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4’-O-Methylbroussochalcone B as a novel
tubulin polymerization inhibitor suppressed
the proliferation and migration of acute
myeloid leukaemia cells
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Abstract

Background: Recent years, survival rates of human with high-risk acute myeloid leukaemia (AML) have not raised
substantially. This research aimed to investigate the role of 4′-O-Methylbroussochalcone B, for the treatment of
human AML.

Methods: Firstly, we evaluated the effects of six chalcones on AML cells activity by MTT assay. Immunofluorescence
staining, tubulin polymerization assay and N,N′-ethylenebis (iodoacetamide) (EBI) competition assay were performed
on ML-2 cells. Transwell and apoptosis assay were also utilized in ML-2 cells and OCI-AML5 cells. The expressions of
migration-related proteins, apoptosis-related proteins and Wnt/β-catenin pathway were detected by Western Blot.

Results: The results found six chalcones exhibited the anti-proliferative activity against different AML cell lines.
Based on the results of immunofluorescence staining, tubulin polymerization assay and EBI competition assay, 4′-O-
Methylbroussochalcone B was discovered to be a novel colchicine site tubulin polymerization inhibitor. 4′-O-
Methylbroussochalcone B could induce apoptosis, inhibit proliferation and migration of ML-2 cells and OCI-AML5
cells. The cells were arrested in the G2-M phase by the treatment of 4′-O-Methylbroussochalcone B. In addition, 4′-
O-Methylbroussochalcone B regulated MAPK and Wnt/β-catenin pathways in AML cells.

Conclusion: 4′-O-Methylbroussochalcone B might inhibit proliferation and migration of the AML cells by MAPK and
Wnt/β-catenin pathways as a tubulin polymerization inhibitor. It is promising for 4′-O-Methylbroussochalcone B to
become a new drug to treat AML.
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inhibitor
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Background
Human acute myeloid leukaemia (AML) as a
hematologic malignancy is characterized by the accumu-
lation of genetic changes in hemopoietic progenitor cells
that regulate mechanisms of differentiation, proliferation
and self-renewal [1, 2]. The mortality rates of human
cancers in the United States have decreased by more
than 50% from 1975 to 2010, and the 5-year survival rate
for AML children has increased to 68% [3–5]. Although
the therapeutic approaches of human AML have grad-
ually improved, survival outcomes have not improved
substantially and approximately more than half of chil-
dren AMLs suffered from disease recurrence [6]. There-
fore, it is very necessary to develop novel anticancer
drugs to treat human AML.
Microtubules as crucial elements of the cytoskeleton

play significant roles in a wide range of cellular
functions, such as maintenance of cell shape, division,
motility, and intracellular vesicle transport [7]. Recently,
microtubules have been represented as an attractive
target in anticancer drug discovery [8, 9]. Based on their
effects on microtubule dynamics, microtubule-targeting
agents are generally classified into two categories:
microtubule-destabilizing and microtubule-stabilizing
agents [10, 11]. Importantly, these microtubule-targeting
agents exhibited a powerful cytotoxicity against a large
number of cancer cell lines, including human AML cells
[12, 13].
Natural products from medicinal plants have long

been a rich resource for identifying novel anticancer
agents with relatively few side effects [14]. The seeds of
Cullen corylifolium (L.) Medik. (syn. Psoralea corylifolia
L.) (Leguminosae) have been used traditionally for
treatment of vitiligo, gynaecological bleeding, and skin
diseases [15].
Its seeds were reported to contain chalcones (4′-O-

Methylbroussochalcone B, Broussochalcone B, Isobava-
chalcone, Bavachromene, Isobavachromene, and
Dorsmanin A) as potentially antitumor agents [15, 16].
However, the anticancer actions of 4′-O-Methylbrousso-
chalcone B against AML remain unclear. In this study,
we detected the antiproliferative activity of 4′-O-Methyl-
broussochalcone B, Broussochalcone B, Isobavachalcone,
Bavachromene, Isobavachromene, and Dorsmanin A
(Fig. S1) against different AML cell lines. Importantly,
4′-O-Methylbroussochalcone B was identified as a po-
tent tubulin polymerization inhibitor that inhibited pro-
liferation and epithelial-mesenchymal transition in AML
cells.

Methods
Materials
Chalcones including 4′-O-Methylbroussochalcone B
(catalog no. ALB-RS-3963, ALB Technology Limited,

USA), Broussochalcone B (catalog no. HY-N0231, Med-
Chemexpress LLC, USA), Isobavachalcone (catalog no.
CFN98593, ChemFaces, Wuhan, China), Bavachromene
(catalog no. CFN92219, ChemFaces, Wuhan, China), Iso-
bavachromene (catalog no. CFN92220, ChemFaces, Wu-
han, China), and Dorsmanin A (catalog no. CFN96193,
ChemFaces, Wuhan, China), from Cullen corylifolium
were used in this study. GDM-1 cells (catalog no.
BNCC307472), ML-2 cells (catalog no. BNCC353358) and
CESS cells (catalog no. BNCC254816) were purchased
from BeiNa Culture Collection (Shanghai, China) in May.
2019. OCI-AML5 (catalog no. ACC 247) cells was ob-
tained from DSMZ in May. 2019. They were cultured in
89% RPMI medium, 10% FBS, 1% streptomycin and peni-
cillin, respectively, all of which were obtained from Life
Technologies (California, USA). 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) was pur-
chased from Sigma-Aldrich (St Louis, MO, USA).
Annexin V-FITC /PI (catalog no. KGA108) was purchased
from KeyGen Biotech (Jiangsu, China).

Cell culture and MTT assay
Cells were grown in a 5% CO2 incubator at 37 °C. We
used trypsin to digest cells in logarithmic growth phase.
Then, we plated the cells in 96-well plates at 5000 cells
per well evenly. After cell adherence, chalcones were
added in the 96-well plates for 48 h or 72 h. We added
MTT reagent to each well and incubated for 2 h in the
incubator. Finally, the absorbance value was measured at
490 nm after treatment with DMSO.

Immunofluorescence staining
ML-2 cells were seeded into 6-well plates and then
treated with 4′-O-Methylbroussochalcone B for 24 h.
ML-2 cells were washed with phosphate buffer solution
(PBS), and then fixed in 4% paraformaldehyde. After
blocking for 0.5 h in 5% goat serum albumin, ML-2 cells
were incubated with anti-β-tubulin for 2 h. Then, ML-2
cells were washed by PBS and labeled by 4, 6-diamidino-
2-phenylindole.

Tubulin polymerization assay in vitro
An amount of 2 mg/mL tubulin was resuspended in
PEM buffer, consisted of 80 mM PIPES (pH 6.9), 2 mM
MgCl2, 0.5 mM EGTA, and 15% glycerol. 4′-O-Methyl-
broussochalcone B (1 μM, 3 μM and 6 μM) was preincu-
bated on ice. The reaction was monitored by a
spectrophotometer in absorbance at 340 nm at 37 °C.

EBI competition assay
ML-2 cells were seeded in 6-well plates for 24 h. 4′-O-
Methylbroussochalcone B and colchicine treated them
for 2 h respectively. Then, EBI were added. After 90 min,
ML-2 cells were harvested to do Western Blot analysis.
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The signals were then visualized using chemilumines-
cent substrate (Zhengzhou research company, Zheng-
zhou, China).

Cell cycle assay
The samples of fixed cells were stained with 50 μg/ml
Propidium iodide (PI, Sigma) in the dark for 30 min at
room temperature, following the manufacturer’s proto-
col. Then the samples were tested by flow cytometer
(Becton, Dickinson and Company, NJ). Data were ana-
lyzed via CellQuest software.

Transwell assay
The cells (100 μl, 1 × 106 cells/ml) were suspended in the
medium which contained 0.1% FBS and plated to the
upper chamber of the transwell. The lower wells were
incubated with the addition of the medium (600 μl per
well), which included CCL25 (100 ng/ml; Cedarlane La-
boratories, Burlington, Canada) and 0.1% FBS. The cells
were hatched for 24 h at 37 °C with 5% CO2. Finally, the
cells in the lower chamber were counted under a light
microscope.

Apoptosis assay
ML-2 cells and OCI-AML5 cells were seeded in 6-well
culture plates and treated with certain concentration of
4′-O-Methylbroussochalcone B for 48 h. Cells were har-
vested and suspended in binding buffer containing
Annexin V-FITC (0.5 mg/mL) and PI (0.5 mg/mL) then.
After that, samples were incubated for 25 min in dark
and analyzed with flow cytometry (Becton, Dickinson
and Company, NJ).

Western blotting analysis
The proteins in ML-2 cells and OCI-AML5 cells lysates
were resolved by polyacrylamide gel electrophoresis and
transferred to polyvinylidene fluoride membrane. Subse-
quently, the membranes were incubated with the
primary antibodies overnight at 4 °C. Goat anti-rabbit
IgG-HRP (catalog no. SA00001–2, proteintech, USA)
served as the second antibodies. The signals were then
visualized using chemiluminescent substrate. We de-
tected the intensity of protein bands by the Quantity
One software (Bio-rad, Richmond, California, USA).

Statistical analysis
Data are shown as the means ± standard error of the
mean (SEM) from at least three independent experi-
ments. Analysis of variance (ANOVA) together with
Neumann-Keul’s multiple comparison test or
Kolmogorov-Smirnov test were performed to obtain
statistical information.

Results
Antiproliferative effects of natural chalcones from Cullen
corylifolium
Six chalcones (4′-O-Methylbroussochalcone B, Brousso-
chalcone B, Isobavachalcone, Bavachromene, Isobava-
chromene, and Dorsmanin A) from Cullen corylifolium
were evaluated for their antiproliferative effects against
GDM-1 cells using the MTT (thiazolyl blue tetrazolium
bromide) assay. The antiproliferative results were shown
in Fig. 1a. After treatment of GDM-1 cells with 16 μM
4′-O-Methylbroussochalcone B, Broussochalcone B,
Isobavachalcone, Bavachromene, Isobavachromene, and
Dorsmanin A for 72 h, the cell proliferation rates were
8.14, 29.67, 57.33, 29.40, 69.00 and 36.67%, respectively.
Based on the above results, 4′-O-Methylbroussochal-
cone B displayed the strongest antiproliferative effects
among all six chalcones.

4′-O-Methylbroussochalcone B potently inhibited the
proliferation against different AML cell lines
Then, we further assessed the antiproliferative actions of
4′-O-Methylbroussochalcone B against different AML
cell lines. As depicted in Fig. 1b, 4‘-O-Methylbrousso-
chalcone B exhibited the potently antiproliferative effects
against GDM-1 cells, ML-2 cells, CESS cells and OCI-
AML5 cells with IC50 values of 3.57 μM, 1.16 μM,
4.20 μM and 2.03 μM, respectively. It was observed that
4’-O-Methylbroussochalcone B showed the best antipro-
liferative effect of on ML-2 cells, followed by OCI-
AML5 cells.

4′-O-Methylbroussochalcone B inhibited tubulin
polymerization in vitro
To investigate whether the activities of the natural chal-
cones from Cullen corylifolium were related to the
interactions with microtubule systems, all six chalcones
were measured the inhibition of tubulin polymerization.
Among six chalcones, 4′-O-Methylbroussochalcone B
showed a concentration-dependent inhibition of tubulin
polymerization with calculated IC50 values of 2.86 μM,
which displayed the best inhibition. (Table S1).
The tubulin assembly assay measured the extent of as-

sembly of 2 mg/mL tubulin after 60 min at 37 °C. Data
are presented as mean from three independent
experiments.

4′-O-Methylbroussochalcone B inhibited tubulin
polymerization in ML-2 cells
To explore the effects of 4′-O-Methylbroussochalcone B
on tubulin polymerization in ML-2 cells, we performed
ML-2 cells treating with 4′-O-Methylbroussochalcone B
at different concentrations (control, 1 μM and 2 μM) to
examine its effect on microtubules reorganization. As
shown in Fig. 2a, the expression of β-tubulin was
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Fig. 1 Antiproliferative effects of natural chalcones from Cullen corylifolium against AML line cells. a Antiproliferative effects of natural chalcones
from Cullen corylifolium against GDM-1 cells detected by MTT; b Antiproliferative effects of 4′-O-Methylbroussochalcone B at different
concentrations (control, 1 μM, 2 μM, 4 μM and 8 μM) against GDM-1 cells, ML-2 cells, CESS cells, OCI-AML5 cells for 72 h detected by MTT. The
data were presented as the mean ± SEM *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001 vs the control
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Fig. 2 (See legend on next page.)
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suppressed in a concentration-dependent manner, indi-
cating that 4′-O-Methylbroussochalcone B might be a
potential tubulin polymerization inhibitor.

4′-O-Methylbroussochalcone B inhibited tubulin
polymerization by targeting the colchicine binding site
The inhibition of 4′-O-Methylbroussochalcone B on
tubulin polymerization in vitro was evaluated in this
work. As shown in Fig. 2b, with the elevated 4′-O-
Methylbroussochalcone B (1 μM, 3 μM, 6 μM), the in-
creased tendency of the fluorescence intensity was obvi-
ously slowed down.
In the EBI assay, preincubation of 4′-O-Methylbrous-

sochalcone B at 10 μM prevented the formation of EBI:
β-tubulin adduct which resulting in the decrease of the
adduct band in comparison with EBI treatment and
1 μM 4′-O-Methylbroussochalcone B treatment (Fig.
2c). These results indicated that 4′-O-Methylbrousso-
chalcone B directly binds to the colchicine binding site
of β-tubulin.
The molecular docking study was carried out to eluci-

date the binding features of 4′-O-Methylbroussochalcone
B with tubulin. Since the α-tubulin and β-tubulin hetero-
dimers are complex with different ligands in certain flexi-
bility at the colchicine site, we performed the docking
studies of 4′-O-Methylbroussochalcone B with the repre-
sentative crystal structure (PDB code: 1SA0). As shown
in Fig. 2d, two hydroxyl groups attaching to the chalcone
scaffold could form two hydrogen bonds with the resi-
dues Val353 and Glu254. The carbonyl group on 4′-O-
Methylbroussochalcone B also formed a hydrogen bond
with the residue Val353. The 2-methylpent-2-ene group
attaching to the phenyl fragment formed the hydrophobic
interactions with the residues of Val177 and Pro325. All
these results indicated that 4′-O-Methylbroussochalcone
B could target tubulin.

ML-2 cells and OCI-AML5 cells were arrested in the G2-M
phase by 4′-O-Methylbroussochalcone B
Given that 4′-O-Methylbroussochalcone B could mark-
edly suppressed the tubulin polymerization in ML-2 cells
and OCI-AML5 cells, we further performed cell cycles
assay to explore the role of 4′-O-Methylbroussochalcone
B. The cells were incubated with different concentra-
tions (0, 2 μM and 4 μM) of 4′-O-Methylbroussochal-
cone B for 48 h. Based on the results in Fig. 3a and b,

for ML-2 cells and OCI-AML5 cells, the percentage of
the cells in G2-M phase of 2 μM and 4 μM groups was
dramatically increased respectively, compared with con-
trol group. All the results suggested that ML-2 cells and
OCI-AML5 cells were arrested in the G2-M phase sig-
nificantly by 4′-O-Methylbroussochalcone B in a
concentration-dependent manner.

4′-O-Methylbroussochalcone B inhibited migration in ML-
2 cells and OCI-AML5 cells
As shown in Fig. 3c, with the addition of 4′-O-Methyl-
broussochalcone B, the migration of ML-2 cells and
OCI-AML5 cells was evidently inhibited which was
proportional to the concentration. Meanwhile, the ex-
pression level of migration related markers (N-cadherin,
E-cadherin, Vimentin, Snail-1, and Slug) were detected
by Western Blot. Figure 3d and e showed that 4′-O-
Methylbroussochalcone B up-regulated the expression of
E-Cadherin in both ML-2 cells and OCI-AML5 cells,
while the expression of N-Cadherin and Vimentin were
down-regulated correspondingly. The upstream transcrip-
tion factor, Snail-1 and Slug were also down-regulated
after treatment with 4′-O-Methylbroussochalcone B.
Therefore, the results demonstrated that 4′-O-Methyl-
broussochalcone B could hinder the ML-2 cells and OCI-
AML5 cells migration in a concentration dependent
manner.

4′-O-Methylbroussochalcone B induced apoptosis in ML-2
cells and OCI-AML5 cells
To explore the apoptotic effects of 4′-O-Methylbrousso-
chalcone B on ML-2 cells and OCI-AML5 cells, we per-
formed apoptotic analysis with Annexin V-FITC/PI
double staining and quantitated by flow cytometry. As
shown in Fig. 4a, b, the percentage of apoptotic ML-2
cells (including early phase and late phase apoptosis)
were increased up to 13.68 and 55.04% at the indicated
concentrations (2 μM and 4 μM) compared to the con-
trol. In addition, the apoptotic rates of OCI-AML5 cells
with the treatment of 4′-O-Methylbroussochalcone B at
2 μM and 4 μM were 12.84 and 24.13%. The apoptotic
rates of both were concentration dependent. It illus-
trated that 4′-O-Methylbroussochalcone B could induce
the apoptosis of ML-2 cells and OCI-AML5 cells.

(See figure on previous page.)
Fig. 2 4′-O-Methylbroussochalcone B as a novel tubulin polymerization inhibitor directly bind to the cochicine binding site of β-tubulin. a
Immunofluorescence staining of β-tubulin inhibited by 4′-O-Methylbroussochalcone B in ML-2 cells; b Tubulin polymerization assay was
admeasured for the inhibitory activity of 4 ‘-O-Methylbroussochalcone B on tubulin polymerization in vitro; c EBI assay combined with Western
Blot analysis was used to in ML-2 cells, full-length blots/gels are presented in Supplementary Fig. S2a; d Molecular modeling study (PDB
code 1SA0)
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Fig. 3 (See legend on next page.)
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4′-O-Methylbroussochalcone B regulated apoptosis-
related proteins in ML-2 cells and OCI-AML5 cells
To further explore the mechanisms of 4′-O-Methyl-
broussochalcone B inducing apoptosis, the expression
of key proteins involved the mitochondria-related
apoptosis pathway was examined by Western Blot
(Fig. 4c, d). Cleaved-caspase 3/9 and cleaved-parp ac-
tivation were observed after treatment with 4′-O-
Methylbroussochalcone B at different concentrations
(0, 1 μM, 2 μM and 4 μM) in ML-2 cells and OCI-
AML5 cells. The pro-apoptosis protein, Bax, was up-
regulated in a concentration-dependent manner, while
the anti-apoptosis protein Bcl-2 showed an opposite
trend. The expression level of X-linked inhibitor of
apoptosis protein (XIAP) was decreased in ML-2 cells
and OCI-AML5 cells with the treatment of 4′-O-
Methylbroussochalcone B. These revealed that 4′-O-
Methylbroussochalcone B could induce the apoptosis
of ML-2 cells and OCI-AML5 cells by regulating
apoptosis-related proteins.

4′-O-Methylbroussochalcone B inhibited the MAPK
signaling pathway in ML-2 cells and OCI-AML5 cells
In order to investigate whether 4′-O-Methylbrousso-
chalcone B has an effect on MAPK signaling pathway,
the expression level of related MAPK signaling proteins
(p-c-Raf, p-MEK1, p-c-Jun, p-Erk, c-Myc and p-p-38)
were determined in ML-2 cells and OCI-AML5 cells
treated with 4′-O-Methylbroussochalcone B for 48 h. As
shown in Fig. 5a and b, the expressive protein level of
p-c-Raf, p-MEK1, p-c-Jun, p-Erk, c-Myc and p-p-38
were all downregulated in a concentration-dependent
manner after the treatment of 4′-O-Methylbroussochal-
cone B. All these results indicated that 4′-O-Methyl-
broussochalcone B could inhibit the activation of MAPK
signaling pathway in ML-2 cells and OCI-AML5 cells.

4′-O-Methylbroussochalcone B inhibited the Wnt/β-
catenin signaling pathway in ML-2 cells and OCI-AML5
cells
According to the inhibitory results of proliferation and
migration, it was hypothesized that 4′-O-Methylbrousso-
chalcone B treatment might affect the Wnt/β-catenin
signaling pathway. To confirm this property, the expres-
sion of related Wnt/β-catenin signaling proteins (β-

catenin, Wnt 5α, P-β-catenin, TCF4 and GSK-3β) were
determined. As shown in Fig. 5c and d, 4‘-O-Methyl-
broussochalcone B could decrease the expression level of
β-catenin, Wnt 5α, P-β-catenin and TCF4. In contrast, the
expression level of GSK-3β was significantly increased
with the treatment of 4’-O-Methylbroussochalcone B in
ML-2 cells and OCI-AML5 cells. Hence, these findings
reflected that 4′-O-Methylbroussochalcone B could hin-
der the Wnt/β-catenin signaling pathway in ML-2 cells
and OCI-AML5 cells.

Discussion
Human AML is characterized by abnormal proliferation
of undifferentiated and non-functional hematopoietic
cells in the bone marrow [17]. Improvements in sup-
portive care have increased overall survival rates in
younger patients (< 15 years of age) to more than 60%,
however, 40% relapses requiring salvage therapy ultim-
ately [18]. Extensive research have revealed that chemo-
therapy drugs might be an effective strategy to treat
human AML [19]. Cullen corylifolium is a plant widely
used in traditional Chinese medicine for its stomachic,
anthelmintic, and diuretic properties [20]. Some natural
chalcones such as Corylin from Cullen corylifolium have
been reported as antitumor agents [21]. In the current
study, six chalcones (4′-O-Methylbroussochalcone B,
Broussochalcone B, Isobavachalcone, Bavachromene,
Isobavachromene, and Dorsmanin A) from Cullen coryli-
folium were evaluated for their antiproliferative effects
against the AML cells initially. Among all these chal-
cones, 4′-O-Methylbroussochalcone B displayed the best
antiproliferative effects against the cells. All these anti-
proliferative results indicated that 4′-O-Methylbrousso-
chalcone B have the potential to be a potently antitumor
agent against acute myeloid leukemia.
Microtubules as dynamic polymers of α-tubulin and β-

tubulin have been one of the best targets for developing
anti-cancer drugs [22]. These microtubules targeted
agents are acted through two processes (i) inhibiting
depolymerization of tubulin and (ii) inhibiting
polymerization of tubulin [23]. Now days, various bind-
ing domains have been explored that the three major
binding domain of tubulin are taxol, vinca and colchi-
cine binding domain [24]. Tubulin inhibitors that bind
to the colchicine-binding site have potential ability to

(See figure on previous page.)
Fig. 3 4′-O-Methylbroussochalcone B inhibited G2-M phase and migration in ML-2 cells and OCI-AML5 cells. a-b Cell cycle assay for ML-2 cells
and OCI-AML5 cells at different concentrations of 4′-O-Methylbroussochalcone; c Transwell assay for ML-2 cells and OCI-AML5 cells at different
concentrations of 4′-O-Methylbroussochalcone; d Western Blot measured the expression level of N-cadherin, Vimentin, E-cadherin, Snail-1, and
Slug in ML-2 cells, full-length blots/gels are presented in Supplementary Fig. S2B; e Western Blot measured the expression level of N-cadherin,
Vimentin, E-cadherin, Snail-1, and Slug in OCI-AML5 cells, full-length blots/gels are presented in Supplementary Fig. S2C. The data were presented
as the mean ± SEM *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001, vs the control
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Fig. 4 4′-O-Methylbroussochalcone B induced apoptosis and regulated apoptosis-related proteins in ML-2 cells and OCI-AML5 cells. a-b
Measurement of apoptosis in ML-2 cells and OCI-AML5 cells using flow cytometry analysis; c Western Blot analyzed the expression level of
Cleaved-caspase 3/9, cleaved-parp, Bcl-2, Bax and XIAP in ML-2 cells, full-length blots/gels are presented in Supplementary Fig. S3A; d Western
Blot analyzed the expression level of Cleaved-caspase 3/9, cleaved-parp, Bcl-2, Bax and XIAP in OCI-AML5 cells, full-length blots/gels are
presented in Supplementary Fig. S3b.The data were presented as the mean ± SEM *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001
vs the control
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Fig. 5 The expression level of proteins MAPK of signaling and Wnt/β-catenin pathway was determined in ML-2 cells and OCI-AML5 cells with the
treatment of 4′-O-Methylbroussochalcone B. a-b Western Blot analyzed the expression level of p-c-Raf, p-MEK1, p-Erk, p-c-Jun, c-Myc and p-p-38
in ML-2 cells and OCI-AML5 cells, full-length blots/gels are presented in Supplementary Fig. S4. c-d Western Blot analyzed the expression level of
β-catenin, Wnt 5α, P-β-catenin, TCF4 and GSK-3β in ML-2 cells and OCI-AML5 cells, full-length blots/gels are presented in Supplementary Fig. S5.
The data were presented as the mean ± SEM *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001 vs the control
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treat cancer [25, 26]. Our results demonstrated that 4′-
O-Methylbroussochalcone B could be a novel tubulin
polymerization inhibitor. The EBI assay in ML-2 cells in-
dicated that 4′-O-Methylbroussochalcone B can directly
bind to the cochicine binding site of β-tubulin. In
addition, the molecular docking study was carried out to
elucidate the binding features of 4′-O-Methylbrousso-
chalcone B with tubulin.
Microtubules play an important role in mitosis and

cell division [27]. It was reported that MDS, a kind of
microtubules and the derivatives of chalcones, sup-
pressed tubulin polymerization and arrested G2/M
cell-cycle [25]. Our results also showed that 4′-O-
Methylbroussochalcone B caused G2/M cell-cycle in
ML-2 cells and OCI-AML5 cells which was propor-
tional to the concentration. Based on the reported
references, tubulin polymerization inhibitors could in-
duce apoptosis against different cancer cells [28].
Thus, we further explored the apoptotic effects of 4′-
O-Methylbroussochalcone B against ML-2 cells and
OCI-AML5 cells. From the results of apoptosis assay,
4′-O-Methylbroussochalcone B could induce apop-
tosis and affect the expression level of apoptosis re-
lated proteins in a concentration dependent manner
in ML-2 cells and OCI-AML5 cells.
Chalcone analogues notably suppressed on the migra-

tion of HUVEC cells [29]. In this work, 4′-O-Methyl-
broussochalcone B inhibited the migration of ML-2 cells
and OCI-AML5 cells obviously. Meanwhile, the expres-
sion level of migration related proteins were determined.
The expression level of E-Cadherin was up-regulated by
4′-O-Methylbroussochalcone B, while the level of N-
Cadherin and Slug was down-regulated correspondingly.
The mitogen-activated protein kinase (MAPK) cas-

cade is a critical pathway for human cancer cell sur-
vival to drug therapy [30]. There are four
independent MAPK pathways composed of four sig-
naling families: the MAPK/ERK family, c-Jun N-
terminal kinase (JNK), p38, and Big MAP kinase-1
(BMK-1) signaling families [31]. In order to explore
the effects of 4′-O-Methylbroussochalcone B on
MAPK pathway, the MAPK pathway related proteins
(p-c-Raf, p-MEK1, p-c-Jun, p-Erk, c-Myc, and p-p-38)
were investigated their expression level in ML-2 cells.
Based on the Western Blot results, 4′-O-Methylbrous-
sochalcone B down-regulated the expressive protein
level of p-c-Jun, p-Erk, c-Myc, and p-p-38 in a
concentration-dependent manner. In other words, in
ML-2 cells and OCI-AML5 cells, 4′-O-Methylbrous-
sochalcone B could inhibit the MAPK signaling path-
way. The Wnt/β-catenin signaling pathway as an
evolutionarily conserved and complex signaling cas-
cade is associated with a host of physiological and
pathophysiological processes, including embryonic

patterning, cell proliferation, cell differentiation,
angiogenesis, and cancer [32]. In addition, Wnt/β-ca-
tenin pathway could affect migration process in some
cancer cell lines [33]. To explore the effects of Wnt/
β-catenin pathway, the expression level of (β-catenin,
Wnt 5α, P-β-catenin, TCF4 and GSK-3β) were deter-
mined. We found that the expression level of β-
catenin, Wnt 5α and P-β-catenin were decreased, on
the contrary, the expression level of GSK-3β was in-
creased in a concentration dependent manner. In a
nutshell, 4′-O-Methylbroussochalcone B inhibited
Wnt/β-catenin pathway in ML-2 and OCI-AML5
cells. The role of Wnt/β-catenin pathway in the
process that 4′-O-Methylbroussochalcone B inhibited
migration will be studied in our next work. Based on
the complexity of the etiology in leukemia and the di-
versity of tubulin pharmacology, we will devote our-
selves to the discovery of new drugs and the research
of new drug mechanisms in the future.

Conclusion
In conclusion, 4′-O-Methylbroussochalcone B potently
inhibited proliferation and migration and expedited
apoptosis in AML cells. 4′-O-Methylbroussochalcone B
could affect the MAPK and Wnt/b-Catenin pathways. It
might be a novel tubulin polymerization inhibitor target-
ing colchicine site to treat AML.
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