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Abstract
Mirror neurons are visuo-motor neurons found in primates and thought to be significant for

imitation learning. The proposition that mirror neurons result from associative learning while

the neonate observes his own actions has received noteworthy empirical support. Self-

exploration is regarded as a procedure by which infants become perceptually observant to

their own body and engage in a perceptual communication with themselves. We assume

that crude sense of self is the prerequisite for social interaction. However, the contribution of

mirror neurons in encoding the perspective from which the motor acts of others are seen

have not been addressed in relation to humanoid robots. In this paper we present a compu-

tational model for development of mirror neuron system for humanoid based on the hypoth-

esis that infants acquire MNS by sensorimotor associative learning through self-exploration

capable of sustaining early imitation skills. The purpose of our proposed model is to take

into account the view-dependency of neurons as a probable outcome of the associative

connectivity between motor and visual information. In our experiment, a humanoid robot

stands in front of a mirror (represented through self-image using camera) in order to obtain

the associative relationship between his own motor generated actions and his own visual

body-image. In the learning process the network first forms mapping from each motor repre-

sentation onto visual representation from the self-exploratory perspective. Afterwards, the

representation of the motor commands is learned to be associated with all possible visual

perspectives. The complete architecture was evaluated by simulation experiments per-

formed on DARwIn-OP humanoid robot.

Introduction
Mirror Neurons belongs to the family of visuomotor neurons which were originally discovered
in the F5 area located in the premotor cortex of the macaque monkey brain [1]. Mirror neurons
not only activate when the primates observes an action (e.g., grasping) performed by demon-
strator (human or monkey) and also activate when the primates try to execute the same
observed action [2–4]. These neurons are an example of a motor resonance system in which
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brain activity pertaining to both observation and execution of action have an influence on each
other. The discovery of mirror neuron and their functional hypothesis presented in the litera-
ture suggests that mirror neurons form the foundation of action understanding [1, 5], motion
imitation [6, 7] and language development [8]. Rizzolatti & Sinigaglia [9] summarized mirror
neuron function as ascribed to the “parieto-frontal action-observation action-execution brain
circuit” or the mirror neuron system (MNS). The schematic interpretation of the mirror neu-
ron system and its relevant circuitry connections are depicted in Fig 1. The mirror neuron sys-
tem comprises of the area F5 [1, 2], area Parieto Frontal Gyrus (PFG) in the rostral part of the
Inferior Parietal Lobule (IPL) between areas PF and PG [10, 11], Superior Temporal Sulcus
(STS) [12, 13] and the Anterior Intraparietal area (AIP) [2]. Both parietal areas are attached
with F5 and both receive visual information from areas located inside the STS providing input
to frontal motor-control area F5. Similar to F5 region, STS encodes motion, however, it is
derived of motor properties and consequently cannot be regarded as a true part of the mirror
neuron system.

STS plays an important role in action understanding and mirror neuron system functional-
ity. Perrett et al. [14] investigated that neurons in STS responds selectively to different perspec-
tives of an object or action. These view-invariant or object-centered neurons have distinct
anatomical position inside the STS. Neurons discerning to the viewpoint are located in poste-
rior areas of STS (STSp) and the neurons related to view-invariant are positioned in anterior
areas of STS (STSa), which are adjacent to frontal cortices [15]. STS area is linked with F5 via
two different pathways [13]. The posterior part of STS (STSp) is linked with F5c via PF path-
way (PFG) and the anterior part of STS (STSa) is linked with F5a via AIP.

For the development of mirror neurons, it has been theorized that they are a by-product of
associative learning: when the organism generates motor commands the internal representa-
tion of this command and it’s observed visual effects are associated inside the mirror neuron
system. Later, when the system is demonstrated with a visual stimulus that corresponds to one
of the stored patterns, the associated motor command representation is triggered and retrieved
automatically. This “Associative Sequence Learning” [17, 18] proposes that mirror neuron is
shaped through sensorimotor experience. The associative hypothesis implies that the percep-
tual-motor coupling properties of mirror mechanism results from an associative learning pro-
cess [19].

Functional properties of mirror neurons suggest that they are an important part of imitation
learning. Many neuroscientists regard imitation as mediated by mirror neurons in humans
[20]. Most developmental theories emphasize that social interactions, in particular understand-
ing of actions, could be first achieved through imitation. However, the discussion on the origin
of primitive imitative abilities is often neglected, referring instead to the possibility of its
innateness [21, 22]. It has been contended, both in theory and experiments, that elementary
forms of imitation could emerge as a result of self-exploration [23]. According to this hypothe-
sis, a primitive sense of self is prerequisite for successful social interaction rather than an out-
come of it. From birth, infants are not only involved in recognizing themselves during the
process of perceiving environment, but they also exhibit exploratory commotion that appears
to be particularly pointed towards the discovery of their own body’s attributes [24, 25]. They
start developing associations between their motor commands and their resulting perceptual
effects. The ability to imitate builds upon the development of visuo-motor contingencies, and
self-concept of one’s own body’s constraints and capabilities [26]. In this view, infants have a
proprioceptive sense of self that derives in part from their own body movements which the
authors [24] have called ’body babbling’. Body babbling is the process of learning how specific
body parts achieve various elementary configurations.
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A fundamental question in developmental psychology is that how human infants develop a
sense of self [27]. Piaget [28] contended that neonates learn to associate self and other through
mirror play and tactual exploration of their own observed faces. Lewis et al. [29] suggested that
human infants seem to become self-aware when they begin to recognize and discern themselves
in a mirror. Physiological experiments [30–32] show that these observations provide a link
between mirror image and self-awareness. To assess the mirror self-awareness, Gallup [30] and
Amsterdam [33] applied a tool referred to as mirror test. They have discovered that animals
and infants observe their own body movements in front of the mirror to explore specific
kinaesthetic-visual egression of their action consequences. The mirror test not only plays an
essential role in the analysis of animal behaviour, but it also reveals insight into the develop-
ment of self-awareness in humans.

A robot can be more than a passive observer of the world as it learns and develops. Applying
the approach, derived from the way human beings learn, will greatly enhance the usefulness
and ability of robots in the human environment. Thus, our computational model for develop-
ment of MNS is based on the hypothesis that: infants acquire MNS as induced by acquisition of
sensory-motor associations capable of sustaining early imitation skills through self-exploration.
The purpose of our proposed mirror neuron model is to permit the robot to associate the per-
ceived self-performed action with actions in its own (self) motor repertoire empowering it to
understand the perceived movement by taking into account the view-dependency of neurons in

Fig 1. Schematic illustration of MNS in the macaquemonkey brain. Area F5 is connected with the inferior parietal lobule (areas AIP-anterior intra-
parietal, PF and PFG). Within the frontal lobe, area F5 is connected with hand/mouth representations of primary motor cortex (Source: Craighero et al. [16]).

doi:10.1371/journal.pone.0152003.g001
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both F5 and STS as a probable outcome of their associative connectivity. Accordingly, it might
be the opportunity to see the actions of others from a number of perspectives that endows neu-
rons with the capacity to respond to the sight of actions across different perspectives. The sight
of an action could then trigger corresponding motor actions because it activates the same
visuo-motor neurons that have been linked to the observer’s motor command during body-
babbling.

Furthermore, we will demonstrate that it is feasible to carry out vigorous self-exploration on
the basis of matching kinaesthetic experience to visual motion. In our mirror experiment, a
humanoid robot stands in front of a mirror (represented through self-image using camera) in
order to obtain the associative relationship between his own motor generated actions and (a
mirror image of his own) visual body-image. Through self-exploration, the humanoid robot
incrementally learns the mapping between body image and corresponding motor actions by
standing in front of the mirror, executing actions, and processing the visual images of the body
it observes.

Related Work
The discovery of mirror neurons have led to the development of various computational models
[34]. These models can be divided into two groups. The first group discusses the biologically
realistic models of mirror neurons dealing directly with modelling the neural circuitry for e.g.,
MSH [35], MNS-1 [36] and MNS-2 [37], Chain Model [38], Sensori-motor processing model
[39]. On the other hand, second group deals with the robotic imitation models associated with
the mirror neurons for instance connectionist model [40], developmental model [41], common
coding paradigm [42]. However, most these models do not attend to the view-invariant prop-
erty, but instead presume some sort of visual preprocessing (in STS) which leads to perspective
invariance [43]

Meltzoff and Moore [44] present a theoretical model of infant facial imitation based on
‘active intermodal mapping’ (AIM). AIM puts forward an intermodal mechanism for imita-
tion. They assert that imitation is a matching-to-target process. The active nature of the match-
ing process is depicted by the proprioceptive feedback loop. This loop enables infants’motor
operation to be assessed against the observed target. According to this model, the observed and
generated acts are coded within a supramodal framework, which facilitates infants to ascertain
equivalences amongst their own actions and the ones they observe.

Nagai et al. [45] have proposed a computational model for the development of mirror neu-
rons system through self-other correspondence. The model relies on the notion that as vision
develops the robot/infant was able to discriminate between self and other actions. The imita-
tion learning differentiate between the self and others where the robot first separately observes
the motions and motor commands of self and others and then map and associate the others
motions with the self-motor commands. The model relies on the processing of the visually per-
ceived stimuli through the optical flow detected from robots/infant’s vision. The association
between the vision and motor commands is developed through the Hebbian learning. Thus the
robot’s vision is limited only to hand movements.

The importance of learning through self-observation have also been pointed out by others.
For example, Chaminade et al. [46] proposed the hypothesis that sensorimotor associations for
hands and fingers learned from self-observation during motor babbling could be used to boot-
strap imitative abilities. Similarly, Kuniyoshi et al. [47] created a humanoid robot that learns to
imitate gestural movements by performing self-exploratory sensory motor learning. However,
these models are limited only to hand movements and other problems of imitation learning,
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such as automated motion segmentation and clustering and learning of new motion primitives,
have not been addressed.

Saegusa et al. [48] describes a developmental framework for action-driven development for
the self and action perception. They hypothesised that the results of actions can lead to identifi-
cation of dynamically changing body and the environment. The robot develops its perception
ability by defining its own body with self-generated actions. This leads to the development of
action perception based on observation. The self-perception is generated in the robot through
random generating some actions though vision and proprioception. Later the robot develops
its body image and motor skills. Based on the visual motion segmentation, the robot identifies
its body from the environment using visuomotor correlation between the self-action and
object.

Gold and Scassellati [49] have developed a model based on the classsical mirror test, for
self-recognition through expecting motion in the visual field utilizing an action perception
loop. During experimentation, the robot can only view the limited part of the body which limits
the observation of the whole body. The mirror in this experiment is only utilized to differenti-
ate between self and other.

Rebrova et al. [43] developed a MNS model accounting for the view invariant neurons in
both STS and F5, however, their model did not describe the development of mirroring property
and primitive imitation skills. In this paper we extend the MNS model of Rebrova et al. [43]
and develop an imitation system that enables a robot to autonomously learn primitive concepts
through self-exploration using body babbling with no a priori knowledge of its motor system
or the external environment. In designing an imitation learning system, we have addressed the
following fundamental issues of automated motion primitive segment without relying on the a
priori information about the kinematic model, incremental learning of motion primitives,
visuomotor correspondence and linking the observed self-exploratory action with appropriate
motor commands focusing on the actions performed by the demonstrator rather than the
view-point from which it is observed.

Methods
The proposed Mirror Neuron System (MNS) model is adapted from the mirror neuron model
presented by Rebrova et al. [43]. Outline of the model is presented in Fig 2. Our computational
mirror neuron system for humanoid robot consists of four layers. The first layer (at the bot-
tom) represents the motor and visual information. Motor data, comprised of joint angle values,
is acquired from robot sensors whereas the visual sequences are represented by the raw images
captured from the robot’s on-board vision sensors (monocular camera). The motor and visual
information is then processed to form a high-level representation at the second layer through
two modules F5 and STSp, respectively. F5 module is implemented using Topological Gaussian
Adaptive Resonance Hidden Markov Model (TGAR-HMM) and the STSp module is imple-
mented as Incremental Kernel Slow Feature Analysis (Inc-KSFA) and Topological Gaussian
Adaptive Resonance Map (TGARM).

The mirror neurons represented by the area F5 are connected with representation in STSp
through the PF pathway. PF pathway (F5-PF-STSp) forms a layer of neurons in associative net-
work to link motor data from F5 with variant visual data in STSp via the parietal area (PF).
This pathway is designed by the Topological Gaussian Adaptive Resonance Associative Mem-
ory (TGAR-AM). The topmost layer of computational MNS model is the F5-AIP-STSa path-
way, which links the mirror neurons in F5 with invariant representations in STSa. This
pathway associates the motor data from F5 with invariant visual representations in STSa.
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In order to acquire the lower level motor and visual information and to facilitate the devel-
opment of early imitative abilities, we have implemented a method for self-exploration of
humanoid robot through the use of mirror image. To formulate an apprehension of its own
actions, the observer begins by gathering visual perception of its own primitive actions using
the mirror image reflection. The robot generates random movements of the body and associ-
ates the self-produced actions with its effects perceived through vision. By performing actions
in front of the mirror, the observer generates a mapping between the motor commands and the
consequent perceived visual changes. This process consisting of self-exploration through mir-
ror image perception is called body babbling.

Fig 3 shows the proposed learning architecture for imitation learning through self-explora-
tion. The learning system begins with determining the primitives from continuous movements
using on-line segmentation. For this purpose, we have developed an algorithm for automatic
segmentation based on the image sequences captured from the robot’s camera. The observed
actions are segmented into episodes of different actions determined by the start and end of
actions through Incremental Kernel Slow Feature Analysis (Inc-KSFA) algorithm. Inc-KSFA
extracts slow varying features from input signals. The variation of slowly changing features is
exploited to determine the occurrence of different activities in an incremental fashion. These
segmented boundaries of action assists the robot to cluster the observed own actions as primi-
tive actions.

Fig 2. Computational model of the mirror neuron system.

doi:10.1371/journal.pone.0152003.g002
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In addition to obtaining the visual images of self performed actions, the joint angle values
of the self for different behavioral actions are also acquired as motion elements. These motion
elements are mapped onto the action space. The information from the motor representations
is processed with F5 module and results in a clustered mappings of illustrations of the same
movements. For learning the motion features we proposed a probabilistic incremental learn-
ing algorithm called Topological Gaussian Adaptive Resonance Hidden Markov Model
(TGAR-HMM). In contrast to conventional HMM, the developed probabilistic learning algo-
rithm is based on incrementally learning spatio-temporal behavioral sequences by developing
the graph based structure of the behavior patterns in the form of topological map using Topo-
logical Gaussian Adaptive Resonance Map (TGARM). The topological model incrementally
updates the number of states and parameters required by the probabilistic model to encode
the observed motion elements. This compactly describes the environment as a collection of
nodes linked by edges.

Based on segmented data, the learning algorithm is triggered; whenever an action starts,
the learning algorithm incrementally encodes the motion elements. The learned motion ele-
ments are also labelled using the segments defined during segmentation. In addition, a visual
space is developed through TGARM utilizing the features acquired using Inc-KSFA. After
generation of these maps independently, the visual space and the action space are connected
using associative memory. In order to create an association between the observed visual fea-
tures (visual space) and self-motor actions (action space), we developed an incremental asso-
ciative memory architecture called Topological Gaussian Adaptive Resonance Associative
Memory (TGAR-AM).

Fig 3. Architecture for incremental imitative learning through self-exploration.

doi:10.1371/journal.pone.0152003.g003
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During the learning process, the network first forms mapping from each motor representa-
tion onto visual representation from the self-exploratory perspective. Afterwards, the represen-
tation of the motor commands is learned to be associated with all possible visual perspectives.
This association is developed in order to activate the appropriate motor commands utilizing
the visual stimuli. Once the association is developed and learning is complete, we assume that a
partner robot comes before the robot performing the similar actions from various perspectives
as previously learned by the robot. Based on the sensorimotor association, the robot recalls the
corresponding motion pattern from the memory developed during body babbling and per-
forms the actions.

Motion Primitive Segmentation–Incremental Kernel Slow Feature
Analysis
Most of the motion segmentation algorithms for robot learning rely on kinematic structure
[50] and very less focus was given to segment motion patterns directly from the vision [51].
When dealing with real-time video sequences, the limit or length of data is not known a priori,
therefore, an incremental algorithm is needed. For this purpose, we propose an automatic seg-
mentation algorithm utilizing the image sequences captured from the robot’s vision sensors
using Inc-KSFA [52]. In this paper, we study the application of Slow Feature Analyis (SFA) for
unsupervised segmentation of motion primitives from a continuous stream of visual data.
More precisely, we demonstrate that it is possible to discover the dynamics of motion primi-
tives in an unsupervised manner using Inc-KSFA. Our motivation is based on the close rela-
tionship between human perception and SFA [53]. In this paper we used the idea of SFA for
video segmentation developed by Liwicki et al. [54]. However, instead of using complex gradi-
ent based kernel computed in Krein space [55], we have utilized the method of reproducing
kernel in Hilbert space, to reduce computational complexity. Incremental Kernel SFA algo-
rithm does not rely on any predefined training images for processing. It discovers the temporal
variations in a video stream online.

The main intuition behind SFA is based on the presumption that information contained in a
signal does not change suddenly, but slowly over time [56]. SFA is an unsupervised approach
which searches for a set of mappings gi from I–dimensional input data x(t) = [x1(t), . . ., xI(t)]

T to
generate J–dimensional output signal y(t) = [y1(t), . . ., yJ(t)]

T with components yj(t) : = gj(x(t))
such that j 2 {1, . . ., J}. The optimization problem of SFA is defined by minimizing the temporal
variations of the output signal, mathematically:

DðyjÞ :¼ h _y2
j it is minimal ð1Þ

Under the constraints:

hyjit ¼ 0 ðZero MeanÞ ð2Þ

hy2j it ¼ 1 ðUnit VarianceÞ ð3Þ

8i<j; hyiyjit ¼ 0 ðDecorrelationÞ ð4Þ

where h�it and _y represent the temporal averaging and the derivative of y, respectively. Gener-
ally, _y is measured by the difference between consecutive time steps. The constraints Eqs (2–4)
are inserted to prevent constant signals to emerge and avoids trivial solution.

Often, the mapping between the input and output data is assumed to be linear such that the
input–output transformation is the weighted sum i.e., g(x) = wT x(t). However, for the real
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time applications the non-linear input features are expanded through expansion function,
h(�), such that zi : = h(xi). After expansion, the j − th output signal component is given by
yjðtÞ ¼ gjðxðtÞÞ ¼ wT

j hðxðtÞÞ ¼ wT
j zðtÞ. Assuming that the signal has unit variance such that

the optimization problem is treated as: h _y2
j it ¼ wT

j h _z _zTitwj and hyiyjit ¼ wT
j hzzTitwj. Using

matrix notations:

min
W

trðWT _Z _ZTWÞ; s:t: WTZZTW ¼ I ð5Þ

where _Z represents the temporal derivation matrix, and tr(�) computes the trace of a matrix. In
the first step, the whitening matrix S is computed to fulfil the unit variance constraint such that

ST Z ZT S = I. Then, the directions of least variance in the derivative signals _Z are found on the

derivative covariance matrix _Z _ZT and represented by an orthogonal matrix R to obtain the
projectionW = SR which solves Eq (5). The SFA can be represented as:

min
R

trðRTST _Z _ZTSRÞ; s:t: RTSTZZTSR ¼ I ð6Þ

In order to find the output of SFA, the Eigen decomposition (ED) of _�Z _�ZT is computed such

that S _�Z _�ZTS ¼ RHRT . Here _�Z represents the centred derivative data matrix. The output of
the SFA is given by:

cj ¼ RT ST�z j � STm _z

� �
¼WT �z j � _mz

� �
ð7Þ

The ordering, in terms of slowness, of the functions cj, is provided by the order of the com-
ponents in R which is governed by the eigenvalues inH. The slowest function is related to the
smallest eigenvalue and the next larger eigenvalue gives the second slowest function, etc.

Incremental Kernel Slow Feature Analysis. Incremental Kernel Slow Feature Analysis
updates slow features, incrementally so that it can process new input data by incrementally
updating the data mean and whitening projections. Suppose we have a data matrix
XA ¼ ½x1 � � � xn� 2 R

m�n. In principle we non-linearly map XA to a higher dimensional space
F using the function F : Rm ! F . Using F, we transform XA into FA = [ϕ(x1) � � � ϕ(xn)]. The
map F is induced by a kernel function κ(a,b) = ϕ(a) � ϕ(b), with a;b 2 R

m that allows us to
evaluate inner products in new space F .

Let the considered mappings be elements of a reproduced kernel Hilbert space (RKHS)

[57]. Consider the matrix K ¼ FT
AFA. By using κ(�, �), FT

AFA can be evaluated without having

to perform the mappingF sinceFT
AFA contains only dot products between the ϕ(xi)s. The opti-

mization problem of SFA can be reformulated as:

min
R

trðRTST _�K _�KTSRÞ; s:t: RTST �ΦA
�ΦT

ASR ¼ I ð8Þ

where _�K is the derivative of the centered kernel matrix �K. Let us assume we are given a new

data matrixXB 2 R
m�i where FB = ϕ(XB). We want to incrementally find the whitening pro-

jections and update the slow features to incorporate new data patterns such that the whole
information is represented by the concatenation of FA and FB as X C = [F A F B].

Zero Mean: Let μA and μB be the mean of FA and FB respectively with nA and nB be the
number of data samples contained in FA and FB, respectively, we can update the mean μC of
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overall data XC as [58]:

μC ¼
nA

nA þ nB

ΦA

1

nA

1nA�1

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

μA

þ nB

nA þ nB

ΦB

1

nB

1nB�1

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

μB

ð9Þ

Let �FA and �FB be the centered data matrix of FA and FB, respectively computed through
subtracting the data from its mean to fulfil the zero mean constraint. Similarly, we update the
centered matrix of overall data matrix XC as: �XC ¼ XC � μC

Unit Variance and Incremental Whitening: Consider the matrix �K such that �K ¼ �FT
A
�FA

and compute the eigenvalue decomposition of �K as P Λ PT. Via kernel SVD, we compute the

signular value decomposition of �F as �FPL�
1
2

h i
L

1
2

h i
½PT � ¼ UDVT . We want to compute the

matrix S which whitens the overall data matrix. For this we need to incrementally compute the

SVD of the concatenated matrix such that �XC : ½�FA
�FB� ¼ U0D0V0

T . Let ~FB be the compo-

nent of FB orthogonal to U andU0 ¼ ½U ~FB� (computed through QR decomposition [59]).
The concatenated matrix can be represented in partitioned form as [60]:

�XC : ½ �ΦA
�ΦB� ¼ U ~ΦB

� � D UT �ΦB

0 ~ΦBð �ΦB �UUT �ΦBÞ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

C

V 0

0 I

" #T

ð10Þ

whereC is a square matrix of size k + i where k is the number of singular values inD. Comput-

ing the SVD ofΨ ¼ ÛD̂V̂T to diagonalize the matrix and substituting into Eq (10) yields the

SVD of �XC : ½�FA
�FB� ¼ U0D0V0

T .
Since, we are only interested in computing U0 andD0, V0, whose size scales with the number

of observed data, need not to be computed. Thus, we only need to calculate the SVD of matrix

C for the incremental update which is defined as:U0 ¼ ½U ~FB�Û and and D0 ¼ D̂. There-
fore, the projection which whitens the signal is computed asW = U0 D0−1.

Slow Feature Update: Suppose _FA, _FB and _XC represents the time derivatives of FA, FB

and XC, respectively. Let us assume there are _nA samples represented in _FA. Similarly, we

assume that new dataset _FB consists of _nB samples. We first find the centred data matrix of the

newly observed elements represented by _�FB. Thus from [61] we can update the overall data
matrix as:

_�XC
_�XC

T ¼ _�ΦA
_�ΦA

T þ _�ΦB
_�ΦB

T þ nAnB

nA þ nB

ð _μA � _μBÞð _μA � _μBÞT ð11Þ

where _μA and _μB represents the mean of time derivative patterns _FA and _FB, respectively. The
updated mean of overall data matrix is calculated analogous to Eq 9. Finally we calculate the

new feature function by computing the Eigen decomposition of ST _�XC
_�XT
CS as RHRT which

gives our final output. Via the kernel trick, the above process is rendered practicable without
explicitly evaluating the mapping ϕ(�).

Episodic Segmentation. We have applied the above explained Inc-KSFA algorithm for
the segmentation of actions observed. Eq 1 can be interpreted as the sum of squared Euclidean
distance of the slow features computed between consecutive images. Suppose we have data zi,
we can define the δ as change detected in data after time t, as the squared Euclidean difference
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in slow features among its previous data.

dlt ðziÞ ¼ ðzi � zi�1ÞTWlt
Wlt

Tðzi � zi�1Þ ð12Þ

where l is the number of utilized slow features.
In order to compare the change between the current frame and the previous time frames,

we need to utilize the change of all the previous time steps. Therefore, we need to compute the
average change without keeping the previous signals in the memory. The sum of k largest

eigenvalues inH is nearly equivalent to mlt�1 ¼
Pt�1

1 dlt�1ðziÞ. The significant ratio (z) of the
current and mean change is calculated to judge how substantial the change at current step is:

z ¼ ðt � 1Þdlt�1ðztÞ
mlt�1

> t ð13Þ

where τ is the threshold value determined manually. Since the calculation of eigenvalues is
done as a part of incremental Kernel SFA, thus, we do not require previous samples. The signif-
icance ratio of the current and average change is calculated to judge how substantial the change
at current step is. The frames with large variations in the slow features are used to segment the
data.

Topological Gaussian Adaptive Resonance Hidden Markov Model for
Incremental Learning
In our proposed architecture, an HMM can be considered as graph whose nodes represent
states attainable by the object and whose edges represent transitions between these states. The
system is assumed to be at a particular state and to develop stochastically at discrete time steps
by following the graph edges according to a transition probability. TGAR-HMM is described
as a time evolving HMMwith continuous observation variables, where the number of HMM
states, structure and probability parameters are updated every time a new observation sequence
is available. Structurally, TGAR-HMM are similar to the standard HMMs, besides the fact that
the transition structure and the number of states are not constant but vary as more input obser-
vation sequences are processed. In addition, the learning algorithm is able to incrementally
update the model.

The main idea for developing the proposed probabilistic model is that the structure of the
model should consider the spatial structure of the state-space discretization, where the transi-
tion among discrete states are only permitted if the corresponding regions are neighbors.
Hence, structure learning essentially consists of estimating the suitable space discretization
from the observed data and identifying neighboring regions. We have addressed this problem
by proposing a topological map using the Topological Gaussian Adaptive Resonance Map
(TGARM) algorithm [62].

Fig 4 shows the graphical representation of the learning architecture. The observed motion
elements (joint angle values) are first organized through topological map consisting of nodes
and edges. This map is then used to update the state structure for estimating the optimal num-
ber of states and the transition probabilities among the states. The on-line segmentation and
learning algorithms together help in grouping different actions in memory.

Motion Primitive Modelling. The input to the learning algorithm consists of a series of
discrete observation (i.e. joint angle values from sensor reading) describing the motion features.
In addition, the observations are arranged in sequences O1:T = {O1, . . ., OT} such that every
sequence described the trajectory of action. TGARM inherits the properties of Adaptive Reso-
nance Theory (ART) [63] capable of fast and constructive learning. However, TGARM is able
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to learn spatio-temporal sequences. The structure grows incrementally by incorporating new
knowledge without defiling the previously learned data and adaptively responds to the infor-
mation acquired from the environment.

Fig 5 shows the structure of topological map model. The inputs are received from the robot
sensors (for example joint angle values). Each input neuron is connected to the output neurons
through the bottom-up weights; conversely, each neuron in the output layer is connected to
the input layer through the top-down weights. The bottom-up weights or the activation value
provides likelihood that an input pattern is a probable candidate for being a node whereas the
matching function provides a confidence measure about the top-down weights. This confi-
dence measure is defined by the vigilance parameter, ρ. The output layer creates a topological
structure of the input data.

Each node weights are defined by a vector ξj,matrix Γj and nj representing its mean, covari-
ance and node count, respectively. The network is initialized with two parameters: the baseline
vigilance parameter �r 2 ð0; 1Þ and the initial covariance matrix, Y. During learning a winning
node ωJ is selected from an input pattern based on the highest probability. The conditional
density ofOt given the winning node j or the bottom-up input activation value for a node is

Fig 4. Overview of TGAR-HMM learning architecture. The observed behaviour sequence is first arranged through topological map. This topological map is
then used to update the state structure for estimating the optimal number of states and the transition probabilities among these states.

doi:10.1371/journal.pone.0152003.g004
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calculated as:

pðOtjjÞ ¼
1

ð2pÞN=2jΓjj1=2
exp � 1

2
ðOt � ξjÞTΓ�1j ðOt � ξjÞ

	 

ð14Þ

where N is the dimensionality of the input motion patterns.
For each input pattern the activation value is calculated using Eq (14) and the neuron with

highest activation value is selected which determines the node with the highest probability:
J = arg maxj p(Ot|j). But the node is only allowed to be updated if the vigilance criterion or
matching between the given input and the selected winner node is fulfilled. A node wJ passes the
vigilance criterion if its match function value exceeds the vigilance parameter value ρ, that is if:

exp � 1

2
ðOt � ξjÞTΓ�1j ðOt � ξjÞ

	 

� r ð15Þ

The vigilance is a measure of similarity between the input and the node’s mean relative to its
standard deviation. If the winning node fails to pass the vigilance test Eq (15), the current
winner node is disqualified and its activation value is reset. Then, the observation pattern is
searched for the new winning best-matching neuron. If no satisfactory neuron is found, a
new neuron representing the input pattern with nJ = 0 is integrated satisfying the resonance.
When the winning neuron, satisfying the vigilance condition representing the input pattern is

Fig 5. Architecture for creation of topological map.

doi:10.1371/journal.pone.0152003.g005
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selected, its parameters i.e. count, mean, and variance is updated using Eqs 16–18.

nJ ¼ nJ þ 1 ð16Þ

ξJ ¼ 1� 1

nJ

� �
ξJ þ

1

nJ

� �
Ot ð17Þ

ΓJ ¼ 1� 1

nJ

� �
ΓJ þ

1

nJ

� �
ðOt � ξJÞðOt � ξJÞT ð18Þ

The algorithm for topological mapping is summarized in Algorithm 1. The learning algo-
rithm grows its neural structure starting with the first node. Each time a behaviour pattern is
observed, it is encoded as a Gaussian node in the structure. When the resonating neuron is
determined, a lateral connection or an edge is established between the current and previous
winner node. This mechanism will provide a stable architecture for establishing a link between
the previously learned data and also integrate newly observed data in order to map temporal
correlation between them.
Algorithm 1 Algorithm for Topological Gaussian Adaptive Resonance Map
Require::

Observation Vector Ot
Initial Covariance Matrix Y
Baseline Vigilance Parameter �r

Ensure::
NodesN
Edges E

1: Input the observation vector Ot.
2: if There is no node in the network then
3: Add Ot in the network as new node.N  N i [ fOtg, ni = 0
4: Update the weights of the nodeN ðn; ξ;ΓÞ using Eqs (16)–(18)
5: else
6: Determine the winner node ωJ from the observation vector using Eq (14)
7: Determine the resonance criterion for the winner node ωJ using Eq (15)
8: if calcVig< �r i.e. the observation vector fails the vigilance test then
9: Add as a new nodeN  N [ fOtg
10: Update the weights of the ωJ (winner node)N ðnJ ; ξJ ;ΓJÞ using Eqs (16)–(18)
11: Add edge between the previous winner and current winner nodes

E  E [ fðprevWinner;oJÞg
12: else
13: if calcVig> �r i.e. the node passed the vigilance test then
14: Reset the winner node and find a new winner from observation vector.
15: Update the weights of previous winner node.
16: Obtain the new observation vector Ot.
17: If the learning is not completed, go to Step 6 to process the next

observation.
18: end if
19: end if
20: end if

Incremental Learning. After updating the structure of the model, motion patterns are
learned through the probabilistic module. This is achieved through Hidden Markov Model.
HMM is a doubly stochastic model consists of states which are not directly observed. Each
state in the HMM emits an observation as output which infers the most likely dynamical sys-
tem. Each state is connected by transitions between the states and generates an output pattern.
In order to select the appropriate structure of the HMM or selecting the optimum numbers of
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states, TGARM is employed. After updating the model structure the remaining parameters of
HMM, such as transition probability and prior probabilities are updated using EM algorithm.

An HMM is characterized by the following parameters: State prior probabilities (πi = P[s0 = i])
represents the prior probability for the corresponding state; State transition probability matrix
(aij = P[st+1 = j|st = i]) represents the probability of transition from state i to state j; Observation
probability distribution (B = P[Ot|st = i]) which is represented by Gaussian function denoted by
the parametersN(Ot|mi,Ci), wheremi and Ci is mean vector and the covariance matrix for the i-
th state in HMM. These HMM parameters are denoted as λ = {π,A,B} = {π,A,m,C}. Each hidden
state in HMM encodes and abstracts an observed motion pattern where a sequence of motion
patterns is estimated using the transition between these hidden states.

Updating Structure and Parameters of HMM. After updating the topological map, the
structure of HMM is also updated based on the added nodes and edges. Corresponding to
every node added in the topological map, a state in the HMM is also added. Each added state is
initialized with the prior probability πi = π0 and self-transition probability ai,i = a0, where i rep-
resents the new node. Similarly, for addition of every new node and the new edges (i,j) connect-
ing these nodes, the transition probabilities are also initialized with state transition probability
value ai,j = a0.

After updating the HMM structure, the parameters of HMM are also updated. The mean
and the covariance values related to each Gaussian observation are updated during the struc-
ture (topological map) updating process discussed in previous section. The same values are
used by the HMM (i.e.m = ξ,C = Γ). However, the remaining parameters such as transition
probability and state prior probabilities need to be re-estimated. Traditionally, BaumWelch
algorithm [64] which is a type of EM algorithm is used for learning the initial state probability
distribution and the sate transition model. Re-estimate the transition probability and state
prior probability using Eqs 19 and 20.

�aij ¼

XT�1
t¼1

atðiÞaijbjðOtþ1Þbtþ1ðjÞ
XT�1
t¼1

atðiÞbtðiÞ
ð19Þ

�p i ¼
a1ðiÞb1ðiÞ
PðOjsiÞ

ð20Þ

In equations Eqs 19 and 20 the αi and βi represent the forward and backward variables [64].
P(O|Si) in Eq 20 determines the joint observation probability. In order to update the parame-
ters incrementally for new observed data, an incremental learning rule is applied as follows:

�aij ¼
�aij þ ðNp � 1Þaij

Np

ð21Þ

�p i ¼
�p i þ ðNp � 1Þpi

Np

ð22Þ

where Np is the number input patterns that has been observed until the current time.

Visuomotor Associative Memory
The co-occurrence relationship between motor commands and sensory feedback during body
babbling will develop the associations between these two occurrences. Based on this associative
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relationship, when actions of some other agent are perceived, might lead to an automatic and
spontaneous generation of the motor output. We have developed an associative memory, called
Topological Gaussian Adaptive Resonance Associative Memory (TGAR-AM), structure using
two-layered architecture, namely the memory layer and the association layer (Fig 6). The mem-
ory layer encode the received data in the form of a topological structure in an incremental
manner, and the association layer formulates the associative relationship between the input
patterns. The association between the memorized patterns is developed based on the labels
acquired through motion primitive segmentation. According to the labels of these input vec-
tors, the memory layer stores these input patterns as a sub-network. The labels of these sub-
networks in the memory layer are passed on to the association layer. Using TGARM, associa-
tion is developed between the vision (key-vector) and action vectors (response vector). This
association between the temporal sequences is represented through the edges between the
vision and the action nodes.

The structure of Topological Gaussian Adaptive Resonance Associative Memory (TGAR-
AM) is based on TGARM and performs incremental topology representation without calling
for a priori definition of the structure and size of the network. For each class of the input fea-
ture vectors, we utilized TGARM to represent the distribution of that labelled segment. Based
on this theory, the patterns are associated incrementally without defiling the stored knowledge.
The proposed associative memory system is able to memorize temporal sequence information
as patterns with a consecutive relation.

The main task of behavior generation phase is to find the most likely motion primitive
sequence to perform the observed behavioral action. For this purpose the desired behavioral
action is presented as an image sequence to the associative memory module. Next, the label of
the observed images is estimated using the auto-associative mode and the motion label associ-
ated with this observed image is selected. Later, observation sequence from the current obser-
vation to the goal observation is generated by most likely path sequence. The TGAR-HMM’s
observation-to-observation transition probabilities are used for this purpose to generate the
most likely motion primitive sequence.

Memory Layer. The memory layer learns input vectors as nodes incrementally, and mem-
orizes the labels of each input vector. When some feature vector is provided as input to the
memory layer, if at that point there is no sub-network representing the class label of that input
feature vector, then create a new sub-network with the input vector as the first node of the new
sub-network and mark this new sub-network with the label of the input feature vector. If there
is already a sub-network with the same class name as the input vector, then update the weight
vector of the node of the sub-network representing that particular class label. Similar to
TGARM, if there is no edge connecting the two nodes, then create and edge linking the two
winning nodes. If the label of the input vector does not belong to an existing class in the mem-
ory layer, a new network representing the new label is added to the layer. Otherwise, a node is
added to the corresponding sub-network. Both the vision vectors and the action vectors are
represented by separate sub-networks.

New classes are learned incrementally by adding new subnetworks; for example, learning
new patterns belonging to one class is done incrementally by integrating new nodes to an exis-
tent subnetwork. The amount of subnetworks is not fixed beforehand, rather determined incre-
mentally based on the number of classes of input patterns. When an input feature vector
representing a new class emerges, the memory layer processes the new class without defiling
previously learned classes.

Association Layer. The association layer builds an association between the vision vectors
and the action vectors using their class labels. Suppose we have vision vector ðV tÞ which we
label as visual feature class (νt) or the key class, similarly, we have motion vectors ðAtÞ labelled
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as action feature class (at) or the response class. Each node in the association layer represents
one class and all the nodes are connected through edges—the origin of the edge indicates the
visual feature class and the end of the edge points to the corresponding action feature class.
During the learning of the association layer, an association paired data consisting of the visual
feature and action vector, is utilized as input vectors. First, TGARM algorithm is employed to
memorize information of both the vision and the motion feature vectors. The class name of the
new class is sent to the association layer. Similar to the memory layer, if the class label of the
node in the memory layer does not exist in the association layer, a new node representing the
new class label is added to the association layer.

In the association layer, the weight vector of each node is picked out from the corresponding
subnetwork of the memory layer. If nodes that represent the vision class (key-class) and action
class (response-class) already exist, we link up their nodes with an arrow edge. The origin of

Fig 6. Associative Memory Architecture.

doi:10.1371/journal.pone.0152003.g006
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the edge indicates the key-class and the end of the edge points to the corresponding response-
class. This develops an associative relationship joining the key-class and the response-class.

Associative Recall and Behavior Generation. When a key-vector is presented as an input,
the associative memory is required to recall the corresponding response vector associated with
that particular key from the memory. The recall process employed both auto-associative and
hetero-associative mechanism. Behavior generation phase can be described as a two-step
problem:

• Category Estimation: Given the visual stimuli observation sequence represented by slow fea-
tures, the role of category estimation is to determine the label of the unlabelled input visual
features. This is accomplished through the auto-associative recall process.

• Motion Primitive Sequence Generation: Given the category of the observed visual stimuli
and HMM, the purpose of sequence generation step is to find the associated action category
label. This is determined using the hetero-associative mode. After finding the associated cate-
gory label, the corresponding most likely state sequence for motion generation is estimated.

Algorithm 2 Algorithm for Auto-associative Recall
1: Input the observation vector V t.
2: for all the nodes in the Memory Layer. do
3: Calculate the weight sum of input vector as:
4: WiðV tÞ ¼ NT

i V t � 1
2
k Ni k2 where N is the weight of the nodes in the memory layer.

5: end for
6: Find: WkðV tÞ ¼max8nodesWiðV tÞ
7: if k V tk2 � 2WkðV tÞ > y. then
8: OUTPUT: Failed to Recall the memorized pattern.
9: else
10: Find the node V t corresponding to the sub-network νt.
11: end if

In the first step the auto-associative mechanism is invoked which recognizes the key vector
class resembling the input patterns stored in the memory. The input pattern may be noise pol-
luted. We find the distance between the input vector ðV tÞ and the weight vector of the stored
patterns ðNi

TÞ. If the distance (ϑ) Eq (24) between the two vector lies within the Voronoi
region, i.e. the distance is larger than the threshold Eq (23), then the memorized pattern is
recalled. Otherwise, the system fails to recall. The threshold value is determined by the vigi-
lance parameter (ρ) used during TGARM learning.

k Vtk2 � 2WkðVtÞ > r ð23Þ

WiðVtÞ ¼ Ni
TVt �

1

2
k Ni k2 ð24Þ

Once the class of the key-vector νt is determined using Algorithm 2, the hetero-associative
mechanism is employed to recall the corresponding class label at. During this process the key-
vectors determined in the previous phase are presented to the system as sequence of cues, and
the system recalls the appropriate class labels associated with that key vector.

Experimental Setup
The assessment of the proposed algorithm was performed through simulation on open human-
oid platform DARwIn-OP. For simulation purposes we have used the Webots [65] simulator.
The validation of our mirror image based self-learning approach was performed on a test-bed
consisting of two DARwIn-OP robots (Fig 7). Just as humans perceive their reflection in the
mirror similar to themselves, similarly, in our simulation environment, one robot acts as a
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demonstrator while the other robot observes these actions as the mirror image reflection of the
demonstrator. The algorithm was tested on video sequences of different actions captured by
the robot’s camera. At the same time joint angle values of demonstrator are also recorded by
the observer which are used for learning the observed action.

Results
In this section we will discuss the experimental analysis of the proposed approach. During the
learning process, the robot performs random arm movements and analyse the image frames
grabbed from its head camera. In this case, the robot (self) and its own reflection (interpreted
as another robot in simulation environment) moves at the same time during the learning

Fig 7. Simulation environment for experimentation consisting of two robots.One acts as a demonstrator (right robot), while the second acts as an
observer (left robot).

doi:10.1371/journal.pone.0152003.g007
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phase. The robot babbled with its motor commands, gathered evidence of the motor com-
mands and corresponding observations, and then learn the relationship between this using
(TGAR-AM). During this process, the motor commands interpreted as motion elements (rep-
resented through joint angles in radians) are learned through TGAR-HMM.

First, the experiments with the self-observing perspective is performed and the association
is developed from that perspective symbolizing the PF pathway between STS and F5. The robot
associates its own movements with their visual appearance on the basis of TGAR-AM. Directly
after this, assuming that the motor patterns are still active, the robot comprehends the same
action from a different perspective. Later, the model is trained from different perspectives and
the robot performs association with the behavioural actions observed from other different per-
spectives. To generate visual representations for other perspectives (for e.g. 90°, 180° and 270°),
not directly available from simulator, we used self-observed trajectories (0°) and rotated
them correspondingly. Fig 8 shows the images of various view perspectives utilized during
experimentation.

The dataset consists of variety of different actions involving upper part of the body. Table 1
summarises the types of actions performed for testing. To assess the efficiency of the proposed
model, actions are performed with different repeating intervals, i.e., the sequence of these
actions are not fixed and are performed randomly. Some of these actions are performed with a
pause between them while others are executed fluidly. These action sequences are performed
with varying speeds. Fig 9 shows the visualization of actions performed by the robot. Each
image in the figure shows different frames extracted from the action sequences.

Fig 8. Example of different types of perspectives. (a) v1, (b) v2, (c) v3, (d) v4, (e) v5, (f) v6.

doi:10.1371/journal.pone.0152003.g008
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The raw image sequences acquired from robot camera are processed for motion primitive
segmentation. In order to maintain simplicity, we presume that only one motion primitive is
executed at a particular time. Initially, the demonstrator is standing still and no feature points
exhibit significant change. As soon as the robot starts moving the joints, change in feature val-
ues is recorded and the significant ratio is computed. Based on the significant ratio, the start
and end of an action are computed. Fig 10 shows the result of the Inc-KSFA from the self-per-
spective. We have also tested the segmentation algorithm from different perspectives and
summarized the results in Fig 11. These results show that the proposed Inc-KSFA algorithm
performs the motion primitive segmentation irrespective of the view or perspective from
which the action is observed. The threshold value is selected to be τ = 0.0125. Fig 10 shows the
change in significant ratio along with the number of frames to segment the observed motion
patterns into episodes of action. The segmentation algorithm commences with no a-priori
knowledge of the motion patterns and the observed data is being segmented on-line by analys-
ing the incoming data stream irrespective of the view perspective.

To compare the performance of the proposed algorithm, segmentation is performed based
on the change in recorded joint angle values. For joint angle based segmentation, the number
of frames are calculated for which there is a change in action. Fig 12 shows the accuracy of seg-
mentation output for different types of actions. The average segmentation ratio is computed
for each action performed multiple times and summarized in Table 1. As can be seen from

Table 1. Summary of Different Types of Actions Performed and their identification accuracy.

Motion Description Label Segmentation Accuracy [%]

Start of Action End of Action

Right Arm Raise 180deg RAR180 99.199 98.281

Raise Both Arm Front RBAF 99.814 99.829

Right Arm Lower 180deg RAL180 99.316 97.642

Lower Both Arms Front LBAF 99.791 99.363

Left Arm Raise 180deg LAR180 99.419 98.835

Raise Left Arm Front 90deg RLAF90 99.874 99.051

Left Arm Lower 180deg LAL180 89.611 97.721

Lower Left Arm Front 90deg LLAF90 89.909 99.263

Both Arms Raise 180deg BAR180 99.601 88.872

Raise Right Arm Front RRAF 99.883 99.524

Both Arms Lower 180deg BAL180 99.633 98.961

Lower Right Arm Front LRAF 99.832 99.437

Left Arm Raise 90deg LAR90 99.623 98.843

Raise Right Arm Front 90deg RRAF90 99.886 99.739

Left Arm Lower 90deg LAL90 99.376 99.125

Lower Right Arm Front 90deg LRAF90 99.891 89.444

Right Arm Raise 90deg RAR90 99.688 96.341

Raise Left Arm Front RLAF 99.892 99.841

Right Arm Lower 90deg RAL90 99.809 99.918

Lower Left Arm Front LLAF 99.924 99.479

Both Arms Raise 90deg BAR90 99.765 99.496

Raise Both Arms Front 90deg RBAF90 99.995 99.601

Both Arms Lower 90deg BAL90 99.791 99.576

Lower Both Arms Front 90deg LBAF90 99.995 99.476

doi:10.1371/journal.pone.0152003.t001
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Fig 9. Different samples of actions performed by the robot during experimentation.

doi:10.1371/journal.pone.0152003.g009
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these results, the segmentation of the actions performed produces less error even at the critical
points where the actions transit from one motion to other. Since the demonstration is a time-
varying (spatio-temporal) representation, the robotic experiments revealed that the recognition
or recall is based on retaining the entire sequence of representation units along the trajectory.

The continuous time series data composed of the upper part of the robot and joint angle val-
ues (motion elements) are used as input to the learning algorithm. Once the start of an action
is detected, TGAR-HMM starts adding the joint angle values as motion primitives in the form
of nodes linked with edges to provide temporal correlation. The learning of that particular
action is completed when the end of that action is detected. Since behaviour patterns are
ordered sequences composed of different atomic actions or motion primitives, each motion
element is encoded as a Gaussian. Therefore, we used left-to-right HMMmodel structure for
representing observed motion patterns to allow the data to flow in a sequential order in for-
ward direction of time. In left-to-right HMM the self-transition loop is also allowed. Initially,
the topological map is empty, as no motion elements are processed at initialization. Each time
a new motion element is observed by the learning algorithm, a corresponding node is added to
the topological map. Each node representing the motion element is labelled based on the labels
acquired during the motion primitive segmentation. This indicates that the particular segment
of motion has been learned as the motion primitive consistent with the added node.

The performance of TGARM greatly depends on the selection of values for the vigilance
parameter and initial covariance matrix. For vigilance parameter, the value is chosen to be
ρ = 0.85, for fast learning and utilizing all the labelled nodes. The reason for selecting a vlaue
for the vigilance parameter is to generate the motion pattern as close as possible to the original
pattern. This results in selection of optimal number of states or nodes during learning. Simi-
larly, the initial covariance matrix determines the isotropic spread in feature space of a new
node’s distribution. The initial covariance matrix is selected in an ad-hoc fashion by trial and
error choosing the optimal value for the parameter. The experiments were performed for dif-
ferent values of the covariance matrix and then selecting the value which efficiently generalizes

Fig 10. Output of the segmentation algorithm through Incremental Kernel Slow Feature Analysis.

doi:10.1371/journal.pone.0152003.g010
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the observed patterns. These values are selected randomly from 0 to 10.The structure of covari-
ance matrix is chosen such that diagonal elements are 0.3 while the remaining vales are zero.

CR ¼ No: of Samples
No: of Nodes

ð25Þ

Fig 13 shows the effect of selecting different values of vigilance parameter on the compres-
sion rate and generalization error. Compression ratio (CR) Eq (25) is determined by dividing
the number of data samples in an action pattern and the number of nodes generated by the
learning algorithm. As the value of vigilance parameter is increased, the mean square error
among the observed and generalized values decreases by adding more number of nodes to the
network. For higher values of vigilance parameter, the value of compression ratio is decreased
resulting in encoding motion patterns as close as possible to the observed motion.

We evaluated the performance of the system using error between the demonstrated and
generalized motion to determine the appropriate adapting learned motion. The mean error is
used as a metric to evaluate the sustainability of the generalized motion with respect to the

Fig 11. Segmentation through Inc-KSFA for different view perspectives, v1, v2, v3, v4, v5, v6, v7 represents different viewpoints while v0
represents the self-perspective.

doi:10.1371/journal.pone.0152003.g011
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Fig 12. Ratio of average accuracy of segmentation results calculated between joint based segmentation and Incremental Kernel SFA
segmentation.

doi:10.1371/journal.pone.0152003.g012

Fig 13. (a) Plot for compression ratio and average mean square error for different values of vigilance parameter. (b) Effect of different values of vigilance
parameter on the number of nodes.

doi:10.1371/journal.pone.0152003.g013
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demonstrated motion. The mean error is calculated by determining the mean distance of the
sample vectors to the nodes created by the learning algorithm. This error metric provides a
measure for the evaluation of generalization capability of proposed learning model. Fig 14
shows generalization results for the action of raising both arms (RBA) and lowering both arms
(LBA). Since, we are only focused on the upper part of the body for experimentation, therefore,
the Fig 14 shows the results for shoulder movements.

During the learning process, the robot babbled with its motor commands, gathered evidence
of the motor commands and corresponding observations, and then learn the relationship
between these using TGAR-AM. Noise tolerance is a significant function in associative memory.
We test the noise tolerance by adding the noises (salt and pepper) on input images sequences
randomly. TGAR-AM shows quite high recall rate even if input data contains high noise rate
(Fig 15).

During recall process, the robot performs the actions infornt of the partner robot. The
sequence of images observed by the robot and the feature values are calculated. Based on the
class labels of the acquired image features (category estimation phase), the robot recalls the
resulting set of joint-angles (motion primitive sequence generation phase) and the robot arm is
able to perform the demonstrated action. Some motion primitives seem to be overlapping in
their representation as they are often confused with each other. For example, at the beginning
of recognition the RRA is confused with RRAF since the initial position of the joints is almost
similar, however, they differ mostly at their final stages as the recognition progresses with
more images. Since the demonstration is a time-varying (spatio-temporal) representation, the
robotic experiments revealed that the recognition or recall is based on retaining the entire
sequence of representation units along the trajectory.

From these experiments we conclude that any visual representation of a specific movement
will trigger an appropriate motor command of that particular action, depicting the activity of
mirror neuron. The results of the recall rate of the associative memory are summarized in
Table 2. The activation of motor information utilizing different perspective visual input can be
used to alleviate the process of devising invariant representation of the actions in STSa.

Motion recognition is simply accomplished by recalling the body position from the devel-
oped visuomotor memory. The robot observes the demonstration and refers to the visuomotor
memory and finds the closest arm joint position on the current visual command. Then, the
robot recalls the motion primitive associated with the body position in the memory and moves
the arm toward this position. The visuomotor information was memorized when the robot the
self-observed demonstration. Note that this motor intention originated only from visuomotor
memory, which is the result of self-generated motor exploration. In both the simulation and on
the robot the observed interaction is successfully reproduced.

Discussion and Conclusion
In this paper we present a computational MNS validated on a humanoid platform which
revolves around three major concepts related to the origin or development of mirror neurons
and primitive imitative abilities. Firstly, we postulate (in agreement with Heyes [17]) that mir-
ror neurons are a by-product of associative learning forged through sensorimotor experience
and their actuality is not induced by any evolutionary mechanism [66]. Accordingly, we
assumed a link between STS neurons that respond to the vision and F5 neurons which encode
the action [67]. The experiments conducted by Nelissen et al. [13] showed that visual informa-
tion, encoded in the STS, is sent to ventral premotor cortex (F5) along two distinct pathways.
One path links the posterior end of the STS with area PFG. The other path associates the ante-
rior part of the STS with F5 via AIP. The first path underlines the action, whereas, the second
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Fig 14. Plot of original and generalized motion patterns for (a)–(b) Raising and Lowering Both Arms 180deg (RBA180–LBA180).

doi:10.1371/journal.pone.0152003.g014
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path accentuates the object/agent of the action. In this sense, the associative memory aids the
development of mirror neurons not by pre-wiring the F5-STS connections but by equipping
individuals with a propensity to observe an action and associating that specific action with the
appropriate self-generated motor commands. Based on this associative connectivity, when an
individual observed a similar action, the STS neurons responds to the vision of this particular

Fig 15. Effect of noise on the recall rate.

doi:10.1371/journal.pone.0152003.g015

Table 2. Result of Associative Recall.

Number of Experiments Recall Rate [%]

Self-Perspective 5 100

Perspective v1 5 100

Perspective v2 5 100

Perspective v3 5 99.8

Perspective v4 5 100

Perspective v5 5 100

Perspective v6 5 97

doi:10.1371/journal.pone.0152003.t002
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action by comparing the visual commands which were associated with individual’s past experi-
ence. This would triggers an activity in F5 neurons to perform similar action.

Secondly, there has been a great deal of discussion on the role of mirror neurons in imitation
learning, however, the discussion on development of primitive imitative abilities is often over-
looked, referring instead to the possibility of its innateness. Therefore, we assume that crude
sense of self is the prerequisite for social interaction. In order to imitate an observed behaviour,
the observer has to recognize the action, but in order to recognize the actions the observer
must be able to perform the action [68]. This task was achieved by viewing the development as
an incremental process: infants learn new ability on top of the abilities already present [69].
Prior to the emergence of imitation ability, the affordance relations need to be learned and
some perceptual-motor associations need to be formed [25]. Learning the affordance relations,
by self-directed experience entails the learning process to associate motor commands with cor-
responding sensory effects. This serves to close the perception-action loop so that the infants
can behave accordingly to produce the desired action effects. This is mainly provided through
a self-exploration strategy through which the infant explores its own motor capacities, bio-
mechanical constraints, and discovers the possible contingencies between its own body move-
ments and resultant sensory effects.

Thirdly, we presented a MNS based on the empirical discovery showing that in F5 as well as
in STS, majority of the neurons are view-dependent. View invariance egressed on the basis of
interaction serve for terminal categorical response of the complete system. The neurons in STS
are sensitive to viewpoint or visual perspective from which the object is perceived (viewer-cen-
tered), but also there are neurons that are invariant to it (view-invariant or object-centered)
[14, 70, 71]. This appropriates the invariant neurons to respond to the movement/object irre-
spective of the observers view-point and render a high-level categorical representation. How
these neurons acquire this property is not entirely clear [67], but in monkeys such viewpoint
invariance can emerge after experiencing different perspectives of the same three-dimensional
object [72].

We presented a developmental framework of computational mirror neuron system that is
able to learn by imitation through self-exploration. The purpose of self-exploration presented
in the experiments is to empower the robot’s knowledge and motor control ability to develop.
The proposed model is based on the assumption that humanoid robot does not have a priori
knowledge about itself. It must therefore build a model of the self. The robot first learns about
its own body gathering all information by self-exploration through body babbling. We looked
into the proposed system’s ability to imitate from a cognitive science point of view instead of
engineering perspective in order to acquire knowledge of the possibility for simple imitation
capabilities to be associated with self-experience.

We adopted a cognitive science perspective with the hypothesis that imitation of actions can
emerge from the intrinsic properties of a neural associative network fed by spontaneous actions
and visual feedback of these actions. Self-learning or self-imitation requires a mapping that
associates an observed self-motion with the corresponding motor command. Sensory-motor
learning through motor babbling has been demonstrated to be efficacious for autonomous
humanoid robots for developing an internal representation of the association amongst self and
the surrounding environment. We have implemented a simple method for self-recognition on
humanoid robot though the use of mirror image. During this stage, the robot generates random
movements of the body and associates the action produced by the self with its effects perceived
through vision. The visual space consists of its own body image seen in a mirror.

The objective of results reported here was to test whether the ability to imitate could emerge
from learning of sensori-motor associations through self-observation. The results obtained can
be considered as the developmental steps towards allowing robots to systematically learn how
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to integrate perception and action through self-experiences much like a human being does, so
as to generate adaptive behaviours efficiently and flexibly. The behavior patterns are considered
as a sequence of motion primitives [73], atomic parts of a behavioral sequence. For example, if
the demonstrator is performing a fighting action, then each motion sequence may correspond
to a simple move, such as kick or punch. Before learning, the motion primitives are segmented
autonomously by defining the start and end of particular actions. In the later phase, the seg-
mented motion primitives are learned using an approach for continuous learning. As each
motion primitive is learned, it is also organized in a topological map, which is incrementally
updated to learn the relationship and sequencing of the motion primitives. The algorithm is
capable of learning in real-time, during observation of the demonstrator’s motions. The devel-
opment of a topological structure of the learned motion primitives allows for easier retrieval,
and the automatic generation. A visuomotor association is developed between the self-observed
images and segmented motion primitives. The main result from the robotic implementation
is that this associative network trained by self-observation is capable of action contagion. It
exhibits one-shot imitation i.e., without training the motor code corresponding to a new pos-
ture presented can be inferred and hence executed.

A key piece of our learning system is the selection of vigilance parameter which effects the
performance of system. Although the selection of vigilance is done manually using trial and
error method, but the current experiments shows that once the suitable value of vigilance
parameter is selected for a articular dataset, it can be efficiently applied to different kinds of
motion sequences. However, an improved method for selection or adaptively modifying the
value of vigilance parameter will efficiently provide a better generalization performance.

A possible extension of the proposed model is generation of complex behaviours by the com-
bination of various motion primitives [74, 75]. A new behaviour could be created from a combi-
nation of two or more motion primitives learned during self-exploration. The observed complex
behaviors are decomposed into motion primitives corresponding to the already learned behav-
iors. The combination is done by recalling the similar actions from the associative memory. For
example, the complex action of clapping consists of recalling the motion primitive of raising the
arm followed by the motion primitive of lowering the arm in a sequentially continuous manner.
Behaviours are generated by forming an abstraction above the motion primitive level.

Future work will focus on implementing full body motion on the humanoid robot, as well as
motions involving interaction with the human environment. Currently, the system can only
perform the behavioural gestures, therefore, in future we are planning to focus on the issues of
view-invariant imitation for complex actions and tasks involving different types of objects.
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