stroke-induced systemic inflammation represents a risk
factor for the development of inflammation-related comorbidities after
stroke.
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robust independent factor to predict the occurrence of post-stroke

infections (Hoffmann et al, 2017). Whether this population stands

for mature monocytes with impaired function (deactivated mono-

cytes) or for immature monocytes newly released into circulation,

however, is still a matter of discussion and need to be further eluci-

dated. Nevertheless, this pronounced alteration in the monocytic

population in patients developing infections might lead to insuffi-

cient antigen presentation and costimulatory support for adaptive

immune cells, overall decreasing the capacity to cope with infec-

tious agents.

Mechanistically, both the autonomic nervous system and the

HPA pathway have been proposed as the main triggers of these cell-

mediated loss of immunity. However, differences in their impact on

poststroke infections have been encountered in experimental stroke.

While both mechanisms contributed similarly to spleen atrophy,

lymphocytopenia, and impaired monocytic function, only the inhibi-

tion of SNS, and not the blockage of the glucocorticoid receptors,

minimize the occurrence of bacterial infections in ischemic mice

after stroke (Prass et al, 2003). The attenuation of the cholinergic

signaling pathway by either vagotomy or by using a7 nicotinic

acetylcholine receptor-deficient mice also reversed pulmonary

immune low responsiveness and prevented poststroke pneumonia

(Engel et al, 2015). Clinical studies could not provide evidence of a

protective effect of the b-blocker therapy: despite Sykora et al

reported that prestroke and on-stroke treatment with b-blockers
reduced the frequency of pneumonia after stroke (Sykora

et al, 2015), others studies showed no differences in the develop-

ment of post-stroke pneumonia between patients with and without

b-blocker therapy (Maier et al, 2015, 2018; Westendorp

et al, 2016). In view of these controversial findings, the causal rela-

tionship between the poststroke stress response, the subsequent

immunosuppression, and the development of infections, which has

been largely advocated within last decades, remains still question-

able.

Other immune-related mechanisms behind the stress response

have also been evaluated in the context of poststroke infections.

Recently, an inflammasome-dependent mechanism of T cell apopto-

sis was found to have a crucial role in lymphopenia and the inci-

dence of infections after stroke (Roth et al, 2021a). Specifically, the

AIM2-inflammasome activation in myeloid cells and the subsequent

increase in IL-1b levels early after stroke have been shown to pro-

mote the activation of monocytes and their expression of the FasL,

which ultimately induce T cell apoptosis via a FasL–Fas-mediated

mechanism.

Therapeutically, a tight regulation of the stroke-induced suppres-

sion of cellular immunity could be of clinical relevance for the

prevention of post-stroke complications. So far, the lack of success

of the b-blocker therapy urges the need for alternative therapies to

tackle such life-threatening post-stroke comorbidities. In this regard,

because DAMP and other pro-inflammatory cytokines upregulated

within the hyper-acute inflammatory response to stroke are also

considered to be key triggers of subacute immunosuppression,

immunoregulatory approaches mitigating this early pro-

inflammatory reaction might ultimately be an alternative promising

therapy to limit immunosuppression and poststroke infections.

However, to date, no immunomodulation therapy has been clini-

cally tested with the specific endpoint of reducing infections after

stroke.

Cardiovascular comorbidities and complications after
stroke

Cardiovascular diseases, including atrial fibrillation, valvular heart

disease, and congestive heart failure are well-known risk factors for

ischemic stroke (Chugh et al, 2014; Kim & Kim, 2018). However,

this relationship is not unidirectional, since the rate of cardiovascu-

lar disorders also increases after first incident stroke (Kallm€unzer

et al, 2012; Buckley et al, 2022). Ischemic stroke patients are

known to have an increased risk of vascular complications after

their incident event, including vascular plaque formation and pro-

gression of atherosclerosis. Following stroke, more than 60% of

patients also present electrocardiographic (ECG) abnormalities

(Braga et al, 2020), 25% are detected with serious arrhythmia

(Ruthirago et al, 2016), and about 19% of patients develop at least

one serious cardiac adverse event (Prosser et al, 2007). Cardiac

complications are not only frequent after ischemic stroke but also

following other cerebrovascular events such as SAHs, and have

been associated with worse clinical outcomes (Oras et al, 2016;

Norberg et al, 2018; Buckley et al, 2022).

Inflammation is a shared key factor between stroke and car-

diovascular disorders, and has been suggested to be closely

involved in the development of cardiovascular comorbidities after

an incident stroke (Willerson & Ridker, 2004). Key lines of evi-

dence are provided by epidemiological studies showing a strong

positive correlation between the levels of inflammatory markers

and risk of cardiovascular events (Kaptoge et al, 2014). For

instance, C-C motif chemokine ligand 2/monocyte-chemoattractant

protein-1 (CCL2/MCP1) is known to substantially increase after

diverse cerebrovascular diseases including ischemic stroke, and

its levels even positively correlate with detrimental patients’ out-

come (Geng et al, 2022). CCL2 has been proposed at the same

time to play a key role in the development of diverse cardiovas-

cular diseases, including the genesis and progression of

atherosclerosis. In fact, large series of human studies have further

provided evidence on the therapeutic potential of targeting the

CCL2-CCR2 (C-C motif chemokine receptor 2) pathway in human

atherosclerotic disease (Georgakis et al, 2022), which could also

be relevant to minimize the risk of secondary cardiovascular com-

plications after stroke.

Also, patients with chronic systemic inflammatory diseases,

such as rheumatoid arthritis, psoriasis, or psoriatic arthritis, are

known to develop an increased risk of insulin resistance,

dyslipidemia, hypertension, and other cardiovascular events,

including myocardial infarction, heart failure, or cerebrovascular

injuries. In this line, a recent French nationwide population-

based cohort study also described a higher incidence of acute

cardiovascular events in a cohort of 200,000 patients diagnosed

with inflammatory bowel disease (Kirchgesner et al, 2018). In

this study, cardiovascular risk was substantially increased even

in the absence of the common well-known cardiovascular risk

factors, such as obesity, lipid disturbances, or hypertension, over-

all suggesting that inflammation could be a prominent shared

key factor for the development of all these cardiovascular adverse

manifestations. Hence, it is well conceivable that the systemic

inflammatory response driven by the ischemic brain lesion itself

could further predispose stroke patients for secondary (inflamma-

tory) vascular events.
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Cardiovascular dysfunction
Current knowledge supports the hypothesis that there is a causal

relationship between brain damage and cardiovascular dysfunction.

Multiple mechanisms have been described to regulate this brain–

heart interaction following stroke (Chen et al, 2017). The most

acknowledged mechanisms are the stroke-induced imbalance of the

sympathetic and PNS. Sympathetic hyperactivity after stroke leads

to a massive release of catecholamines, which directly activates b-
adrenergic receptors on myocardial nerves and provokes ectopic

cardiac activity (Wang et al, 2019). Several clinical studies con-

firmed that this disturbance of the central autonomic pathway alters

the physiological regulation and dynamics of the heart by decreas-

ing heart rate variability (HRV), impairing baroreceptor reflex sensi-

tivity (BRS) and further increasing the sympathetic and

parasympathetic tone, with consequent cardiomyocyte toxicity

(Chen et al, 2017). Despite the catecholamine hypothesis is the

most widely proven mechanism of the brain–heart interaction so

far, alternative mechanisms and particularly the immune system is

emerging as a further critical factor playing a key role in the brain–

heart communication after stroke.

Experimental animal studies have reported a higher incidence of

cardiac dysfunction after ischemic stroke. Experimental stroke in

mice resulted in chronic systolic dysfunction up to 8 weeks after the

brain lesion, and caused a delayed reduction in left ventricular ejec-

tion fraction and an increase in left ventricular volume (Bieber

et al, 2017; Veltkamp et al, 2019). Preclinical studies have also

demonstrated a substantial increase in plasma catecholamine levels

after cerebral ischemia. Molecularly, this disturbance of the cate-

cholamine homeostasis has been shown to induce the upregulation

of a distinct set of PPARc-dependent genes involved in mitochon-

drial remodeling, regulation of catabolism, and hypertrophy in the

heart (Veltkamp et al, 2019). Other preclinical studies have also

observed that cardiac damage after stroke might be a consequence

of an impairment of the cardioprotective Survivor Activating Factor

Enhancement (SAFE) signaling pathway (Meloux et al, 2018) and

could also result from the disturbance of the calcium homeostasis in

ventricular myocytes, which might ultimately restrict their contrac-

tile function (Sun et al, 2010).

The systemic immune response to stroke can be expected to have

a direct impact on the heart and might also potentially cause cardiac

dysfunction. The infiltration of pro-inflammatory macrophages into

the heart and the activation of the NLRP3 inflammasome pathway

have been proposed as key events that could lead to cardiac dys-

function after ischemic stroke in mice (Lin et al, 2020). Interest-

ingly, blocking the NLRP3 inflammasome in pro-inflammatory

macrophages restored cardiac function and reversed the myocardial

morphological changes observed in mice after ischemic stroke (Lin

et al, 2020). This close link between stroke-induced systemic

inflammation and heart dysfunction has been demonstrated to be

even more pronounced in the presence of other comorbidities such

as diabetes, which is likely to further promote the pro-inflammatory

immune response and the infiltration of immune cells to the heart

due to enhanced vascular damage (Lin et al, 2020).

In addition, several pro-inflammatory molecules upregulated

after stroke have been also highlighted as plausible mediators of

heart damage, based on their well-known role in the heart after car-

diac injury and other inflammatory diseases, including sepsis. This

is the case for IL-6, IL-1b, TNF-a, and IL-18, whose negative

inotropic effects on the heart have been extensively documented

during last decades and previously reviewed in detail

(Prabhu, 2004; Mann, 2015; Chen et al, 2017). Moreover, these

pro-inflammatory cytokines as well as other DAMP are also known

to be able to activate cardiomyocytes through TLRs, which further

increases the release of more pro-inflammatory cytokines, sustain

the inflammatory milieu, and could promote the development of

cardiac dysfunction (Mann, 2015).

Atherosclerosis
Atherosclerosis is an established cardiovascular risk factor predis-

posing patients to acute vascular events, including stroke (Parish

et al, 2019). Similarly, patients who survive an incident stroke also

have increased risk for recurrent vascular events, including recur-

rent strokes or myocardial infarctions, which are both common sev-

ere manifestations of atherosclerosis (Dhamoon et al, 2007). This

bidirectional relationship between stroke and atherosclerosis indi-

cates that beyond lipid disturbances, other mechanisms also pro-

moted by stroke play a prominent role in the pathophysiology of

atherosclerosis and vascular complications. In this regard, inflam-

mation is known to play a critical role in the genesis, progression,

and manifestation of atherosclerosis, as well as in the pathophysiol-

ogy of ischemic stroke.

Numerous data support the role of inflammatory mechanisms in

the formation of atherosclerosis across all disease stages (Geovanini

& Libby, 2018). This pathophysiological process involves several

steps, which includes: the activation of endothelial cells; the infiltra-

tion of monocytes to the atheroma; the secretion of pro-

inflammatory factors that further enhance the recruitment of

immune cells; the formation of lipid-rich macrophages and

lipoprotein-containing foam cells, which further secrete more pro-

inflammatory mediators; and the apoptosis of these macrophages

and the formation of the mature lipid plaque, among others. Early

findings in animal models of experimental myocardial infarction

already documented that the systemic response to ischemic injury

aggravates chronic atherosclerosis (Dutta et al, 2012). Disease pro-

gression was associated with a pronounced increased in monocyte

recruitment, which was attributed to a massive egress of hematopoi-

etic stem and progenitor cells from bone marrow niches mediated

through sympathetic innervation (Dutta et al, 2012). More recently,

exacerbation of atheroprogression has also been documented in the

context of ischemic stroke (Roth et al, 2018). In a synergistic man-

ner to the sympathetic stress response, the stroke-induced release of

DAMP from the ischemic brain has been found to be also critical for

the exacerbation of vascular inflammation after stroke. While the

sympathetic activation induced egress of monocytes from the bone

marrow, circulating alarmins promoted the subsequent activation

and infiltration of these monocytes into the vascular plaque (Roth

et al, 2018). Recently, Hettwer and colleagues also reported an

involvement of IL-1b and the NLRP3-inflammasome pathway in

atheroprogression (Hettwer et al, 2021), which is a mechanism of

likely relevance also for the inflammatory response after stroke.

They demonstrated that IL-1b and the NLRP3-inflammasome path-

way promote the expression of leukocyte chemoattractant factors

and adhesion molecules on endothelial cells from atherosclerotic

aortas, which substantially favors leukocyte infiltration. They also

suggested that IL-1b and the NLRP3-inflammasome play a role in

the proliferation of bone marrow hematopoietic stem and progenitor
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cells in the bone marrow, which increases the supply of inflamma-

tory leukocytes to the blood. Indeed, anti-IL-1b treatment and

NLRP3-inflamasome inhibition in atherosclerotic mice reduced total

plaque and necrotic core size, as well as the number of inflamma-

tory leukocytes infiltrated in the atherosclerotic aortas (Hettwer

et al, 2021).

NETs are also well-known constituents of atherosclerotic lesions.

Since the presence of circulating NETs released upon neutrophil

activation following stroke is well documented (Vall�es et al, 2017),

poststroke NETs have been also proposed to be implicated in

atherogenesis. To date, NETs are known to induce endothelial cell

dysfunction, boost oxidative stress and the oxidation of high-density

lipoprotein particles, and promote immunothrombosis and the accu-

mulation of prothrombotic molecules in the vessel wall, thus con-

tributing to atheroma and thrombus formation (Moschonas &

Tselepis, 2019; Stark & Massberg, 2021). Similarly, NETs in the

atherosclerotic region might also prime macrophages for cytokine

release, which further amplify immune cell recruitment in

atherosclerotic plaques (Warnatsch et al, 2015). All these findings

provide further evidence that after stroke, the pronounced increase

in the levels of DAMPS, including NETs, circulating IL-1b and the

systemic activation of the inflammasome pathways might have a

translationally relevant impact on atheroprogression and potential

plaque destabilization.

Altogether, systemic inflammation is considered a crucial modifi-

able enhancer of atherosclerosis and the development of atheroscle-

rotic plaques is now known to be potentially promoted by any

medical condition or comorbidity that involve systemic inflamma-

tion, including the systemic response to stroke. Therefore, strategies

pointing at the modulation of stroke-induced chronic systemic alter-

ations of the immune system might be of translational relevance for

preventing the progression of atherosclerotic plaques and subse-

quent secondary vascular events.

Diabetes
Patients with diabetes mellitus present more than double the risk of

incident stroke (Luitse et al, 2012; Lau et al, 2019; Zabala et al, 2020).

Also, 25 to 45% of ischemic stroke patients have diabetes mellitus at

the time of first stroke, and stroke outcomes are worse among diabetic

patients, resulting in increased mortality and morbidity (Dhamoon

et al, 2007; Kernan et al, 2014; Lau et al, 2019).

Metabolic disturbances specifically contribute to post-stroke

complications adverse stroke outcomes. Hyperglycemia has been

widely associated with brain infarct growth, edema formation, hem-

orrhagic transformation and less-favorable neurological outcomes

after ischemic stroke (Williams et al, 2002; Desilles et al, 2013;

Broocks et al, 2019; Suissa et al, 2020). As the underlying mecha-

nisms, data from preclinical experiments showed that hyper-

glycemia primes the thromboinflammatory cascade by activating

the endothelium, platelets and neutrophils, and favors lactic acido-

sis and the accumulation of reactive oxygen species (ROS) (Zhang

et al, 2016; Desilles et al, 2017). The consequent increase in

microvascular thromboinflammation after stroke further contributes

to alterations in cerebral blood flow and the permeability of the

BBB, which can even provoke hemorrhagic transformations in the

ischemic brain (Li et al, 2013).

Diabetic patients also show increased susceptibility to infections,

including sepsis (Muller et al, 2005; Schuetz et al, 2011). Results from

pre-clinical studies suggest that diabetes impairs host defense by com-

promising bacterial clearance and the innate immune response by

reducing adherence, chemotaxis and phagocytosis of circulating innate

immune cells (Delamaire et al, 1997; Schuetz et al, 2011). Also,

hyperglycemia and the consequent increase in glycation end products

have been shown to contribute to abnormal pro-inflammatory cytokine

production and decreased T cell function, and compromise the expres-

sion of class I major histocompatibility complexes (MHC) on surface of

myeloid cells, overall impairing cell immunity and the host’s immune

defense against secondary infections (Alves et al, 2012).

Diabetes also promotes atherogenesis. It is well established that

hyperglycemia promotes glycation and oxidation of circulating

lipoproteins and exacerbates vascular shear stress, which generally

causes alterations in endothelial phenotype and contributes to

endothelial dysfunction (Harja et al, 2008). Uncontrolled high glu-

cose levels may also promote plaque growth and instability by

enhancing ROS production and the activation of the NLRP3-

inflammasome signaling pathway, which further facilitates leuko-

cyte infiltration to the vascular plaque (Sharma et al, 2018).

Yet from another perspective, chronic inflammation, and specifi-

cally immune cell activation, has been recognized as one of the con-

tributing mechanisms to the development of insulin resistance and

type-2 diabetes (Tsalamandris et al, 2019). Based on this, it would

be reasonable to speculate that the stroke-induced low-grade

chronic inflammation in the late phase after stroke could also poten-

tially alter the development of this metabolic comorbidity. Several

lines of evidence support this concept. First, TNF-a, IL-6, IL-1b, and
IL-18 are known to be key influential modulators of diabetes, as also

cytokines which are upregulated during the systemic immune

response to stroke. The specific link of this molecules to diabetes

has been well-described in obese humans presenting sustained

inflammatory conditions. In such, macrophages within the adipose

tissue produce these pro-inflammatory cytokines that ultimately

impair insulin signal and promote the progression of insulin resis-

tance by downregulating the expression of glucose transporters and

their translocation to the cell membrane in adipocytes (Zatterale

et al, 2020) (Jager et al, 2007). Second, prolonged high levels of IL-

1b are known to also participate in insulin resistance by promoting

pancreatic b-cell dysfunction and cell death (Verma et al, 2013).

Likewise, upstream of IL-1b, the NLRP3 inflammasome pathway in

myeloid cells also plays a part as a modulator of glucose metabolism

and insulin resistance. In this regard, first pieces of evidence suggest

that inhibition of NLRP3 inflammasome in obese mice improved

both insulin signaling from adipose tissue and insulin secretion in

the pancreas (Vandanmagsar et al, 2011; Wen et al, 2011) (Van-

danmagsar et al, 2011; Tsalamandris et al, 2019). Based on these

findings, future research should elucidate whether the stroke-

induced signaling through IL-1b and NLRP3 inflammasome pathway

could potentially trigger and exacerbate disturbances in the glucose

metabolism in ischemic stroke patients.

Altogether, these concepts reviewed above reinforce the close

connection between chronic inflammation from diverse etiologies,

including stroke and metabolic disturbances. Specifically, co-

occurrence of diabetes and ischemic stroke are now known to

potentially activate diverse inflammatory pathways that share com-

mon immune mediators, ultimately boosting the inflammatory reac-

tion to stroke and leading to a higher susceptibility to other

inflammation-associated comorbidities.
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Targeting systemic immunity to improve post-stroke
complications and comorbidities

Stroke promotes systemic inflammation, and growing evidence indi-

cates that systemic inflammation represents a risk factor for the

development of other inflammation-related diseases, including car-

diovascular events. Thus, it is plausible that some stroke comorbidi-

ties could partly either arise as a result of or be further exacerbated

by the systemic immune response originated after an initial stroke

event. Indeed, accumulating evidence suggest that conserved

immunological mechanisms might play similar roles in different dis-

eases of diverse nature that encompass systemic inflammation, fur-

ther supporting a plausible effect of the stroke-induced

immunological response on the progression of other inflammation-

associated diseases (Hoyer et al, 2019; Roth et al, 2021a). Under

this rationale, targeting post-stroke chronic inflammation has cur-

rently emerged as a promising therapeutic intervention to ultimately

improve stroke outcome, prevent recurrent vascular events and

avoid secondary comorbidities (Table 1).

Several pro-inflammatory mediators such as TNF-a, IL-1b, and
IL-6 have been proposed as key drivers of secondary vascular events

after stroke. Since very limited data is available from stroke trials so

far, a first line of evidence proving the potential beneficial effect of

targeting these pro-inflammatory molecules on common poststroke

comorbidities has been inferred from clinical trials for other diseases

that primarily manifest a chronic inflammatory response with

shared immunological mechanisms. For instance, the use of TNF-a
inhibitors in patients with psoriasis and psoriatic arthritis has been

shown to provide net benefits with regard to the risk of developing

cardiovascular events (Yang et al, 2016). Similarly, the incidence of

other stroke-associated comorbidities such as diabetes mellitus and

dementia is known to be reduced by anti-TNF-a and anti-IL-1b ther-

apy in patients with rheumatoid arthritis and comorbid type-2 dia-

betes (Chou et al, 2016) (Burska et al, 2015). Analogously to these

diseases, targeting systemic immunity after stroke seems thus a

promising strategy to attenuate the incidence of poststroke sec-

ondary comorbidities, despite the degree and extent of the inflam-

matory response across all these different diseases is still uncertain

and may vary from one pathology to another.

A second and more solid line of evidence comes from several

randomized controlled clinical trials that have directly evaluated

systemic immunity as a key target in patients suffering from diverse

incident vascular diseases. For instance, several proof-of-concept

clinical studies have assessed the effects of the pharmacological

blockage of IL-1b signaling pathway via the administration of

Anakinra, a recombinant human interleukin-1–receptor antagonist

(IL-1Ra), in diverse cerebrovascular diseases. The recent SCIL-

STROKE and SCIL-SAH trials (Subcutaneous Interleukin-1 Receptor

Antagonist in Ischemic Stroke and aneurysmal SAH, respectively)

two small single-center double-blind randomized phase 2 trials,

demonstrated the efficacy of subcutaneous IL-1Ra administration in

reducing the peripheral inflammatory response, evaluated by

plasma IL-6 and CRP levels, in acute ischemic stroke and SAH,

respectively (Galea et al, 2018; Smith et al, 2018). In this same line,

another clinical trial evaluating the effect of IL-1Ra on lowering

inflammation after spontaneous intracerebral hemorrhage is also

currently ongoing (Studying Anakinra to Reduce Secondary Brain

Damage After Spontaneous Hemorrhagic Stroke (ACTION,

NCT04834388)). Beyond these cerebrovascular diseases, Anakinra

has been also tested in clinical trials for other acute brain diseases

like severe TBI. In such, a detailed panel of cytokines and chemoki-

nes were evaluated in cerebral microdialysates and arterial and

jugular venous samples from TBI patients treated with subcuta-

neous IL-1Ra or placebo (Helmy et al, 2014; Lassar�en et al, 2021).

IL-1Ra treatment resulted in a notable attenuation of the neuroin-

flammatory response in brain, although far fewer differences were

observed in the cytokine response to TBI at the systemic level for

the treatment group (Lassar�en et al, 2021). Furthermore, beyond

brain diseases, Anakinra has proved to be effective in reducing

inflammation in patients with rheumatoid arthritis and type-2 dia-

betes (Ruscitti et al, 2019).

The CANTOS trial (Canakinumab Anti-inflammatory Thrombosis

Outcome Study), a multinational double-blind phase III study, was

also designed to target inflammation in patients with established

atherosclerotic disease who had prior myocardial infarction and

high residual systemic inflammatory state (measured by high-

sensitivity CRP levels >2 mg/L)—comparable to the chronic inflam-

matory state after stroke (Ridker et al, 2017). Particularly, the

CANTOS trial tested efficacy of reducing inflammation by neutraliz-

ing IL-1b with Canakinumab, a full human monoclonal antibody.

Canakinumab significantly reduced the incidence of cardiovascular

events, including myocardial infarction, stroke and cardiovascular

death. These beneficial effects were directly attributed to a lower

systemic inflammatory response, since treatment with canakinumab

did not show any effect on other well-known cardiovascular risk

factors such as lipids or blood pressure levels. Although results from

the CANTOS study supported the notion that reducing vascular

inflammation in the absence of concomitant lipid lowering reduces

the rates of recurrent vascular events, the mechanisms underlying

these beneficial effects remain incompletely understood. Impor-

tantly, IL-1b neutralization in CANTOS significantly increased the

frequency of global fatal infections and sepsis. These findings would

argue towards a cautious use and further translation of such

immunomodulatory approaches for use in patients with increased

susceptibility to infections, such as stroke patients; therefore, more

specific approaches that block specific pathways leading to subacute

immune exhaustion rather than also inhibiting potential effector

functions such as IL-1b might be more promising for future develop-

ment in stroke patients.

Beyond IL-1b, other anti-inflammatory strategies are also now

under investigation to lower inflammation and prevent cardiovascu-

lar events. This is the case of colchicine, a widely available, safe,

and low-cost anti-inflammatory drug currently used as a treatment

for gout, Behçet’s disease and familiar Mediterranean fever. Mecha-

nistically, colchicine is known to inhibit tubulin polymerization and

microtubule generation, which primarily impairs cell mitosis and

motility. Moreover, colchicine has also been known to interfere with

the inflammatory process by inhibiting the synthesis of pro-

inflammatory factors, including TNF-a, COX-2, and E- and P-selectin

expression, among others, and impairing the activity of the NLRP3

inflammasome by blocking its oligomerization (Mart�ınez et al,

2018). These latest mechanisms of action of colchicine pointed to

the fact that it might also potentially be used to reduce residual

inflammation in cardiovascular diseases. In this regard, several clin-

ical trials demonstrated that colchicine treatment is safe and effec-

tive for the prevention of secondary vascular events in patients with
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Table 1. Clinical trials targeting systemic inflammation in patients with ischemic stroke.

Drug MoA
Trial
acronym

Unique
identifier

Patients
characteristics PMID Primary outcome Observed outcome

ApTOLL TLR4 antagonist NCT04734548 Acute ischemic
stroke patients
treated with EV
therapy

– Adverse events at d90
(death, recurrent
stroke, sICH)

Ongoing

Colchicine Microtubule
polymerization
inhibitor

CONVINCE NCT02898610 Non-
cardioembolic
ischemic stroke
or high-risk TIA
patients

34414298 Recurrent non-fatal
and fatal stroke or MI
within 60 months

Ongoing

Dimethyl
fumarate

Multi-target anti-
oxidant and
immunomodulatory
mechanisms

NCT04890366 Acute ischemic
stroke patients
treated with
alteplase

– Changes in lesion
volume, HT and
neurological
impairment at d1
(NHISS)

Ongoing

NCT04891497 Acute ischemic
stroke patients
treated with EV
therapy

– Changes in lesion
volume, HT and
neurological
impairment at d1
(NIHSS)

Ongoing

Enlimomab Anti-ICAM-1
antibody

Acute ischemic
stroke patients

11673584 Worse outcome (d5,
d30, d90)

Anakinra IL-1R antagonist SCIL-
Stroke

ISRCTN74236229 Acute ischemic
stroke patients

29567761 Concentration of
plasma IL-6 at d3

Reduced plasma
inflammatory
markers (IL-6 and
CRP)

Indobufen platelet aggregation
inhibitor

INSURE NCT03871517 Ischemic stroke
patients

35393360 Recurrent stroke and
moderate bleeding at
90d

Ongoing

Natalizumab Anti-VLA-4 antibody ACTION NCT01955707 Acute ischemic
stroke patients

28229893 Changes in lesion
volume (baseline vs.
d5)

No reduction of
infarct volume (d5,
d30)

ACTION2 NCT02730455 Acute ischemic
stroke patients

32591475 Favorable outcome at
d90 (mRS)

No outcome
improvement (d90)

Pioglitazone PPAR synthetic
ligand

IRIS NCT00091949 Ischemic stroke
or TIA patients

25458644
29084736

Recurrent non-fatal
and fatal stroke or MI
at 5 years

Reduced risk of
secondary ischemic
stroke (5 years)

NCT04123067 Hyperglycemic
acute ischemic
stroke patients

– Clinical improvement
at d90 (NIHSS, mRS)

Ongoing

Rivaroxaban Inhibits coagulation
factor Xa

ESUS NCT02313909 Ischemic stroke
patients

29766772 Incident events
(stroke, TIA,
embolism)

Terminated due to
no efficacy

RISAPS NCT03684564 Ischemic stroke
patients with
persistent
antiphospholipid
antibodies

– Change in brain
WMH volume at
24 months

Ongoing

Vipocentine Inhibitor of
Calcium-dependent
cyclic-GMP
metabolism

NCT02878772 Ischemic stroke
patients

28691141 Changes in lesion
volume (baseline vs.
d7), brain
inflammatory level,
clinical improvement
at d7 and d14 (NIHSS)

Reduced secondary
lesion enlargement,
attenuated
neuroinflammation,
improved outcome
(3 m)

Abbreviations: EV, endovascular; GCS, Glasgow coma scale; GMP, guanosine 30 ,50-cyclic monophosphate; HT, hemorrhagic transformation; ICAM-1, intracellular
adhesion molecule-1; IL-1R, Interleukin-1 receptor; MAG, myelin-associated glycoprotein; MI, myocardial infarction; mBI, modified Barthel Index; mRS, modified
rankin scale; NHISS, National Institute of Health stroke scale/score; PPAR, peroxisome proliferator-activated receptors; sIHC, symptomatic intracranial hemorrhage;
S1P, sphingosine-1-phosphate; TIA, transient ischemic attach; TLR4, Toll-like receptor-4; VLA-4, integrin a4b1; WMH, white matter hyperintensity.
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stable coronary disease or myocardial infarction (Nidorf et al, 2013;

Tardif et al, 2019). Recent meta-analyses performed on all available

data from previous randomized controlled trials also demonstrated

that colchicine treatment results in a significant reduction of stroke

incidence in patients with high cardiovascular risk (Katsanos

et al, 2020; Masson et al, 2020). Based on these first evidences in

the cardiovascular field, the effect of this anti-inflammatory treat-

ment on the prevention of secondary adverse events following

stroke is currently under investigation. An international multicenter,

prospective, randomized phase 3 clinical trial (CONVINCE, Colchi-

cine for Prevention of Vascular Inflammation in Non-cardio Embolic

Stroke) testing the efficacy of colchicine in ischemic stroke patients

with an anticipated median follow up of 36 month is currently

ongoing (Kelly et al, 2021). The primary outcome of this clinical

study is time to first recurrent nonfatal ischemic stroke, nonfatal

cardiac events or fatal cardiovascular deaths. Similarly, colchicine is

also currently being evaluated as a potential therapeutic interven-

tion to reduce residual vascular risk in patients with peripheral arte-

rial disease in another double-blind randomized phase 3 clinical

trial (LEADER-PAD, Low Dose ColchicinE in pAtients with Periph-

eral Arterial Disease to Address Residual Vascular Risk).

Taken together, the existing first clinical data from studies target-

ing systemic inflammation in multiple inflammation-related diseases

suggest that systemic inflammation is as an important driver of sec-

ondary vascular events in patients with underlying vascular comor-

bidities and preceding ischemic events. The currently ongoing and

newly planned studies aiming at preventing vascular events after

stroke by means of anti-inflammatory strategies further highlight

that the relevance of systemic inflammation after stroke has been

already recognized by the large stroke research field, and will likely

motivate further trials to test alternative anti-inflammatory

approaches and drugs for the prevention of post-stroke comorbidi-

ties.

Conclusions

In recent years, systemic immunity has gained significant impor-

tance as a key player in the stroke pathology. Despite its increasing

relevance, no consideration is yet given to systemic inflammation

for the management of stroke patients in the clinical practice. Solid

evidence points toward a tight connection between poststroke sys-

temic inflammation and secondary complications, including infec-

tions and diverse cardiovascular pathologies. This emerging concept

suggests that inflammation could be a potential target for interven-

tion in stroke patients to improve stroke outcomes and avoid sec-

ondary complications at the same time. Particularly, targeting IL-1b
has shown promising results so far. The CANTOS study laid the

foundation for the prevention of cardiovascular comorbidities by

minimizing systemic inflammation and showed a clear benefit for

patients with a high-risk cardiovascular profile. Similarly, the bene-

ficial effects of Colchicine for preventing secondary vascular events

also support the promising potential of anti-inflammatory agents as

therapeutic approaches to minimize the incidence of cerebrovascu-

lar and cardiovascular diseases in patients of high risk. Several clini-

cal trials for anti-inflammatory strategies in stroke are currently

recruiting and we can expect increasing interest in the systemic

immune response as a therapeutic target. This development gives

hope for a paradigm shift from a neuro-centric view on stroke ther-

apy toward the recognition of systemic effects as important elements

in the personalized treatment of stroke patients.

Expanded View for this article is available online.
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