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Transition into motherhood involves profound physiological and behavioral adaptations

that ensure the healthy development of offspring while maintaining maternal health.

Dynamic fluctuations in key hormones during pregnancy and lactation induce these

maternal adaptations by acting on neural circuits in the brain. Amongst these hormonal

changes, lactogenic hormones (e.g., prolactin and its pregnancy-specific homolog,

placental lactogen) are important regulators of these processes, and their receptors are

located in key brain regions controlling emotional behaviors and maternal responses.

With pregnancy and lactation also being associated with a marked elevation in the risk

of developing mood disorders, it is important to understand how hormones are normally

regulating mood and behavior during this time. It seems likely that pathological changes

in mood could result from aberrant expression of these hormone-induced behavioral

responses. Maternal mental health problems during pregnancy and the postpartum

period represent a major barrier in developing healthy mother-infant interactions which

are crucial for the child’s development. In this review, we will examine the role

lactogenic hormones play in driving a range of specific maternal behaviors, including

motivation, protectiveness, and mother-pup interactions. Understanding how these

hormones collectively act in a mother’s brain to promote nurturing behaviors toward

offspring will ultimately assist in treatment development and contribute to safeguarding

a successful pregnancy.

Keywords: prolactin, placental lactogen (PL), prolactin receptor, maternal behavior, maternal mood,

neuroendocrinology, neural circuitry

INTRODUCTION

The birth of immature offspring in mammalian species necessitates a period of intensive and
prolonged caregiving by parents. In a number of species, including humans, and some primate and
rodent species, fathers significantly contribute to the care-giving of new-born offspring. However,
due to internal fertilization and the nutritional dependence of new-born offspring on lactation,
mothers play an essential care-giving role in all mammalian species. Collectively termed “maternal
behavior,” these care-giving behaviors by a mother have been defined as “responses or behaviors
displayed by the female that specifically support the development and growth of her offspring” (1).
As such, maternal behavior encompasses complex sets of behaviors that extend beyond the basic
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requirement for shelter and nourishment. The exact compilation
of these behaviors and duration of their expression is determined
in a species-specific manner. Nonetheless, these sets of behaviors
can be broadly classified into either offspring-directed, to refer to
direct interactions between mother and offspring, or offspring-
related behaviors, which are not directed at the offspring but are
required to ensure safety of young and to support the demands of
lactation (1).

To understand the neurobiology underlying maternal mood
and behavior in the postpartum period, it is important to
note that maternal behavior represents a profound change in
a female’s behavior. Females in the maternal state will display
a different set of behaviors, or perform these behaviors with
a different intensity than is observed in non-pregnant females.
For example, in many ungulate species, where females remain
in close proximity to the herd, a parturient female will isolate
herself in order to protect offspring either from the rest of
the herd or from predators (2). In rodents, virgin rats will
demonstrate maternal behaviors toward foster pups, but this
process requires sensitization, involving repeated exposure to
pups (3). In contrast, pregnant rats will spontaneously show
maternal behavior 2 and 14 h prior to parturition (4). Although
separation of learned vs. inherent maternal responses can be
difficult to distinguish in primates, studies in non-human primate
species, such as female macaques, have demonstrated that the
frequency of infant-directed interactions specifically increases
during pregnancy and lactation (5). The onset of enhanced
maternal responses being so precisely timed with the birth of
offspring, points to an important role for the hormones of
pregnancy and lactation in promoting these behaviors. First
described in 1972, a humoral basis for maternal behavior (6) has
since been the subject of extensive research in a wide variety of
mammalian and non-mammalian species. Extensively reviewed
elsewhere, multiple hormonal signals contribute to the onset
and maintenance of maternal behaviors, including estrogen,
progesterone, oxytocin, and prolactin (1, 7–13). Rather than
reviewing the role of all these hormones in-depth here, the aim of
this review is to provide a focused examination of the literature
on the role of the prolactin family of hormones across multiple
facets of maternal behavior.

Although prolactin itself has been the focus of many studies,
it is but one of a wider group of hormones classed as
“lactogenic hormones” that act through a common receptor,
the prolactin receptor (Prlr). Lactogenic hormones encompass
a group of single peptide hormones of around 200 amino acids
that stimulate milk production, and include prolactin, placental
lactogens (or chorionic somatomammotropin in women), and in
humans, also include growth hormone. In non-pregnant females,
circulating prolactin is maintained at low basal levels through a
negative feedback loop system. Secretion of placental lactogen
or human chorionic somatomammotropin is initiated early in
pregnancy with circulating levels increasing until parturition
(10). The lactogenic composition during pregnancy is distinct in
rodents, with the mating stimulus inducing twice-daily surges
in prolactin secretion for the first 9 days of pregnancy (14).
However, in the second half of pregnancy, placental lactogen
I and II sequentially become the main source of circulating

lactogenic hormones present in the blood (15, 16). The elevated
placental lactogens act via Prlr in the hypothalamus to inhibit
maternal prolactin secretion through negative feedback (17, 18).
This negative feedback regulation disappears in late pregnancy,
and suckling induces chronically high levels of prolactin secretion
throughout lactation (19). When assessing a potential role for
these hormones in influencing maternal behavior, it is important
to consider the circulating levels of both placental lactogen (and
growth hormone in women) and prolactin during pregnancy
and lactation.

Recent studies have suggested that lactogenic hormones may
have an important role in regulating postpartum mood in
women. Prenatal depression in women is associated with low
levels of placental lactogen (20), and postpartum depression has
also been linked to low placental lactogen levels at term in
mothers who give birth to female infants (21). Potentially one
of the primary causes of low placental lactogen production in
women is maternal obesity (22), a concurrent risk factor for
developing postpartum depression and anxiety (23–25). This
finding has been replicated in animal models, with mouse models
of maternal obesity leading to suppressed placental lactogen
production (26) and poor maternal behavior (27). Furthermore,
in addition to effects on placental hormone production during
pregnancy, maternal obesity in women is also associated with
low prolactin secretion during lactation (28, 29). To date,
very few studies have investigated the role of lactogens in
regulating maternal mood and behavior in women, and our
current understanding is derived from mechanistic studies in
animal models. In particular, due to their small size, short
reproductive life-cycle, and the development of transgenic tools,
rodents have been invaluable in identifying how lactogenic
hormones influence maternal behavior. The aim of this review
is to incorporate what has been learnt from these animal models
about the role of lactogenic hormones in both offspring-directed
and offspring-related maternal behaviors, and to consider how
this might impact on mood in women.

LACTOGENIC SIGNALING IN THE BRAIN

The Prlr is expressed by a wide range of tissues throughout
the body and also in the brain (30–33). At 23 kDa in size,
lactogens are too large to cross the blood-brain barrier to exert
central actions in the absence of a transporter. Peripherally-
derived prolactin enters the brain through a saturable carrier-
mediated transport system (34, 35), with levels of prolactin
in the cerebrospinal fluid paralleling changes in peripherally
circulating prolactin (36, 37). While initially thought to be
dependent on Prlr expression within the choroid plexus of the
brain’s ventricular system, recent studies have demonstrated that
prolactin transport does not rely on the Prlr, but rather on a
currently unidentified transport molecule (35). In addition to
peripherally-derived lactogens acting in the brain, recent data
also suggests that prolactin itself can be synthesized and released
into the cerebrospinal fluid by epithelial cells in the choroid
plexus (38).
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FIGURE 1 | Prolactin-induced signaling pathways in neurons. Transcriptional pathway: binding of prolactin to the prolactin receptor (Prlr) results in activation of JAK2

which in turn phosphorylates several tyroside residues on the Prlr. This causes binding and phosphorylation of STAT5 which then dissociates from the receptor. Two

pSTAT5 molecules dimerise and translocate to the nucleus where they lead to changes in gene expression by binging to the promoters of target genes. To induce

changes in electrical activity, prolactin activates a low voltage and a high voltage current. The low voltage component is dependent on TRP channels. The high voltage

component requires BK-type K+ and L-type Ca2+ channels and is dependent on activation of PI3K, however the precise mechanism is unknown. It should be noted

that although possible pathways of prolactin-induced signaling are illustrated here, prolactin preferentially acts through the different pathways in a cell-specific and

reproductive-state specific manner.

The Prlr is part of the class 1 cytokine receptor superfamily
and is composed of the prolactin-binding extracellular domain,
a 24 amino acid long transmembrane domain and of the
intracellular domain (39). The receptor does not have intrinsic
tyrosine kinase activity but is associated with the Janus kinase
2 (JAK2) kinase (39, 40). As shown in Figure 1, prolactin
binding to the extracellular domain results in dimerization of
the receptor and activation of JAK2 which in turn triggers a
signaling cascade resulting in phosphorylation and translocation
of signal transducer and activator of transcription 5 (pSTAT5) to
the nucleus where it exerts targeted effects on gene transcription
(39). There are two homologous isoforms of STAT5; STAT5a and
STAT5b (11, 17), which are often co-expressed in tissues (10).
Although in some tissues, such as the mammary gland, STAT5a
predominantly mediates prolactin receptor signaling (41, 42), in
the hypothalamus of the brain, where the Prlr is highly expressed,
STAT5b is critical for prolactin action (43, 44). To detect

prolactin-induced activation in the brain, immunostaining for
pSTAT5 can detect phosphorylation of both STAT5 isoforms
and has been frequently-used to demonstrate prolactin-induced
activity in multiple brain regions, including those known to
regulate maternal behaviors (45–50).

Apart from its transcriptional effects, prolactin has also
been shown to directly influence neuronal activity (Figure 1).
The most pronounced effects have been determined within the
short-loop feedback regulation of prolactin secretion. Prolactin
acts to stimulate the activity of tuberoinfundibular dopamine
(TIDA) neurons in the arcuate nucleus of the hypothalamus
(ARN), increasing release of dopamine that subsequently inhibits
prolactin release from the anterior pituitary gland. A high
proportion (>90% in rats and ∼80% in mice) of TIDA neurons
express the Prlr (51–53), and in response to an acute application
of prolactin, TIDA neurons switch from their archetypal phasic
firing pattern to tonic firing (54). Indeed, prolactin was able to
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increase the activity of a high proportion (∼70%) of ARN Prlr-
expressing cells, as measured by calcium imaging (55). These
rapid effects are observed in both males, non-pregnant females
and lactating females (54–57). In TIDA neurons, the high voltage
component of the prolactin-induced excitation appears to be
dependent on the phosphoinositide 3-kinase (PI3K) pathway
and requires BK K+ channels, whereas the mixed cationic
transient receptor potential (TRP) channels underpin the low
voltage component (54). Specifically in females, prolactin also
sensitizes TRP channels in sensory neurons and contributes to
the regulation of pain responses (58–60). Amongst other brain
regions important for maternal behaviors, prolactin has also been
shown to have acute effects on neurons in the medial preoptic
area (MPOA) (55, 61). Compared to the ARN, however, prolactin
induces these effects upon a much smaller proportion (∼25%) of
MPOA cells (55), suggesting that prolactin regulates the cells in
this brain region primarily through its transcriptional pathways.

The paraventricular nucleus of the hypothalamus (PVN) has
also emerged as a brain region controlling maternal behaviors
and hosting Prlr-expressing neurons. In this brain region, acute
application of prolactin can inhibit a subset of oxytocin neurons
in virgin and pregnant rats, but not in lactating rats (62–
64). Conversely, when specifically examining PVN cells that
express the Prlr in the mouse, the acute effects of prolactin are
heterogenous, encompassing both inhibitions and excitations in
males, virgin females and lactating females (55). However, as
with the MPOA, these direct effects on neuronal activity are
only seen in a subset of Prlr-expressing PVN neurons (∼30%)
(55), providing evidence that gene transcription is likely to be
the primary method of prolactin-induced effects in the PVN.
Currently, little is known about the precise mechanism driving
prolactin’s rapid effects, highlighting the need for further study
on this topic.

OFFSPRING-DIRECTED BEHAVIORS
(RETRIEVAL, LICKING, NURSING, AND
GROOMING)

Offspring-directed behaviors promote the well-being of
young and include all maternal behaviors that involve direct
interactions between a mother and offspring. In rodents,
this includes retrieval of offspring, licking and grooming,
and nursing/crouching behavior. The first investigation into
prolactin’s role in this maternal behavior was reported in 1935,
where repeated exogenous prolactin administration induced
maternal behavior in virgin female rats (65). Subsequent
experiments showed that the known pro-maternal hormones,
estradiol and progesterone, were insufficient on their own to
induce maternal behavior in virgin rats, and highlighted the
requirement for pituitary-derived prolactin for this behavior to
be elicited (66). Since then, research has sought to understand the
types of maternal behavior that lactogenic hormones influence,
their site of action, and to identify when during pregnancy and
lactation these hormones are important (Table 1 and Figure 2).

The generation of a Prlr knockout mouse enabled a more
thorough assessment of prolactin’s role in offspring-directed

maternal behavior. In the absence of all Prlr signaling, pup
retrieval and crouching over the pups was severely disrupted
in knockout virgin female mice and heterozygote dams (70).
Maternal behavior could not be assessed in the homozygote
knockout dams in these studies since prolactin action in
the ovary is required for the maintenance of pregnancy in
rodents (87, 88). Confirming the brain as the mediator of
these effects, central administration of prolactin induced dose-
dependent pup retrieval behavior in virgin female rats at doses
ineffective when administered peripherally (67). The MPOA
of the hypothalamus was identified as a key site in mediating
prolactin’s role in regulating maternal behavior, with direct
infusion of either prolactin or placental lactogen into the MPOA,
inducing maternal behavior in non-pregnant rats at a lower
dose than required when administered into the lateral ventricles
(67, 68). Similarly, MPOA infusion of a Prlr antagonist delayed
the display of pup-induced maternal behavior in non-pregnant
rats (69). The MPOA is widely acknowledged as the center
of the neural network that governs maternal responses (89–
91). The Prlr is expressed in high levels in the MPOA (32,
45, 92), and exogenously administered prolactin induces high
levels of pSTAT5 immunolabeling in non-pregnant mice (45).
Indeed, single cell sequencing identified ∼70 different subtypes
of neuronal populations in the MPOA, with the Prlr expressed
in a large proportion of these, suggesting prolactin may have
a broad role in regulating the MPOA (93). Consistent with
elevated levels of placental lactogen during pregnancy, pSTAT5
immunolabeling is also high during late pregnancy in mice
(46, 94), and endogenously high circulating prolactin maintains
this increased pSTAT5 labeling during lactation in mouse dams
(49). While these studies demonstrated that Prlr signaling
in the MPOA could influence maternal behavior, it is only
recently that conditional knockout studies have revealed that this
signaling is essential for normal postpartum maternal behavior.
Targeted deletion of the Prlr from the MPOA of adult female
mice abolished maternal behavior, with dams abandoning their
offspring shortly after parturition (72). Interestingly, conditional
deletion of the Prlr (using a Prlr flox mouse) from either
glutamatergic neurons (using a VGlut2-Cre mice to target
glutamatergic neurons) or GABA neurons (using a VGat-Cre
mouse to target GABA neurons) or from both populations failed
to have any effect on litter survival or on pup retrieval in the home
cage (72). This suggests that the few remaining neurons within
this circuit that still express the Prlr (72) are sufficient to enable
maternal behavior to be expressed. The MPOA is characterized
by a high degree of interconnectivity (95), and conceptually,
prolactin signaling on a few cells could be transmitted more
broadly throughout the MPOA through this robust network
of neurons.

As Prlrs are required for the onset of maternal nursing
behavior, important questions can be raised as to the temporal
and mechanistic nature of lactogenic activity during pregnancy
and lactation. In both rats and mice, pregnancy has been shown
to be accompanied by a period of increased neurogenesis (96,
97) which is important for attenuation of the stress response
and normal maternal responses in a stressful environment
(71). Prolactin secretion during early pregnancy appears to
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TABLE 1 | Evidence for prolactin regulating specific aspects of maternal behavior.

Maternal behavior Reproductive state Prolactin manipulation Effect Species References

Pup retrieval Non-pregnant HYPOX/OVX + E/P Pituitary graft (secreting prolactin) ↑ Rat (66)

Non-pregnant HYPOX/OVX + E/P Prolactin (500 µg/ twice daily; 13 days, s.c.) ↑ Rat (66)

Non-pregnant OVX+ E/P Prolactin (400 ng, i.c.v.) ↑ Rat (67)

Non-pregnant OVX+ E/P Prolactin (MPOA; 40 ng per side/twice daily; 2.5 days) ↑ Rat (67)

Non-pregnant OVX+ E/P Placental lactogen (MPOA; 40 ng per side/twice daily; 1.5

days)

↑ Rat (68)

Non-pregnant OVX+ E/P Prolactin receptor antagonist S179D-PRL (MPOA; 0.03 µg/h;

7 days osmotic minipump)

↓ Rat (69)

Non-pregnant Prlr KO ↓ Mouse (70)

Pregnant Bromocriptine from day 1—3 of pregnancy (50 µg/day, s.c.) ↓ Mouse (71)

Lactating Heterozygous Prlr KO ↓ Mouse (70)

Lactating Glutamatergic Prlr KO — Mouse (72)

Lactating GABAergic Prlr KO ↓ Mouse (72)

Lactating Bromocriptine from day 2—5 of lactation (125 µg/day, s.c.) ↓ Rat (73)

Litter survival Lactating MPOA Prlr KO ↓ Mouse (72)

Lactating Glutamatergic Prlr KO — Mouse (72)

Lactating GABAergic Prlr KO — Mouse (72)

Maternal motivation Lactating GABAergic Prlr KO (T-maze) ↓ Mouse (74)

Lactating GABAergic Prlr KO (home-cage) — Mouse (74)

Maternal aggression OVX Prolactin (100µg, s.c) ↑ Mouse (75)

OVX Prolactin (200µg, s.c) ↑ Mouse (75)

OVX Prolactin (400µg, s.c) ↑ Mouse (75)

Nest building Non-pregnant Prolactin (dry powder, subdermal implant 1.5mg) ↑ Mouse (76)

Non-pregnant Prolactin (hypothalamic, 0.07mg, prolactin filled tubing) ↑ Mouse (76)

Non-pregnant Prolactin (cortical, 0.07mg, prolactin filled tubing) — Mouse (76)

Non-pregnant Prolactin (subdermal implant, 0.07mg, prolactin filled tubing) — Mouse (76)

Pregnant Bromocriptine from day 26 of pregnancy — parturition (1

mg/kg/day, s.c.)

↓ Rabbit (77)

Pregnant Bromocriptine from day 26 of pregnancy — parturition (1

mg/kg/day, s.c.) + prolactin (5µg i.c.v.)

↑ Rabbit (78)

Pregnant + lactating Bromocriptine from day 26 of pregnancy — day 5 of lactation

(1 mg/kg/day, s.c.)

↓ Rabbit (77)

Stress response OVX + E Prolactin (0.01 µg/h; 5 days, osmotic minipump) ↓ Rat (79)

OVX + E Prolactin (0.1 µg/h; 5 days, osmotic minipump) ↓ Rat (79)

OVX + E Prolactin (1 µg/h; 5 days, osmotic minipump) ↓ Rat (79)

Lactating Prlr KO (antisense oligonucleotides, 0.5 µg/0.5 µL/h i.c.v.) ↑ Rat (80)

Food intake Non-pregnant Prolactin (2, 5, 10 µg/µL/h i.c.v.) acute ↑ Rat (81)

Non-pregnant Prolactin chronic (14-day osmotic minipumps, 5 µg/0.5 µL/h — Rat (81)

Non-pregnant Prolactin chronic (10 days, twice daily 0.3, 1, 3µg/g s.c.) ↑ Rat (82)

Non-pregnant OVX + E Ectopic pituitary transplants ↑ Rat (83)

Non-pregnant Prolactin chronic (10 days, 800 ng/day, i.c.v.) — Rat (84)

Non-pregnant Prolactin chronic (10 days, 800 ng/day, PVN) ↑ Rat (84)

Non-pregnant Prolactin chronic (10 days, 800 ng/day, MPOA) — Rat (84)

Non-pregnant Prolactin chronic (10 days, 800 ng/day, VMN) ↑ Rat (84)

Non-pregnant AgRP Prlr KO — Mouse (85)

Voluntary running wheel activity Non-pregnant Prolactin (5 mg/kg i.p.) ↓ Mouse (86)

Non-pregnant Forebrain Prlr KO ↓ Mouse (86)

Non-pregnant Glutamatergic Prlr KO — Mouse (86)

Pregnant Forebrain Prlr KO ↑ Mouse (86)

Pregnant GABAergic Prlr KO ↑ Mouse (86)

Pregnant MPOA Prlr KO ↑ Mouse (86)

Green shaded rows refer to the role of prolactin on offspring-directed maternal behaviors, while orange shaded boxes describe the role of prolactin on offspring-related behaviors. Upward

arrows indicate increase in behavior; downward arrows indicate decrease in behavior; dash represents no change in maternal behavior. E, estrogen; HYPOX, hypophysectomised; i.c.v.,

intracerebroventricular; i.p., intraperitoneal; KO, knockout; MPOA, medial preoptic area; OVX, ovariectomised; P, progesterone; PVN paraventricular nucleus of the hypothalamus;

s.c., subcutaneous; VMN, ventromedial nucleus of the hypothalamus.
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FIGURE 2 | Prolactin-regulated maternal behaviors governed by the maternal neural circuit. Within the neural circuit that regulates maternal behavior, many brain

regions show increased prolactin receptor activity during lactation (shown in oval, whereas regions without Prlr but associated with maternal behavior are shown in

squares). Note, that although prolactin has been shown to regulate additional aspects of maternal behavior, the brain regions mediating some of these effects are

currently unknown. AOB, accessory olfactory bulb; BNST, bed nucleus of the stria terminalis; DMN, dorsomedial nucleus of the hypothalamus; DR, dorsal raphe

nucleus; MeA, medial amygdala; MPOA, medial preoptic area; NA, nucleus accumbens; OB, olfactory bulb; PAG, periaqueductal gray; PVN paraventricular nucleus of

the hypothalamus; VMN, ventromedial nucleus of the hypothalamus; VTA, ventral tegmental area.

be an important mediator of this increased neurogenesis with
reduction of prolactin secretion in early pregnancy, reducing
neurogenesis and leading to increased anxiety behavior and
poor retrieval behavior of mice in a stressful environment
(71). The technical difficulties of manipulating placental
lactogen secretion during pregnancy without adversely effecting
pregnancy outcomes, represents a substantial challenge in
determining the contribution of placental lactogen in regulating
maternal behavior.

Maternal Reward and Motivation
Motherhood is accompanied by high levels of maternal
motivation, defined as an increased responsiveness to offspring-
related stimuli and a strong drive to seek out interactions with
offspring (89, 98, 99). This maternal motivation is essential
for the sustained expression of maternal behaviors, especially
in situations where increased effort is required to provide
appropriate care. Various rodent studies have shown that
offspring-related stimuli are strongly rewarding to females during
lactation, which reinforces their motivation to interact with
offspring (100, 101). In contrast, the rewarding value of pups
and the level of maternal motivation are normally low in non-
lactating rat and mouse females (74, 101). The rewarding effect
of pups is dependent on signaling within the reward system
in the brain. Transient inhibition of the ventral tegmental
area (VTA) by local administration of bupivacaine disrupts
the ability of postpartum rats to form preferences for pup-
associated contexts (102). This pup preference is also blocked
by bupivacaine-mediated inhibition of the MPOA (103), with

neuronal projections linking the MPOA to the VTA, and this
pathway specifically driving motivated maternal behaviors such
as pup approach and retrieval in mice (104, 105).

Studies that specifically focus on the role of lactogenic
hormones in maternal motivation have recently started to
emerge. A first study reported correlational findings of a
link between high maternal motivation in a barrier climbing
test and increased Prlr signaling (as measured by pSTAT5
immunoreactivity) in several brain regions, including theMPOA,
MeA, PVN, and posterior intralaminar thalamic nucleus (PIL)
(47). Increased pSTAT5 immunoreactivity was also found in
the MPOA and PIL of pup-experienced virgins that showed
increased maternal motivation in this test (47). Recently we have
shown a causal relationship between lactogenic action in the
brain andmaternal motivation. Lactatingmice with a conditional
deletion of Prlr from GABAergic neurons (using a VGat-Cre
mouse to target GABA neurons) showed impaired pup retrieval
behavior in a novel T-maze test, without changes in general
anxiety levels. Interestingly, maternal motivation of these females
was not impaired in a barrier climbing test, indicating that
lactogenic action on GABA neurons is necessary for full maternal
motivation under specific conditions (74). Given the importance
of the MPOA-VTA circuit in directing maternal motivation and
the presence of a prolactin-sensitiveMPOA-VTA projection (72),
prolactin could be acting directly on GABAergic neurons in the
MPOA to alter maternal motivation.

Identifying the neural circuits and hormonal factors that
promote offspring-directed behaviors in mothers has important
implications for the regulation of postpartum mood in women.
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Postpartum depression affects numerous maternal caregiving
behaviors and is accompanied by an increased risk for poor
mother-baby attachment (106, 107). Neural imaging studies in
postpartum women have shown activation of reward regions of
the brain, including the VTA, when women view images of their
own infants smiling faces (108–110). In contrast, women with
postpartum depression show reduced responses to viewing their
own infant’s smiling faces, and to hearing their own infant cry
(111–113). With an accumulating evidence base for an important
role for lactogenic hormones in promoting mother-infant
interactions, future investigation into the correlation between
impaired lactogenic signaling (to encompass all lactogenic
hormones) and the occurrence of postpartum mood disorders in
women is warranted.

OFFSPRING-DIRECTED BEHAVIORS

Maternal Aggression
Maternal aggression is typically exhibited by postpartum females,
but not by non-pregnant females, and allows a mother
to guard her young from dangers and perceived threats.
Lactating females will therefore engage in both offensive and
defensive behaviors toward an unfamiliar intruder (114). This
maternal adaptation is an evolutionarily-conserved trait that is
broadly exhibited by many different species, both in domestic
animals and in the wild and includes rodents, non-human
primates and humans (115–122). The specific expression of
this aggressive behavior during early lactation occurs at a time
when the levels of prolactin are high, suggesting prolactin
might be involved in regulating this behavior. Interestingly,
in humans, the level of postpartum aggression is higher in
women who are breast-feeding compared to formula feeders
and nulliparous females (122). Furthermore, lactating or non-
pregnant women with hyperprolactinemia (chronically elevated
prolactin) display similar levels of heightened hostility compared
to control non-pregnant women (123). These experiments
assessed aggression using a Kellner Symptom Questionnaire,
which provided values of anxiety, depression, somatic symptoms,
and hostility (123). Depression and anxiety scores were higher
in hyperprolactinaemic patients than postpartum women and
controls, yet the hostility levels were similar between the
former two groups (123). A more recent study utilized the
90-item symptom checklist to examine similar parameters
in hyperprolactinaemic patients (124). In contrast to earlier
studies, anxiety and depression parameters were not different
between control group and hyperprolactinaemic patients (124).
However, hostility levels were higher in hyperprolactinaemic
patients (124), again indicating that prolactin might play in
role in regulating aggressive behaviors. It is important to note
that a vast majority of these studies examined subjects whose
prolactin levels were abnormally high due to a medical condition,
thereby not excluding the effects could be attributed to other
associated comorbidities.

Animal models have been used to interrogate the neural
circuitry underlying aggressive behavior in both males and
females, with the medial amygdala (MeA) and ventromedial
nucleus of the hypothalamus (VMN) emerging as key regulatory

sites (125, 126). An initial indication that prolactin might be
involved in maternal aggression came from a study carried out
on golden hamsters (118). The level of aggression displayed
by these animals was highest during pregnancy and lactation,
and lowest during pseudopregnancy (development of signs of
pregnancy without the presence of an implanted embryo) and
estrous (118), matching the patterns of blood prolactin levels in
this species. In ovariectomized white-footed mice (Peromyscus
leucopus), prolactin administration increased levels of intruder-
directed aggression in a dose-dependent manner (75). At the
higher prolactin doses (>200 ug), levels of aggression were
similar between prolactin-injected ovariectomised mice and
lactating females (75). Surprisingly, drastically reducing prolactin
levels through hypophysectomy (removal of the pituitary gland),
did not affect aggression in parturient Rockland-swiss mice
(127). However, this approach would not suppress Prlr signaling
during pregnancy, as placental lactogen secretion (the primary
ligand for the Prlr during pregnancy) would not be affected by
hypophysectomy. Interestingly, Prlr signaling in both the MeA
and VMN is increased in during pregnancy and lactation (49,
94), suggesting lactogenic action in these regions may modulate
maternal aggression at these times.

In humans, maternal aggression is an important component
of postpartum mood, and disturbances in the regulation of this
adaptation can lead to heightened anger toward self, the child
or other family members (128). The likelihood of displaying
abnormal levels of anger is also associated with postpartum
depression and lower emotional availability for their children
(128). Similarly, elevated postpartum anxiety is linked with
abnormally high levels of intruder-directed maternal aggression
(129), an indicator of hypervigilant parenting. Understanding
how maternal protective behaviors are controlled in a healthy
pregnancy and lactation is therefore key for developing
effective strategies to promote development of healthy mother-
child interactions.

Nest Building
An important component of maternal behavior, particularly in
altricial species, is maternal nest building. This energetically-
costly process ensures offspring survivability as the young from
these species have limited capacity for thermoregulation and
locomotion. As with other maternal behaviors, nest building is
highly conserved between species.

Female mice can construct either a sleeping nest or a brood
nest, the latter being considered the maternal nest (130). The
brood nest is significantly larger and encloses the animals so
that they cannot be easily seen while in the nest. Mice begin to
build the brood nest during early gestation, with this behavior
enhanced by exposure to pups and able to be blocked by
olfactory bulb removal (130, 131). Pseudopregnant mice also
build maternal nests compared to virgin controls, suggesting a
hormonal basis for the regulation of this behavior (132). Evidence
of prolactin’s involvement in maternal nest building came from
early studies administering prolactin to virgin mice (76). Virgin
female mice that received either hypothalamic or subdermal
implants of prolactin built superior nests than control mice or
mice with cortical-implants of prolactin (76). Manipulation of
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prolactin levels in rabbits are also able to alter maternal nest
building (77, 78). For example, blocking prolactin secretion
from day 26 of pregnancy until parturition via sub-cutaneous
bromocriptine injections significantly reduced the construction
of maternal nests in rabbits (77). This deficit in maternal nest
building was rescued in rabbits receiving intracerebroventricular
(i.c.v.) prolactin, suggesting a direct role of this hormone in
the execution of this behavior (78, 133). Several studies have
indicated that MPOA neurons drive nest building (134, 135),
and with Prlr expression in this brain region regulating other
maternal behaviors (72), the MPOA could conceptually also
mediate the effects of prolactin on nest building.

The equivalent of nesting behaviors in human mothers,
may be preparation of the physical environment and social
selectivity, both of which peak in the third trimester of pregnancy
(136). Interestingly, this corresponds with peak secretion of
placental lactogen, and suggests the lactogenic hormones may
have a causal role in this behavior. However, further studies
are required to determine the precise mechanism underlying
hormonal regulation of nest building behavior, and whether it
may be relevant to understanding forms of maternal neglect
in humans.

Attenuated Stress Response
During pregnancy and lactation, the reactivity of the
hypothalamic-pituitary-adrenal (HPA) axis of multiple species,
including humans, is drastically reduced (137, 138). Stress
during pregnancy and lactation can detrimentally impact
pregnancy outcomes, increasing the likelihood that the mother
will abandon her pups and the prevalence of postpartum
mood disorders (139–141). Gestational stress also has negative
effects on fetal development and contributes to programming
hyperactive stress responses in the offspring (140, 142–144).
Reduced HPA axis reactivity is therefore a critical adaptation
that serves to protect both the mother and offspring from
these stress-related effects. In mice, suppression of the stress
response during lactation is evident both following a restraint
or endotoxin stressors, with attenuated adrenocorticotropic
hormone (ACTH) and corticosterone secretion compared to
virgin females (145). Similarly, in humans, temperature or
exercise-induced stressors are dampened during pregnancy and
lactation, respectively (137, 146).

As a potential regulator of these changes, prolactin has
been shown to have dose-dependent anxiolytic effects in non-
pregnant rats (79, 147). Chronic administration of prolactin for
5 days in virgin rats reduces ACTH and corticosterone secretion
following a restraint or anxiety-like stressor (79). Interestingly,
following exposure to the stressor, prolactin-injected animals
showed reduced c-fos immunoreactivity (a marker of neuronal
activation) in the PVN (79), a key region controlling the stress
response, hinting at a mechanism by which prolactin exerts its
anxiolytic effects. The PVN is host to corticotropin-releasing
hormone (CRH) neurons, a population proven to regulate a
plethora of physiological and behavioral stress-related responses
(148–150). Evidence from earlier studies suggested prolactin
can regulate the activity of CRH neurons in hypothalamic
explants (151). More recently, studies in mice have demonstrated

that PVN Crh mRNA levels are lower during pregnancy and
lactation compared to the virgin controls (152). Pup-removal,
and thereby blocking suckling-induced prolactin secretion, lead
to an increase in PVN Crh mRNA and this was restored to the
low lactating levels following prolactin administration for 24 h
in mice (152). However, these effects do not appear to be direct
as Prlr mRNA is not expressed by PVN CRH neurons (153).
Similarly, both in virgin and lactating mice and rats, prolactin
does not directly activate PVN CRH neurons (as measured by
pSTAT5 immunoreactivity) (153). Nonetheless, downregulation
of Prlr in the brain resulted in increased anxiety-related behaviors
and higher ACTH secretion in lactating rats (80). Thus, while the
precise brain region where prolactin acts to exert its anxiolytic
effects is not yet known, it is evident this pituitary hormone plays
an important role in regulating this maternal adaption.

In women, increased anxiety and stress during pregnancy
are risk factors for preterm birth and low birth weight while
also negatively impacting mother-child interactions (154–156).
Similarly, the high prevalence rates of perinatal anxiety in women
(157, 158) highlights the importance of understanding how stress
is regulated during pregnancy, particularly since these early life
interactions are critically important in child development.

Metabolic Adaptations
Profound changes in metabolic regulation are essential to
provide sufficient energy for the development of the growing
fetus and to meet the high metabolic demands of lactation.
From a behavioral perspective, this involves changes to both
food intake and voluntary energy expenditure. Food intake
drastically increases during pregnancy and lactation in humans
and other mammalian species (159–163). Interestingly, lower
body weight increase during pregnancy is associated with litter
loss and overall poor pregnancy outcomes (164). Research on the
neuronal pathways regulating food intake and energy balance
has largely focused on the medial basal hypothalamus, with the
ARN considered to be the center of the neural circuit regulating
food intake. This brain structure is host to two key neuronal
populations known to affect energy balance; the adjacent
yet functionally antagonistic, proopiomelanocortin (POMC)
and agouti-related peptide/neuropeptide Y (AgRP/NPY)
neurons that exert powerful effects on satiety and hunger,
respectively (165–167). In order to exert effects on feeding
behavior, some of the important hypothalamic projection
regions of these ARN neuronal populations include the PVN,
dorsomedial hypothalamus, ventromedial hypothalamus and
lateral hypothalamus (168–170).

Multiple studies have linked prolactin action with food intake
and body weight in non-pregnant rats (summarized in Table 1)
(81–83). Prolactin appears to act at the level of the PVN to
influence appetite, with chronic prolactin administration in
this brain region increasing food intake (84). In the pregnant
state, rodents eat more and become insensitive to the effects
of the satiety hormone, leptin, particularly in the hypothalamic
regions associated with leptin’s effects on food intake (159,
171). This leptin resistance appears to be driven by placental
lactogen secretion in the second half of pregnancy, with prolactin
administration to pseudopregnant rats blocking the satiety effects
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of leptin (172). During lactation, increased food intake is
necessary to meet the high energy demand of milk production.
This hyperphagia appears to be dependent on increases in the
orexigenic AgRP and NPY, and a decrease in POMC expression
(173–175). There is evidence suggesting prolactin plays a role
in regulating the hyperphagia of lactation, but not through
direct actions on POMC or AgRP neurons in the ARN (85,
176). A population of NPY neurons in the DMN are also
important for regulating energy metabolism and food intake
(177, 178), with many of these showing increased prolactin
receptor activity during lactation compared to the non-pregnant
state (33, 49, 179). Expression of NPY mRNA in the DMN
increases during lactation and blocking prolactin secretion
(via bromocriptine administration) abrogates this effect (179),
suggesting that prolactin stimulates production of orexigenic
NPY during lactation. To further evaluate the precise role of
DMN Prlr-expressing cells in mediating lactational increase
in food intake, future studies would be required to precisely
knockout Prlr in this brain region.

In order to adapt to the huge energy demands of pregnancy
and lactation, changes in voluntary activity accompany increased
food intake. Even from very early in pregnancy, rodents conserve
energy by reducing voluntary running wheel activity (164).
Interestingly, one study has shown that this reduction in running
behavior can predict lactation success in mice (164). Mouse
dams who abandoned their litters showed greater running wheel
activity and lower weight gain during pregnancy compared to
the pregnancies of dams who successfully reared their litters
(164). Recent data suggests Prlr activity plays an important role
in regulating this voluntary running behavior. In non-pregnant
females but not males, peripheral prolactin administration can
acutely reduce running wheel activity without affecting general
locomotion (86). Furthermore, forebrain-specific knockout of
Prlrs (using a Cam kinase II Cre mouse to target forebrain
neurons) blocks the pregnancy-induced decrease in running
wheel activity, with the MPOA and GABA neurons likely to be
mediating these effects of prolactin (86).

The reduction in physical activity during pregnancy is also
apparent in human mothers (180). Despite positive attitudes
toward physical exercise, there is a significant decrease in physical
activity engagement during pregnancy (180). Since increased
weight gain during pregnancy is associated with heighted risk of
complications and lower delivery outcomes (181), understanding
maternal metabolic adaptions is imperative. Although the rodent
studies have provided evidence for lactogenic hormones playing
an important role in regulating maternal metabolic adaptations,
the precise mechanisms mediating these effects are currently
unknown, and warrant further investigation.

TRANSGENERATIONAL EFFECTS

A growing field of research has demonstrated behavioral
transmission of postpartum behavior from mothers to female
offspring. Most commonly, this has been used to investigate
the effect of stress on subsequent offspring’s maternal behavior.
In these studies, female rat pups that were separated from

their mothers for either short or long periods of time, went
on to exhibit impaired maternal behavior with their own
offspring (182, 183). In addition to direct effects on maternal
behavior, prolactin appears to have a transgenerational effect
on maternal behavior. Reducing prolactin content of milk in
lactating rat dams decreases maternal responses to foster pups
in the virgin adult female offspring (73). Mice with a deletion
of the Cbl-interacting protein of 85 kDa (Cin85) were able to
nurture and raise pups, however, when producing their own
pups, these F1 offspring were found to have severely disrupted
maternal care (184). Examination of prolactin secretion in the
first generation of Cin85-deleted mice, showed greatly reduced
prolactin production during late pregnancy and early lactation,
and prolactin administration to these mice during pregnancy
was able to rescue the subsequent offspring maternal behavior
(184). This indicates that the in utero prolactin environment
can alter maternal behavior of offspring through non-genomic
transmission. Studies looking at transgenerational effects of high
and low licking and grooming rat mothers, have found changes
in the methylation of the estrogen receptor alpha promoter in
the MPOA, which may alter estrogen sensitivity in this region
and account for altered maternal responses of offspring (185).
Although the mechanism underlying a transgenerational effect
of prolactin is unknown, it could involve a similar epigenetic
mechanism to alter sensitivity to prolactin in key brain regions
that regulate maternal behavior.

LACTOGENIC HORMONES AMONGST THE
CHANGING HORMONAL PROFILE OF
PREGNANCY AND LACTATION

Although this review focuses on the role of lactogenic hormones
on themultiple facets of maternal behavior, it is important to note
that multiple hormones and factors influence maternal behavior.
Indeed, lactogenic hormones are not acting in isolation, and there
is considerable overlap and interactions between these regulators
of maternal behavior. Briefly discussed here are some of the key
hormonal regulators of maternal behavior that are known to
interact with lactogenic hormones.

One significant convergence point for some of these factors
is the interaction with TIDA neurons in the ARN, where
stimulation (e.g., by thyrotropin-releasing hormone, orexin,
oxytocin) or suppression (e.g., by serotonin/5-HT, estrogen,
enkephalin, dynorphin) of TIDA neuronal activity, can alter
secretion of prolactin from the anterior pituitary (19, 186–
193), and therefore has the potential to also indirectly influence
maternal behavior. For example orexin inhibits the activity of
ARN TIDA neurons resulting in increased prolactin secretion,
and is known to alter maternal behavior in a dose dependent
manner (194, 195). In postpartum mice, high i.c.v. doses (0.3
µg) of orexin worsened pup retrieval and decreased nursing
and nesting behavior, whereas at lower doses (0.06–0.1 µg),
orexin mildly improved pup licking and grooming (194). The
MPOA appears to mediate some of these effects with MPOA
administration of a orexin receptor antagonist increasing pup
nursing time in rat dams (196). However, given the effect of
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orexin in TIDA neuronal activity, it is possible orexin could also
indirectly be influencing maternal behavior through modulating
prolactin secretion.

Serotonin (5-HT) is also known to promote prolactin release
(188, 197), and 5-HT neurons can regulate maternal behavior.
Deletion of 5-HT neurons from the brain impairs behaviors such
as pup retrieval, nest building, and nursing, without affecting
maternal protective behaviors (198). Specifically, 5-HT neurons
located in the largest raphe nuclei, the dorsal raphe, are important
for pup retrieval and survival (199). This was also associated with
reduced pup milk intake, suggesting reduced prolactin inhibitory
tone (199). Interestingly, evidence from an earlier study could
provide a mechanistic explanation for this phenomenon as dorsal
and median raphe lesions reduced suckling-induced prolactin
release (200). Due to the wide use of selective serotonin reuptake
inhibitors to treat maternal mood disorders, it is important to
consider the changes of 5-HT during the postpartum period and
how these impact maternal behaviors (201).

The role of oxytocin in stimulating maternal behavior has
been the subject of much research. Acting as a neurotransmitter,
oxytocin is also released centrally by neurons in the PVN and
supraoptic (SON) nuclei and can alter social and maternal
behaviors. Central oxytocin administration to ovariectomised
and estrogen primed rats can induce maternal behaviors such as
grooming, nest building and pup retrieval (202). In particular,
retrieval in response to pup calls is dependent on oxytocin
receptors expressed by left auditory cortex neurons (203).
Oxytocin is also known to influence maternal aggression in
postpartum females (114) and in homozygous oxytocin knockout
mice, the duration of time spent attacking the intruder was
significantly reduced (204). In rats, Prlrs are expressed on
oxytocin neurons, and in virgin and pregnant rats, i.c.v prolactin
administration inhibits the activity of these neurons (62–64,
205). Interestingly this inhibition is lost during lactation (63),
potentially enabling both these pro-maternal factors to be
released at higher levels.

The establishment of sex steroids playing a key role
in regulating maternal behavior dates back to the 1970’s,
whereby nulliparous ovariectomised females treated with
estrogen retrieved pups significantly faster than the control
rats (1, 206). The MPOA again emerged as the brain
region important for mediating estrogen’s effects on pup
retrieval, with knockdown of MPOA estrogen receptor α

(ERα) expression leading to decreased pup nursing, licking,
and retrieval (207). Estrogen could also indirectly promote
maternal behavior through regulating lactogenic hormone
signaling, with estrogen treatment upregulating Prlr mRNA
expression in the brain (208, 209). Progesterone has emerged
as a negative regulator of maternal behavior and primarily
influences maternal behavior through modulating the actions
of other hormones (210). In ovariectomised, nulliparous rats,
chronic progesterone administration suppressed Prlr mRNA
expression in the MPOA (211). Progesterone withdrawal as
seen in rodents and functional withdrawal of progesterone
as seen in women at the end of pregnancy (212), may thus
contribute to facilitating the stimulation of maternal behavior by
lactogenic hormones.

CONCLUSIONS AND FUTURE
DIRECTIONS

Motherhood is a period of dramatic physiological and behavioral
change that ultimately ensures healthy development of offspring.
While some studies have studied the mechanisms driving
maternal behaviors in humans, rodent models have proven
invaluable in deciphering how these adaptations are achieved.
In both humans and rodents, lactogenic hormones are elevated
during pregnancy and lactation, and by acting on the widely-
distributed Prlr, regulate multiple behavioral functions (10,
213). Amongst these, we have highlighted that these lactogenic
hormones exert profound effects on a diverse range of both
young-directed and young-related maternal behaviors. There is
substantial evidence that Prlr signaling is important for offspring-
directed behaviors including pup retrieval, licking nursing,
grooming and on increasing maternal motivation, as well as
offspring-related behaviors such as reducing anxiety, building a
nest and maternal aggression (Figure 2). For these behaviors,
prolactin actions have been linked, at least in part, through
actions on the MPOA and PVN. Interestingly, Prlr signaling
is also increased in multiple additional regions of the maternal
brain that are known to be important for governing aspects
of maternal behavior, such as the MeA, and yet, the role of
prolactin in these regions is unclear (Figure 2). With such broad
implication for regulating mood and behavior in mother, there is
clearly a need to more precisely understand the neuronal circuits
that govern these prolactin-driven maternal adaptations.

Alongside this period of extensive maternal adaptation in
pregnancy and lactation, is also an increased risk of developing
mood disorders. Maternal mood disorders represent a significant
health burden worldwide with ∼20% of women suffering either
from postpartum depression or postpartum anxiety. Maternal
mental health problems during pregnancy and the postpartum
period represent a significant barrier in developing healthy
mother-infant interactions. Treatment for postpartum mood
disorders often relies on either psychological intervention such
as cognitive behavioral therapy or pharmacological intervention
including antidepressants or hormone therapy. However, until
we have a better understanding of the physiological processes
that lead to both normal and abnormal adaptations to pregnancy,
and the molecular mechanisms that underlie these processes, our
ability to develop new therapies to treat impaired adaptations
during pregnancy and early lactation are limited.
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