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Electroacupuncture alleviates diabetic neuropathic pain in rats
by suppressing P2X3 receptor expression in dorsal root ganglia
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Abstract
Diabetic neuropathic pain (DNP) is a troublesome diabetes complication all over the world. P2X3 receptor (P2X3R), a purinergic
receptor from dorsal root ganglion (DRG), has important roles in neuropathic pain pathology and nociceptive sensations. Here,
we investigated the involvement of DRG P2X3R and the effect of 2 Hz electroacupuncture (EA) onDNP.Wemonitored the rats’
body weight, fasting blood glucose level, paw withdrawal thresholds, and paw withdrawal latency, and evaluated P2X3R
expression in DRG. We found that P2X3R expression is upregulated on DNP, while 2 Hz EA is analgesic against DNP and
suppresses P2X3R expression in DRG. To evaluate P2X3R involvement in pain modulation, we then treated the animals with
A317491, a P2X3R specific antagonist, or α β-me ATP, a P2X3R agonist. We found that A317491 alleviates hyperalgesia,
while α β-me ATP blocks EA’s analgesic effects. Our findings indicated that 2 Hz EA alleviates DNP, possibly by suppressing
P2X3R upregulation in DRG.
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Abbreviations
DNP Diabetic neuropathic pain
P2X3R P2X3 receptor
DRG Dorsal root ganglion
ATP Adenosine 5′-triphosphate
STZ Streptozotocin
FBG Fasting blood glucose
BW Bodyweight
EA Electroacupuncture
PWL Paw withdrawal latency
PWT Paw withdrawal threshold
PSN Persistent spontaneous nociception

Introduction

There are about 415 million diabetes cases worldwide, and the
number is projected to rise to about 700 million by 2045 [1].
The global burden of diabetes mellitus (DM) severely affects
quality of life and imposes tremendous healthcare burdens.
Diabetic neuropathic pain (DNP) is a common, troublesome
diabetes complication that affects 11–21% of diabetics [2] and
is associated with numbness, spontaneous pain, hyperalgesia,
and allodynia [3, 4]. DNP management is usually by analge-
sics, including pregabalin, duloxetine, and opioids [5, 6], but
these are not always effective. Thus, a better understanding of
the mechanisms underlying DNP is needed.

P2X3 receptor (P2X3R) belongs to the purinergic receptor
(P2X) family and is highly expressed in the small- and
medium-diameter sensory neurons of dorsal root ganglions
(DRGs) [7–9]. Adenosine 5′-triphosphate (ATP) releasing
from damaged cells in peripheral tissues mediates the activa-
tion of P2X receptors on cell surface, which contributes to
inflammation [10, 11]. P2X receptor antagonists are known
to inhibit mechanical allodynia in rats and mice [12, 13].
Neuropathic pain is often caused by somatosensory nervous
system damage, causing the release of vast amounts of ATP.
The expression of P2X3R is markedly high in DRGs [14, 15],
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and its inhibition relieves mechanical hyperalgesia in a neu-
ropathic pain rat model [16]. Additionally, it is reported that
P2X3R significantly enhances ATP-activated gated cation
channel currents in sensory neurons [17, 18]. Highlight the
P2X3R as a novel target for pain treatment.

Streptozotocin (STZ) is an antibiotic that can selectively
destroy pancreatic islet β-cell [19]. STZ is widely used to
generate diabetic animal models that recapitulate the features
of human diabetes, including insulin deficiency, weight loss,
hyperglycemia, polydipsia, polyuria, and polyphagia [20, 21].
Relative to diabetes animal models created by other means,
including genetic induction of spontaneous diabetes [22, 23],
or high-fat diet (HFD) combined with low-dose STZ [24, 25],
STZ-induced models are more widely used to study DNP
mechanisms and potential therapies, owing to its convenience
and lower model generation costs.

Electroacupuncture (EA) is widely used to treat chronic
pain, including diabetes-associated pain [26–28]. Mounting
evidence in animal models indicates involvement of P2X3
receptor in neuropathic pain [29–33]. However, few DNP
models are available. Previously, we have shown that EA
suppresses P2X3R overexpression in DRGs and reduces
DNP in type 2 DM rats [34]. Here, we created type 1 DM rats
by a single large dose injection of STZ (65 mg/kg) and char-
acterized P2X3R expression at various DNP stages. We then
investigated if EA alleviates DNP by suppressing P2X3R ex-
pression in DRG neurons.

Materials and methods

Animals

Male Sprague-Dawley (SD) rats, weighing 160–200 g, were
purchased from Shanghai Laboratory Animal Center of
Chinese Academy of Sciences, (SCXK (hu) 2018-0006),
and 5 rats per cage were housed in controlled 12-h light/dark
cycles, at 24 ± 2 °C and 40–60% relative humidity with ad
libitum access to water and food. Approval for animal exper-
iments was provided by the animal welfare committee of
Zhejiang Chinese Medical University (IACUC-20180723-
08). The suffering of animals and their numbers was mini-
mized by all efforts.

Establishment of the type 1 DNP rat model

To induce DNP, animals were fasted overnight and then i.p.
injected with STZ (Sigma-Aldrich, Cat. No. S0130-1G) in
0.1 M citrate buffer, pH 4.5, at 65 mg/kg of body weight
[35, 36]. Control animals were injected with same volume of
vehicle. After 7 days, rats with > 13.9mmol/L of fasting blood
glucose (FBG) were selected as type 1 diabetic rats [37, 38].

Experimental design

First, STZ effects were evaluated at 7, 14, and 21 days after
STZ treatment by monitoring DNP and P2X3R expression on
DRGs. Rats were randomly divided into a Control group (n =
6, sacrificed 21 days after STZ injection and tissue harvested)
and a DNP group (n = 12, 3 rats were sacrificed 7 days after
STZ injection for tissues, 3 rats were sacrificed 14 days after
STZ injection for tissues, 6 rats were sacrificed 21 days after
STZ injection for tissues). Paw withdrawal thresholds (PWT)
and paw withdrawal latency (PWL) were examined according
to the schedule (Fig. 1a).

Next, the involvement of P2X3R in DNP was evaluated by
treating the animals with A317491, a P2X3 antagonist. Rats
were randomly divided into a Control + NS group (n = 12), a
DNP + NS group (n = 12), and a DNP + A317491 group (n =
12). The antagonist was administered on day 15 after STZ
injection, with PWTs and PWLs being recorded according
to the schedule (Fig. 4a).

The effects of 2 Hz EA on DNP and P2X3R expression in
DRGs were assessed. Rats were randomly divided into a con-
trol group (n = 12), a DNP group (n = 12), and a DNP + EA
group (n = 12). They were then treated with EA for 7 days and
pain behavioral tests conducted according to the schedule
(Fig. 5a). After 7 days post-EA treatment, rats were sacrificed
for tissues.

Next, the role of DRG P2X3R on 2Hz EA analgesic effects
in DNP was examined. Rats were randomly divided into a
Control + α β-me ATP group (n = 8), a DNP + α β-me
ATP group (n = 8), and a DNP + EA + α β-me ATP group
(n = 8). They were then treated with α β-me ATP, a P2X3
agonist for 7 days after EA treatment, and examined for
whether P2X3 receptor reverses the 2 Hz EA analgesic effects
(Fig. 7a).

Behavioral analysis

Assessment of thermal pain sensitivity

Behavioral analysis of thermal pain sensitivity was examined
by paw withdrawal latency (PWL) assay 1 day prior to STZ
injection and then 7, 14, and 21 days after injection, until
sacrifice. For PWL examination, rats were acclimated for
10 min to individual Plexiglas cubicles (17′ 22′ 14 cm) on
the surface of a 2-mM-thick glass plate. Heat stimulus was
then applied to the plantar surface of the left hind paw using
the plantar test (37370, Ugo Basile, Italy). The cut-off time
was set at 20 s and the radiant heat at 40 to avoid tissue
damage. Each hind paw was independently tested 5 times at
5-min intervals. Baseline thermal withdrawal latency was re-
corded before STZ injection. Mean PWL was calculated by
averaging the latencies of tests after removing the maximum
and minimum values taken for data analysis.
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Assessment of mechanical pain sensitivity

Mechanical pain sensitivity was evaluated using the paw with-
drawal threshold (PWT) assay at the time of PWL analysis. We
employed the dynamic plantar esthesiometer (37450, Ugo
Basile, Italy), which is an automated tool that works on the
principle of von Frey filament principle and assesses the PWT.
The tool measured the sensitivity to touch stimuli. Rats were
allowed to familiarize with the Plexiglas cubicles (17′ 22′
14 cm) on a wire mesh platform for 10 min after which a probe
that generates stimulations was placed under the hind paw. We
then applied a vertical force (incrementally from 0 to 50 g in 20 s)

to the paw and recorded the force that generated a limb with-
drawal. The tolerance threshold was presented as the mean of 3
readings. The same protocol was followed to perform postoper-
ative tests and measure the threshold to mechanical stimulus.

Persistent spontaneous nociception assessment

Evaluation of spontaneous nociception began immediately af-
ter α β-me ATP injection. Briefly, animals were habituated in
Plexiglas cubicles situated over an HD camera (Sony, HDR-
CX405) for 10 min and persistent spontaneous nociception
(PSN) was estimated by counting the number of paw flinches.

Fig. 1 Generation of the DNP rat
model. a Schematic of the DNP
rat model creation process; b time
course effect of STZ injection on
FBG; c time course effect of STZ
injection on body weight; d time
course effect of STZ injection on
PWT; e normalized area under the
curve (AUC) analysis of d; f time
course effect of STZ injection on
PWL; g normalized area under
the curve (AUC) analysis of f.
AUCs were all normalized to the
corresponding Control group. n =
6. *P < 0.05, **P < 0.01 vs.
Control group
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Paw flinches were counted at 2-min intervals. Pain-like be-
havior, including shaking, biting, and licking of the injected
paw, was counted as paw flinches in 2-min bins across the
entire 10-min test.

Immunofluorescence

Rats were deeply anesthetized by i.p. injection of sodium pen-
tobarbital (80 mg/kg) and perfused with saline followed by
4% PFA in PBS1X (pH 7.4). The bilateral L4–6 DRGs were
then removed and post-fixed in 4% PFA for 4 h before being
dehydrated in 15% and 30% sucrose solution for 48 h (until
sinking at 4 °C was observed). Tissues were sectioned at
10 μm using a frozen microtome and mounted onto glass
slides. Sections were rinsed with TBST (pH 7.4) and blocked
in 10% normal donkey serum in TBST (0.1% Tween-20) for
60 min at 37 °C. They were then incubated at 4 °C overnight
with rabbit anti-P2X3 (Alomone, APR-016) alone at 1:400 or
mixed with mouse anti-NeuN (Abcam, ab104224) at 1:600,
mouse anti-GFAP (Sigma, G3893) at 1:400, or mouse anti-
CD11 (Abcam, ab1211) at 1:500. After six 10-min washes
with TBST (pH 7.4), the sections were incubated with Alexa
Fluor 488 donkey anti-rabbit IgG (Jackson, 711-545-152) or
Alexa Fluor 647 donkey anti-mouse IgG (Jackson, 715-605-
150) at 1:800 for 1 h at 37 °C. The sections were then imaged
on an A1R confocal microscope (Nikon) using a × 10 objec-
tive. Image analysis was done using ImageJ. Positive cells
were counted in 3–5 random sections from each rat. Three rats
were analyzed for each group.

Drug administration

A317491 (Sigma-Aldrich, A2979-5MG) and α β-me ATP
(Sigma-Aldrich, M6517-5MG) were freshly dissolved in ster-
ile 0.9% saline and diluted to required concentrations before
each experiment. A317491 (50 ul, 100 nmol) and α β-me
ATP (50 ul, 100 nmol) were administered via intraplantar
injection into the left hind paw. Other groups received the
same volumes of sterile saline.

Electroacupuncture

For electroacupuncture, rats were restrained without anesthe-
sia. Acupuncture needles (0.25 mm*13 mm, Huatuo, Suzhou
Medical Appliance Manufactory, Jiangsu, China) were
inserted into bilateral Zusanli (ST36) and Kunlun (BL60)
acupoints. In rats, the Zusanli (ST36) is located posterior lat-
eral to the knee joint and about 5 mm below the capitulum
fibulae. The Kunlun (BL60) is located in the depression be-
tween lateral malleolus and achilles tendon of the hind limb
[39]. The needles were inserted 5 mm deep into the rats and
then stimulated using a HANS electrical stimulation device
(Hans-200A, Jisheng Medical Technology, Beijing, China)

at 1 mA and 2 Hz. Control and DNP group rats received the
same calming procedure without EA stimulation.

Statistical analysis

Data are presented as mean ± SEM and were analyzed with
SPSS 21.0. All data were analyzed by one-way ANOVA,
followed by post hoc test of the least significant difference
(LSD) or Dunnett’s post hoc test for multiple comparisons.
P < 0.05 indicated statistical significance.

Results

Generation of a DNP model via large-dose STZ
injection

We created a DNP model using a single intraperitoneal STZ
injection (65 mg/kg body weight) to trigger type 1 insulin
deficiency in rats (Fig. 1a). Relative to controls, diabetic rats
exhibited significantly higher FBG and body weight 7 days
after diabetes induction (Fig. 1b, c, P < 0.01, respectively).
Although basal PWTs and PWLs did not differ between
groups, they significantly fell in DNP group relative to the
control group on day 14 post-STZ injection (D14), which
persisted throughout the experiment, indicating development
of mechanical allodynia and thermal hyperalgesia (Fig. 1d, f,
P < 0.01, respectively). Area under the curve (AUC) analysis
of PWT and PWL revealed they were significantly lower in
DNP rats (Fig. 1e, g, P < 0.01 for AUC of PWT, P < 0.05 for
AUC of PWL). Together, these observations show successful
establishment of the type 1 DNP model.

P2X3 receptor expression is upregulated on L4–6
DRGs in DNP rats

We used immunofluorescence to evaluate P2X3R expression
in DRG at 7, 14, and 21 days after STZ injection (Fig. 2a).
This analysis revealed that relative to control animals, DNP
rats had significantly higher P2X3R expression in L4–6 DRG
on D7 (P < 0.05, respectively), which persisted on D14
(P < 0.05 for L4 DRG, P < 0.01 for L5 and L6 DRGs) and
D21 (P < 0.01, respectively) (Fig. 2b). P2X3R was predomi-
nantly expressed in DRG neurons with medium and small
diameters (< 40 μm) (Fig. 2c).

P2X3 receptor colocalizes with NeuN, but not with
GFAP and CD11 in DRG

We used double immunofluorescence to identify the cell types
that express P2X3R in the DRG on D21 and found that
P2X3R colocalizes with the neuronal marker NeuN
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(Fig. 3a), but not with the satellite glial cell marker GFAP
(Fig. 3b) or the microglia marker CD11 (Fig. 3c).

A317491 suppresses diabetic neuropathic pain

We examined the effect of A317491 on pain behavioral tests
in DNP rats vs. controls (Fig. 4a). Prior to A317491 adminis-
tration, we observed significant differences in PWTs and
PWLs in control vs. DNP animals, but not between DNP +
NS and DNP + A317491 groups prior to treatment. However,
half an hour after A317491 treatment, the DNP + A317491
group showed remarkably milder thermal hyperalgesia and
mechanical allodynia relative to the DNP + NS. These effects
lasted an hour post A317491 injection for mechanical
allodynia and 2 h for thermal hyperalgesia (Fig. 4b, c).

2 Hz EA relieves thermal hyperalgesia and mechanical
allodynia in DNP rats

We then established a rat model of STZ-induced DNP
and treated all groups with EA following the aforemen-
tioned protocols (Fig. 5a). This analysis revealed signif-
icantly lower PWT and PWL 14 days after STZ injec-
tion (Fig. 5d, f, P < 0.01, respectively). Daily 2 Hz EA
treatment for 7 days significantly increased PWT and
PWL relative to the DNP group at the same time point
(Fig. 5d, f, P < 0.01, respectively). AUC analysis of
PWT and PWL revealed the overall effect of 2 Hz EA
on thermal hyperalgesia and mechanical allodynia in
DNP rats (Fig. 5e, g, P < 0.05, respectively). EA did
not affect FBG and body weight relative to the DNP
group (Fig. 5b, c).

Fig. 2 P2X3R expression levels
in L4–6 DRG in DNP model. a
Representative images of L4–6
DRGs from Control, D7, D14,
and D21 groups. Scale bars =
200 μm; b quantification of
P2X3R positive neurons in L4–6
DRGs in different groups; c size
distribution of P2X3R positive
neurons in L4–6 DRGs in differ-
ent groups. n = 3. *P < 0.05,
**P < 0.01 vs. control group
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Fig. 3 Colocalization
immunofluorescence analysis of
P2X3 receptor with NeuN,
GFAP, and CD11.
a Immunofluorescence images of
P2X3R (green) and NeuN (red)
colocalization in DRGs; b -
immunofluorescence images of
P2X3 receptor (green) and GFAP
(red) colocalization in DRGs; c -
immunofluorescence images of
P2X3R (green) and CD11 (red)
colocalization in DRGs. Scale
bars = 20 μm

Fig. 4 Effects of A317491 on PWT and PWL at different timepoints. a
Treatment schedule of A317491; b effect of A317491 on PWT in DNP
rats; c effect of A317491 on PWL in DNP rats. Data are shown as means

± SEM, n = 6 rats per group. *P< 0.05, **P < 0.01 vs. Control + NS
group. #P < 0.05, ##P < 0.01 vs. DNP + NS group
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2 Hz EA suppresses P2X3 receptor upregulation in L4–
6 DRGs in DNP rats

To assess whether the analgesic effects of 2 Hz EA on DNP
are mediated via P2X3R expression in DRG, we used IF to
assess DRG P2X3R expression after continuous 2 Hz EA
treatment for 7 days (Fig. 6a). This analysis revealed that
P2X3R expression in L4–6 DRGs was markedly increased
in the DNP group relative to the control group (Fig. 6b,
P < 0.01 for L4 and L5 DRGs, P < 0.05 for L6 DRG) and
was significantly inhibited by 2 Hz EA treatment relative to
DNP group (Fig. 6b, P < 0.05, respectively). Analysis of

P2X3R size distribution in L4–6 DRGs revealed that neither
STZ injection nor 2 Hz EA treatment altered the P2X3R dis-
tribution (Fig. 6c).

2 Hz EA treatment reduces α β-me ATP-induced per-
sistent spontaneous nociception

Next, we evaluated EA effects on P2X3R-mediated activity.
The results described in the preceding sections indicated that
the rats developed DNP 14 days after STZ injection. Thus, EA
treatment was started on the 15th day and given for 7 consec-
utive days. OnD21,αβ-me ATPwas injected into the plantar

Fig. 5 Impact of EA treatment on
PWL and PWT in DNP rats. a
Experimental procedure for
generation of the DNP rat model
and EA treatment; b time course
effect of STZ injection and EA
treatment on FBG; c time course
effect of STZ injection and EA
treatment on body weight; d
analgesic effects of 2 Hz EA on
PWT; e normalized AUC analysis
of Fig. 1d; f analgesic effect of
2 Hz EA on PWL; g normalized
AUC analysis of Fig. 1f. n = 6 rats
per group. **P < 0.01 vs. Control
group. #P < 0.05, ##P < 0.01 vs.
DNP group
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surface of rat left paw immediately after EA treatment to ac-
tivate P2X3R and elicit persistent spontaneous nociception
(PSN) (Fig. 7a). This analysis revealed a reduction in the
number of flinches in all groups (Fig. 7b). The number of
paw flinches in the EA group significantly increased to
41.88 ± 4.95 after α β-me ATP injection. Animals in the
DNP group exhibited more severe PSN after injection, with
a marked elevation in the number of paw flinches (92.38 ±
13.52) relative to the control + α β-me ATP group. After EA
treatment, DNP rats exhibited α β-me ATP-induced PSN
levels similar to those of the control + α β-me ATP group

(46.38 ± 3.34 paw flinches) and significantly lower than those
of the DNP + α β-me ATP group (Fig. 7c, P <0.05).

Discussion

Here, we investigated the effect of P2X3R expression on
diabetic neuropathic pain at various stages of type 1 DNP
in a rat model and related mechanisms of EA-mediated an-
algesic effects. We show that a large dose of STZ injection
induces type 1 diabetes in rats. STZ-induced DNP rats

Fig. 6 Impact of EA on P2X3R
levels in L4–6 DRGs. a
Representative images of L4–6
DRGs immunofluorescence
staining in Control, DNP, and
DNP + EA groups. Scale bars =
200 μm; b quantification of
P2X3R positive neurons in L4–6
DRGs in Control, DNP, and DNP
+ EAgroups; c size distribution of
P2X3R positive neurons in L4–6
DRGs. n = 3. *P < 0.05,
**P < 0.01 vs. Control group.
#P < 0.05 vs. DNP group
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exhibited pain hypersensitivities, including mechanical
allodynia [40–42], thermal hyperalgesia [43, 44], and spon-
taneous nociception [45], 14 days after STZ injection, and
elevated P2X3R expression in DRGs. We find that 2 Hz EA
treatment eliminates pain hypersensitivities and suppresses
P2X3R expression. Further analysis found that A317491, a
specific P2X3R antagonist, suppressed DNP pain hypersen-
sitivities, while 2 Hz EA analgesic effects were reversed by
α β-me ATP, a P2X3 agonist. Taken together, these findings
suggest that DNP may be mediated by elevated P2X3R ex-
pression and that EA may have analgesic effects via suppres-
sion of P2X3R expression in DRGs.

Different approaches have been used to develop DNP an-
imal models. For example, DNP models can be established
spontaneously, e.g., the WBN/Kob rat [46] and Ins2 Akita
mouse [47], genetically, e.g., the C57BL/Ks (db/db) mouse
model [48], through high-fat diets [49], or pharmacologically
with alloxan [50] or STZ [51]. Because STZ triggers diabetes
features that closely recapitulate those of human diabetes, it is
extensively used to generate diabetes models [52]. Some spe-
cies, including mouse, rat, and monkey, are sensitive to STZ’s
cytotoxic effects on pancreatic β cells [53]. STZ may be ad-
ministrated intraperitoneally (I.P.) or intravenously (I.V.) into
adult animals [54]. As higher STZ doses are directly cytotoxic
to pancreatic β cells, they are preferred for T1DM induction.
These animal models are characterized by reduced islet β cell
numbers, non-fasting or fasting hyperglycemia, decreased in-
sulin secretion, and low glucose tolerance during glucose

stimulation. Thus, we generated a T1DM rat model using a
single, large dose of STZ (65 mg/kg) by i.p. injection.
Elevated FBG, gradual weight loss, and pain hypersensitiv-
ities indicated successful DNP induction.

Multiple studies have shown P2X3 receptor activity in-
volvement in DNP [55, 56]. Diabetes-induced damage to pe-
ripheral tissues [57] may sensitize sensory neurons or
nociceptors through various mechanisms. Elevated neuro-
transmitter release and peptide co-release with ATP are
thought to cause peripheral and central sensitization [51, 58].
Because P2X3R is sensitive to nanomolar ATP concentra-
tions, purinergic signal transduction can be adjusted using
varying ATP concentrations [59]. ATP modulates pain sensi-
tivity via changes in sensory neuron voltage-gated ion chan-
nels activity, including CaV and NaV [60, 61]. The P2X3R
agonist, α β-me ATP triggers fast desensitizing inward cur-
rent, while TNP-ATP significantly blocks inward currents in
rat DRGs [62]. Pain hypersensitivity in STZ-induced diabetic
rats can also be reduced by treatment with A317491, a P2X3R
antagonist, and TNP-ATP [12, 13, 63], indicating that periph-
eral P2X3 receptors mediate neuropathic pain.

Although the analgesic effects of EA are well documented,
its mechanisms are poorly understood. Present studies have
indicated that EA may improve insulin resistance [64, 65] by
enhancing insulin sensitivity in rats [66]. Previously, we have
shown that both 2 Hz and 100 Hz EA stimulation relieve
DNP, but 2 Hz EA has a stronger analgesic effect [67].
Acupuncture triggers ATP release by keratinocytes and

Fig. 7 Effects ofα β-me ATP on persistent spontaneous flinching reflex.
a PSN observation schedule after α β-me ATP injection. b Number of
paw flinches at 2-min time intervals following α β-me ATP injection. c

Number of paw flinches 10 min after α β-me ATP injection. Data are
shown as mean ± SEM, n = 8. *P < 0.05 vs. Control + α β-me ATP
group; #P < 0.05 vs. DNP + α β-me ATP group
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subcutaneous mast cells [68–70]. This contributes to transient
cytoskeleton reorganization and elevates intracellular Ca2+

concentration, stimulating other signaling pathways [71]. EA
and gentle manual rotation of acupuncture needles have been
reported to alter extracellular ATP concentration. However,
these ATP levels are not sufficiently high to activate P2X3R
due to rapid ATP degradation, explaining the absence of direct
pain during EA treatment [72]. α β-me ATP is reported to
elicit nociceptive responses [73] and block EA analgesic ef-
fects [30], which is consistent with our findings. We find that
neuropathic pain in DM rats rises with increased P2X3R ex-
pression and that EA suppresses P2X3R expression on DRGs.
Indicating peripheral P2X3R involvement in EA-mediated
pain attenuation. However, mechanisms by which ATP
upregulates P2X3R expression in DNP are unclear.

Conclusions

In summary, we have shown the relationship between pain
sensitization and P2X3R expression in DRG of DNP rats.
We find that EA mediates analgesia by downregulating
P2X3R expression. This study provides rationale for clinical
DNP treatment using EA.
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