
Immunological Reviews. 2018;285:97–112.� wileyonlinelibrary.com/journal/imr  |  97

1  | INTRODUC TION

Influenza viruses are important respiratory pathogens that infect 
15-65 million individuals each year in the United States with over 
200 000 of these infections resulting in hospitalizations.1,2 Despite 
available vaccines and antiviral therapies, influenza viruses remain a 
public health threat because they continue to evolve and novel strains 
emerge from zoonotic sources several times a century to cause pan-
demics. In addition, other viral or bacterial pathogens can invade and 
exacerbate influenza disease severity. Two or more pathogens can 

interact in ways that are not intuitive with numerous alterations oc-
curring on varying time scales. Furthermore, different viral and/or 
bacterial strains, initial doses, timings of the secondary insult, and 
host immune status can result in distinct infection kinetics and dis-
ease outcomes.3-11 Examining every scenario and detailing different 
regulatory mechanisms is challenging even with animal models that 
can recapitulate many aspects of clinical diseases. This has limited 
our global understanding of influenza-related diseases and empha-
sized a need for quantitative analyses that can detail the biology and 
evaluate different mechanisms simultaneously and rigorously.

During the past decade, mathematical models that describe 
host–pathogen and pathogen–pathogen interplay during influenza 
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Summary
Influenza virus infections are a leading cause of morbidity and mortality worldwide. 
This is due in part to the continual emergence of new viral variants and to synergistic 
interactions with other viruses and bacteria. There is a lack of understanding about 
how host responses work to control the infection and how other pathogens capital-
ize on the altered immune state. The complexity of multi-pathogen infections makes 
dissecting contributing mechanisms, which may be non-linear and occur on different 
time scales, challenging. Fortunately, mathematical models have been able to un-
cover infection control mechanisms, establish regulatory feedbacks, connect mecha-
nisms across time scales, and determine the processes that dictate different disease 
outcomes. These models have tested existing hypotheses and generated new hy-
potheses, some of which have been subsequently tested and validated in the labora-
tory. They have been particularly a key in studying influenza-bacteria coinfections 
and will be undoubtedly be useful in examining the interplay between influenza virus 
and other viruses. Here, I review recent advances in modeling influenza-related in-
fections, the novel biological insight that has been gained through modeling, the im-
portance of model-driven experimental design, and future directions of the field.
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have made it possible to dissect critical mechanisms that drive the 
infection. The models have successfully quantified and predicted 
the viral load kinetics from clinical and experimental infections,12-25 
the symptoms that arise during infection,12,13 the dynamics and ef-
ficiency of different host immune responses,14,17,18,25-34 the effect 
of different viral and host factors,15,16,20-22,35 the efficacy and de-
sign of vaccines and antiviral therapies,14,19-22,36-40 and the mecha-
nisms of coinfection between influenza viruses and other viruses or 
bacteria.41-45

Remarkably, influenza viral load dynamics can be described using 
as few as 3-4 equations for populations of uninfected cells, infected 
cells, and virus.14 The kinetics of host immune responses and/or coin-
fection with other pathogens can be accurately described by add-
ing only 1-2 more equations.41  Simple models like these are optimal 
because they readily allow for mathematical and statistical analyses 
that extract information about the underlying biology. Although 
models are typically first calibrated to data to ensure a robust re-
capitulation of the infection kinetics and to estimate the rates of 
growth and decay, this is not the only goal. The underlying model 
structure (eg, non-linear feedbacks between different cell popula-
tions), the behavior of the resulting parameter estimates (eg, when 
two parameters are correlated), and in silico experiments that predict 
the response under perturbation (eg, with antivirals) can all reveal 
hidden regulatory mechanisms that may not be readily apparent from 
the data itself and/or cannot be tested in the clinic or laboratory. A 
schematic of this model-experiment exchange is shown in Figure 1.

Improvements in the availability of quantitative data in recent 
years has led to more robust models being developed and to the pre-
dictions of some of these models being validated in the laboratory. 
One collection of studies, which are described here, illuminate the 
accuracy and predictive capability of mathematical models and the 
importance of designing confirmatory experiments to define new 
biology and improve the models. Here, I review current approaches 
in modeling influenza virus kinetics and host-pathogen interplay, 
recent advances in modeling viral–bacterial and viral–viral coin-
fections, the techniques used to identify controlling mechanisms, 
biological interpretations of the model results, and the benefits of 
model-driven experimental design.

2  | MODELING INFLUENZ A VIRUS 
INFEC TIONS: THE GOLD STANDARD

Influenza A viruses infect the upper and lower respiratory tracts 
to cause acute, self-limiting infections. The dynamics of the in-
fection are rapid with the virus establishing quickly and replicat-
ing exponentially to high titers within 1-2 days. In the majority of 
cases, the infection resolves within 7-10 days, but viral loads can 
remain elevated in children and immunocompromised individuals. 
The mechanisms that drive these kinetics and how they might be 
altered by therapy or other pathogens are not well understood even 
though many of the contributory cytokines, chemokines, and cells 
are known.

Mathematical models have accurately described viral load kinet-
ics without including equations for specific host responses.46-48 The 
models assume that susceptible epithelial cells (“target cells”) are lim-
ited and that virus declines once the majority of cells are infected.14 
Accurate predictions have been made under this assumption, which 
does not specify the mechanisms by which target cells are limited. 
Nevertheless, several studies have challenged whether the approxi-
mation is accurate and how it relates to different host responses, such 
as type I interferons (IFN-α and IFN-β)17,25 (A.M. Smith, unpublished 
data). Some studies have attempted to establish a comprehensive view 
of the host response15,35,49,50 while others have taken a more focused 
approach.14,17,26,28,34 One benefit of models with reduced complexity is 
the availability of analytical tools that can facilitate a robust interpreta-
tion of the dynamics.

Until recently, progress in the field was plagued by a lack of suf-
ficient data to parameterize/calibrate mathematical models, particu-
larly those that included arms of the immune response.46 While viral 
load data remains the most prevalent type of data available, various 
immune factors have been measured on frequent enough time scales 
to be utilized in modeling studies, 15,18,51,52(A.M. Smith, unpublished 
data). With these data, even the larger, more comprehensive mod-
els can be calibrated to data.15,35,49 In addition, efforts to improve 
parameter estimation algorithms and employ analytical techniques 
have significantly advanced our ability to generate robust predic-
tions about the underlying biology.16,24,49,53 Model results are now 
undergoing rigorous testing in the laboratory, which has confirmed 
their predictive capability and importance in identifying regulatory 
mechanisms driving influenza virus infections.

2.1 | Viral kinetic model

The majority of influenza virus infection models developed thus far 
have utilized a common model core, that is, the standard viral ki-
netic model14 (Figure 2). This model was first used to study influ-
enza A virus (IAV) dynamics in humans. The model tracks susceptible 
“target” cells, infected cells not yet producing virus (ie, cells in the 
eclipse phase), infected cells producing virus, and free virus. The 
model schematic, equations, description, and fit to murine viral load 
data are shown in Figure 2. No specific immune dynamics are in-
cluded in this model, but the rates of virus clearance and infected 
cell clearance (c and δ, respectively) encompass numerous virus- and 
immune-related processes, including loss of virus infectivity, phago-
cytosis of viruses or cells, apoptosis of cells, viral cytopathic effects, 
killing of infected cells by immune effectors, or loss of the infected 
state by non-cytolytic effects.

2.2 | Model interpretation and the accuracy of the 
target cell limited hypothesis

A central assumption of the viral kinetic model (Figure 2) is that the 
number of target cells is limited.14 This manifests in the model as 
virus growth slowing and peaking once the majority of the target 
cells are infected. The model does not define what limits the target 
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cells, which could be due to a variety of host immune responses. 
The assumption could be interpreted as (i) all cells within the res-
piratory tract become infected, which is possible but not generally 
observed17,25,54 (A.M. Smith, unpublished data), or (ii) there is a pre-
defined number of cells that will become infected (ie, where the 
initial number of target cells, T0, essentially defines the final number 
of infected cells). The lack of complete destruction of the respira-
tory tract, suggests that virus spread is regulated by host defense 
mechanisms. However, omitting specific immune control in the viral 
dynamics model does not invalidate the target cell limitation hypoth-
esis, but may lead to disparate parameter values. Regardless of the 
underlying mechanism, influenza models with or without target cell 
limitation match much of the available viral titer data.46-48 In addition, 
the predicted dynamics of the infected cells (I2) agree well with the 
spatial spread, as measured by histomorphometry, even when only 
~50%-60% of the lung becomes infected (A.M. Smith, unpublished 
data). However, another study utilized GFP-reporter virus data,55 
which can also be used to track infected cells, and demonstrated 

that the target cell limited model breaks down for low dose infec-
tions.25 Simply reducing the number of initial target cells (T0) was 
insufficient to replicate the dose-dependent dynamics.25 This may 
indicate a deficiency in the model or that some host responses are 
more functional with low dose infection, which has been proposed 
in other studies using low doses.41

2.3 | Quantifying the rates of infection and the 
response to perturbation

Understanding time-dependent mechanisms that control viral in-
fection dynamics requires that mathematical models be calibrated 
to experimental or clinical data and thoroughly analyzed. Fitting a 
model to data ensures that the equations accurately describe the 
infection dynamics and provides estimates of the rates of infection, 
production, and clearance. It also begins to reveal the relationship 
between these rates and the strength needed to induce a change 
in the dynamics (eg, with drug therapy or coinfection). Further 

F IGURE  1 Data-Driven Mathematical Modeling and Model-Driven Experimental Design. Data-driven mathematical modeling studies are 
iterative and entail developing a model to describe the underlying biology, calibrating the model to experimental or clinical data, analyzing 
the model with mathematical techniques, using the model to make predictions and design experiments, and validating the predictions in the 
laboratory or clinic
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investigating how changing the rates affects outcome, for example, 
through sensitivity analysis, has generated predictions about the 
response to therapy14,19-21,36,56 or coinfection with other patho-
gens.41-43,45 Collectively, these types of analyses reveal aspects of 
influenza biology that are not immediately available from the experi-
mental or clinical data alone.

With appropriate parameter estimation techniques, defining ac-
curate and meaningful parameter values is possible. During model 
fitting, the log10 infectious viral load, which is typically in units of 
50% tissue culture infectious dose (TCID50) or plaque forming units 
(PFU), is compared to the log10 output of the model. A variety of 
data fitting algorithms have been used, including adaptive simulated 
annealing (ASA),24 Monte Carlo Markov Chain (MCMC),13,15,22,35,49 
Gaussian processes (GP),53 and maximum likelihood estimation 
(MLE).16,26,41 Until recently, it was relatively well accepted that the 
choice of estimation scheme is not critical. However, contrasting pa-
rameter estimates may result and some evidence suggests that ASA 
or GP methods can outperform MCMC and MLE methods in terms 
of accuracy, convergence, and run time.24,53 Further investigation is 
needed to ensure robust results, particularly because MCMC meth-
ods are popular.

Uniquely identifying each parameter in a model has been chal-
lenging57,58 but has not limited the predictive capability.41,44 The 
standard viral kinetic model has seven unknown parameters (β, p, 
k, c, δ, V0, and T0 (see Figure 2)). In most studies, the values of the 
eclipse phase parameter (k) and initial target cells (T0) are fixed be-
cause their values can be calculated.14 However, these can be left 
free24,53 without compromising the predictive capability. One prob-
lematic parameter has been the virus clearance rate (c), which often 
estimates to large values that may not be biologically relevant.16,24 
This is because the model attempts to capture the rapid decrease in 
free virus shortly after the infection is initiated as virus infects cells 
(~0-4 hours). However, this challenge can be overcome by setting 
the initial free virus (V0) to zero (ie, V0 = 0) and assuming that the 
initial number of infected cells is positive (ie, I1 > 0).24 Using this as-
sumption recovers virus clearance rates (c) that are more reliable.24

Ensuring robust predictions requires more than estimation of the 
model parameters. A thorough investigation into the uncertainty of 
the estimates and the corresponding model solution is also required. 
This has been particularly true when attempting to determine signifi-
cant differences in parameter estimates generated by fitting a model 
to data obtained under varied experimental conditions, such as during 

F IGURE  2 Viral Kinetic Model and Dynamics. A schematic of the standard viral kinetic model,14 associated equations, fit to data from 
mice infected with influenza A/Puerto Rico/34/8 (PR8),24 and timeline of major host responses are shown. The model tracks susceptible 
“target” cells (T), two classes of infected cells (I1 and I2), and virus (V). Target cells are infected by virus at rate βV. Once infected, the cells 
undergo an eclipse phase, which accounts for the time between infection and virus production. To account for these dynamics, infected cells 
are split into two classes, where k is the transition rate from unproductive to productive. Infected cells are lost at rate δ

(

I2
)

 per day. Virus 
is produced at rate p per infected cell and is cleared at rate c per day. The resulting model dynamics are shown for a saturating infected cell 
death rate, that is, �

(

I2

)

=δd∕
(

Kδ + I2

)

, where δd∕Kδ is the maximum rate of clearance and Kδ is the half-saturation constant. Viral kinetics 
generally split into ~5 phases: initial infection of cells, exponential growth, peak, a slow decay, and a fast decay/clearance. Major host 
responses influencing these phases include, type I interferons (IFN), natural killer (NK) cells, T cells, and antibody (Ab)
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infection with different virus strains,16,41 with different doses,15,59 in 
different host genetic backgrounds,60 or in different aged individu-
als.59,61 For this, ensemble-style methods have been particularly useful. 
Plotting the resulting parameters within a 95% confidence interval (CI) 
as histograms and as two-dimensional (2D) or 3D projections of the pa-
rameter space is critical to effective interpretation of the model results. 
Unsurprisingly, parameters are often correlated (eg, virus infection and 
production,17 virus production and clearance,24 or virus clearance and 
infected cell clearance 16), which suggests that the data is insufficient 
to distinguish between these processes. For example, similar viral load 
dynamics may be possible with slow virus growth and clearance and 
with fast virus production and clearance. If the goal was to distin-
guish between these possibilities, additional data would be necessary. 
Utilizing multi-variable data, such as infectious virus and viral RNA cop-
ies, can reduce uncertainty,62 but this comes at the expense of increas-
ing the number of parameters and equations. Importantly, correlated 
parameters do not inhibit the accuracy of the parameter estimates or 
the insight gained from the model.41,44 Knowledge about correlated 
parameters should not encourage fixing parameters or fitting combi-
nations of parameters because this may inadvertently skew the results 
and lead to important information being lost.

Following model calibration (ie, fit to data), in silico experiments 
are used to predict how the dynamics shift in response to differ-
ent stimuli (eg, antiviral therapy or infection with another virus or 
bacteria). The effects that different parameters have on the model 
dynamics can be observed by simulating the model equations and in-
creasing or decreasing the parameter values of interest. This is known 
as a sensitivity analysis. Perturbing more sensitive processes results 
in larger downstream effects compared to changes in less sensitive 
processes. Comparing the results of this analysis to data where ex-
perimental conditions are altered, such as data from knockout ani-
mals, can be challenging. The inability of some models to predict the 
response in perturbed conditions63 may be due to the simplicity of 
the model or a misinterpretation of the data. For dose-dependent ki-
netics, including features of the host response can improve accuracy 
and predictive power.26,64. However, data from knockout animals, 
for example, may not reflect a change in a single variable and other 
immune factors may be affected and contribute to the dynamical dif-
ferences observed in the infection data. Simultaneous measurement 
of other variables (ie, immune cells and cytokines) is likely required 
to evaluate whether other populations are skewed. Further under-
standing of the model limitations should then naturally arise.

2.4 | Insight from analytical solutions: time-
dependent mechanisms

The predictive capability of influenza models goes beyond data fit-
ting, parameter estimation, and sensitivity analysis. The simplicity of 
the model is beneficial because additional mathematical analyses are 
feasible.65 It can be easily observed that viral load dynamics split into 
two log-linear (ie, exponential) phases: growth and decay. During the 
initial growth period, few target cells are infected and their popula-
tion remains relatively constant (A.M. Smith, unpublished data). This 

information was used to obtain an equation that describes exponen-
tial virus growth65: V1(t)=�1e

�t, where �≈
(

�pkT0
)1∕3

−(k+c+�) ∕3) 
is the slope of the viral growth and α1 is a constant.23,65 All of the 
model parameters describing the processes of infection and clear-
ance (ie, virus infection (β), production (p), and clearance (c), eclipse 
phase (k), and infected cell clearance (δ)) have a role in determining 
the speed of virus expansion. This solution matches the viral load ki-
netics during the first ~2 days of the infection.16,65 The point where 
virus growth slows (ie, where V1 (t) deviates from the numerical solu-
tion of the model occurs at ~2 days post-infection (pi). This signifies 
the end of the exponential growth phase and the point where antivi-
rals that target the viral life-cycle (eg, neuraminidase (NA) inhibitors 
(NAIs) or matrix-2 inhibitors (M2Is)) begin losing efficacy (discussed 
further below). The prediction agrees with clinical and laboratory ob-
servations that antivirals are not effective when given after 48 hours 
of symptom onset66 and provides an explanation for the differential 
efficacy of antivirals against influenza viruses.

Prior to virus decay, there is a short, non-linear period (~12 hours) 
between virus growth and decay where the growth slows prior to 
the peak.65 During the resolution period, most available cells have 
become infected and there are few target cells remaining (T ≈ 0). This 
information was used to obtain an equation that describes expo-
nential virus decay65: V2(t)=�2e

−�t+�3e
−ct+�4e

−kt, where the αis are 
constants. This solution is less complex than V1 (t) and defines the 
peak and infection resolution. Here, the peak shape is dictated by 
the rates of eclipse transition (k), virus clearance (c), and infected cell 
clearance (δ). After the peak, the infected cell death rate (δ) controls 
the rate of decay (ie, V2(t)≈Vpe

−�t, where Vp is the peak viral load). 
Having solutions like these that detail the time-dependent contribu-
tion of each infection process to the viral dynamics has been bene-
ficial in establishing robust interpretations of the data and models.

3  | DETAILING IMMUNE CONTROL 
DURING INFLUENZ A VIRUS INFEC TION

Throughout influenza virus infection, various immune responses are 
employed to limit virus spread and maintain integrity of the epithe-
lium (Figure 2).67 Interferons, including IFN-β (type I), IFN-λ (type III), 
and to a lesser extent IFN-α (type I), are produced early in the infec-
tion. These are most prevalent in the lung from ~2 to 5 days pi and 
coincide with increases in neutrophils, natural killer (NK) cells, and 
pro-inflammatory cytokines. Subsequently, T cells and B cells become 
activated and infiltrate the infected area. Although the standard viral 
dynamics model can replicate viral load data from a variety of sys-
tems and generate accurate predictions without including these dy-
namics, recent studies have noted some insufficiencies.17,24,25,34,36 
Some viral load data do not follow the classical log-linear viral dynam-
ics behavior and exhibit either a two-phased decay and/or a second, 
smaller peak (eg, as in 14,24,52,68,69 and references therein). Although 
complex immunological models have been used to explain these fea-
tures,15,17,18,26-28,34,35,49 data on specific immune components is often 
lacking. Fortunately, adding only one parameter to the standard viral 
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kinetic model to induce a non-linearity (ie, saturation) in the rate of 
infected cell clearance is sufficient to switch the dynamics from a 
monophasic decay to a biphasic decay (Figure 2).24,70,71 That is, the 
rate of infected cell clearance decreases as the number of these 
cells increases. A saturating infected cell clearance rate may reflect a 
switch from innate to adaptive control, a “handling time” (eg, the time 
taken for a T cell to remove an infected cell), and/or cell activation (eg, 
macrophage (MΦ), T cell, or B cell). How and why the rate changes 
remain open questions, but it is likely connected to the processes 
driving the rate of T-cell expansion (A.M. Smith, unpublished data). A 
plateau of viral loads can be reproduced in other ways, for example, 
by including equations for specific immune components.14,34

Mechanistic host response models have been built to examine 
the activation and production of cells or cytokines and the effi-
cacy of different factors (ie, cells or antibodies) in removing virus 
or infected cells.15,18,27-35,49,50,72 The models range in complexity 
with some attempting to incorporate several pro-inflammatory cy-
tokines, anti-inflammatory cytokines, and cell populations.15,35,49,50 
The most common responses modeled are type I IFNs, CD8+ T cells, 
and antibodies because of their profound influence during influenza 
virus infection. Some studies have used generalized equations to 
reflect the functions of other cytokines or cell types, which is par-
ticularly beneficial when the dynamics of specific responses are 

unknown.28,31,32 Immune control is typically incorporated through 
use of different functional forms for the virus clearance (c) and the 
infected cell clearance (δ), for example, dI∕dt=kI1−�1

(

X
)

I2−�2

(

Y
)

I2 
and dV∕dt=pI2−c

(

Z
)

V. Here, infected cell clearance is a function 
of innate mechanisms (�1(X)), where X could denote MΦs, neutro-
phils, and/or NK cells, and adaptive mechanisms (�2(Y)), where Y de-
notes CD8+ T cells. Similarly, virus clearance is a function of different 
mechanisms (c(Z)), where Z could denote antibodies (Ab) and/or MΦ. 
In addition to these functions, other rates may be affected (eg, virus 
production via IFN) and equations for the immune component of in-
terest are included. The discussion here focuses on the two most 
modeled immune factors: type I IFNs and CD8+ T cells.

3.1 | The antiviral type I interferon response

The type I IFN response has potent antiviral activity and is important for 
control of influenza virus infections.67 Type I IFN gene transcripts are 
upregulated within 24 hours after infection,51 which leads to the pro-
duction of IFN-α and IFN-β. IFN-α and IFN-β are first observed 48 hours 
pi with continued production until ~5 days pi for IFN-β and until after 
10 days pi for IFN-α52 (A.M. Smith, unpublished data). They work to re-
duce the rate of virus production and spread of the infection.67,73,74 In ad-
dition, these type I IFNs promote the local inflammatory response 75–79 

F IGURE  3 Viral–Viral Coinfection Model. Model schematic, equations, and dynamics for a viral–viral coinfection where two viruses (virus-a 
and virus-b) compete for target cells.42 In this model, target cells can be infected by virus-a (orange) with rate �a and by virus-b (magenta) 
with rate �b. The model structure from the standard viral kinetic model is retained, but different rates of the eclipse phase (ka,b), infected cell 
clearance (�a,b), virus production (pa,b), and virus clearance (ca,b) are allowed. This interaction results in significantly reduced viral loads for the 
slower growing virus (magenta) and negligible declines in viral loads for the faster growing virus (orange). See Ref. 42 for fits to viral load data
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and IFN-α has anti-inflammatory properties.80,81 However, influenza 
viruses can antagonize the IFN response within infected epithelial cells, 
which is primarily mediated by its non-structural protein, NS1.82,83

The majority of models developed thus far have focused on 
the effect of IFN (F) in limiting virus production from infected cells: 
dV∕dt=

(

p∕1+�FF
)

I2−cV, where �F is the efficiency of IFN in reducing 
virus production.14 Time delays have been included in some models to 
account for the delayed detection of type I IFNs.14 It is unclear if this is 
a delay in production, a lack of assay sensitivity, or to other dynamics 
(eg, uptake of IFN into cells). Including IFN within the model either by 
reducing the rate of virus production (�F) or reducing the number of 
target cells (ie, cell refraction; dT∕dt=−�TV−�FT, where �F is the rate 
of targets cells entering a refractory state) limits virus growth. Some 
studies also include reversion of cells from the refractory state.27,34,72 
However, in vitro studies suggest that IFN-induced cell refraction is 
long-lived, so inclusion of this term may not be supported biologically.84

IFN-α and IFN-β are most abundant during mid-infection 
(~2-5 days pi) when viral loads are relatively constant. In addition, 
the first detectable IFN is after the time when virus has peaked. 
Thus, directly connecting IFN related effects to virus suppression 
is difficult using only viral load measurements. This could mean that 
other host response mechanisms are more potent in slowing virus 
growth. Emerging techniques that track the infected cell dynam-
ics may help reconcile these difficulties55(A.M. Smith, unpublished 
data). These data indicate that there are relatively few infected cells 
early in the infection, which is when virus is most rapidly increasing, 
and that the number of new infections increases most profoundly 
during mid-infection when viral loads are constant and type I IFNs 
are most abundant (A.M. Smith, unpublished data). While it remains 
difficult to directly connect these dynamics, the data are provoca-
tive. New models investigating IFN heterogeneity and viral antago-
nism may help interpret the data.85 However, we must reconcile data 
from some IFN perturbation experiments that suggest viral loads are 
altered only in the later stages of infection when IFN is absent.63 
These data may indicate that IFN has more potent effects (eg, on 
inflammation) other than limiting virus infection of target cells.

Type I IFNs do aid in the recruitment of inflammatory cells and 
improve efficacy of the adaptive immune response (eg, T cells).75-79 
Understanding the dynamics of IFN-producing cells and their relative 
contribution to the total amount of IFN may be required. However, 
modeling specific cell populations, even with experimental data, may 
inadvertently bias model parameter estimates and/or model predic-
tions because these cells change on varying time scales and have 
inherently heterogeneous cytokine production. The idea that IFNs 
influence the recruitment and efficacy of the cellular immune re-
sponse has been modeled with the equation dI2∕dt=kI1−�I2−�FI2,  
where �F is the rate of IFN-induced infected cell clearance.34 This 
was assumed to reflect infected cell removal by NK cells, which 
enter earlier than CD8 T cells, and still required use of a piecewise 
exponential function for the adaptive response.34 Thus, it was not 
sufficiently mechanistic to assess the impact of IFNs on CD8+ T-cell 
efficiency. No study has assessed the anti-inflammatory effects of 
IFN-α. More work is clearly needed to tease apart the effects of IFN 

during IAV infection. In addition, because type I IFNs are important 
mediators of viral–bacterial coinfection severity86-90 and likely have 
a role in viral–viral coinfection dynamics, building new IFN models 
that are calibrated to data are pivotal.

3.2 | CD8+ T cell-mediated virus control and 
waning immunity

CD8+ T cells are responsible for clearing virus infected cells and re-
solving the infection.51,91,92 The infiltration of these cells into the 
respiratory tract is concurrent with rapid virus decay and the con-
clusion of the infection. The most abundant gene transcripts dur-
ing the later stages of viral clearance are ones involved in T-cell 
activation and induction of apoptosis.51 Models describing the CD8+  
T-cell response have investigated their differentiation, proliferation, 
specificity, efficacy in killing infected cells, and how they can be ma-
nipulated to provide long-lived protection from natural infection or by 
vaccination.18,26-28,32,72 Although the published models have differ-
ent formulations, the resulting dynamics from each can successfully 
fit pulmonary CD8+ T cell counts from both humans and mice. In ad-
dition, the models robustly predict that resolution accelerates as the 
number of CD8+ T cells increases, that viral clearance is sensitive to 
the rate of T-cell expansion, and that T-cell efficiency increases with 
density (A.M. Smith, unpublished data). Interestingly, the latter finding 
reflects dynamics similar to the viral kinetic model with biphasic decay 
(Figure 2), which excludes T cell-mediated clearance.24 Assessing how 
the non-linearity in the rate of infected cell clearance relates to gran-
zyme B production and other host responses like type I IFNs has yet 
to be modeled but may provide further insight into the T-cell response.

Dynamical models for CD8+ T-cell control of influenza virus in-
fection have also yielded important information about long-term 
protective immunity.27,28,72 One study predicted that repeated expo-
sure to influenza viruses promotes the plateauing of memory CD8+ T 
cells and that immediate protection from subsequent insults may be 
lost because memory cells residing in the lung decay after each in-
fection.28 This may help explain why individuals experience multiple 
infections in their lifetime. Moreover, infections with different patho-
gens species can affect the number of T cells and may lead to re-
peated influenza virus infections. For example, CD4+ and CD8+ T cells 
decrease significantly during influenza coinfection with bacteria.93 
How this impacts viral clearances and shapes later responses is un-
known. These interactions have important implications for infections 
in the elderly, who are more prone to developing pneumonia. More 
data on the longevity of resident T cells and how infection history 
influences their dynamics is necessary to address these questions.

4  | VIR AL–VIR AL COINFEC TION KINETIC S

Respiratory viruses like influenza virus, respiratory syncytial virus 
(RSV), parainfluenza virus (PIV), and rhinovirus (RV) are easily trans-
mitted and have overlapping seasons. Thus, it is not surprising that 
multiple viruses can be detected within infected individuals.94-101 



104  |     SMITH

The specific outcomes that result from multi-virus infections and 
the underlying mechanisms that drive their interactions are not 
well understood. There is evidence that virus interactions can be 
either synergistic or inhibitory because they often infect the same 
cell types and initiate similar inflammatory pathways.11 Some re-
sponses (eg, IFN) may have dynamics that are virus-specific,102 and 
the resulting interactions depend on the pathogen strain, dose, and 
order. For example, PIVs can increase the rate of IAV growth by 
fusing cells together and facilitating cell-to-cell spread.103 This oc-
curs without any noticeable effect on PIV replication. In a similar 
interaction, IAV infection attenuates RSV by inhibiting protein syn-
thesis and does so with little impact on IAV titers.104 In contrast, 
pre-infection with RSV or RV does not impact influenza virus rep-
lication but can reduce disease severity.105,106 For RV, this is due to 
enhanced clearance of influenza virions.105 Unlike IAV-RSV coinfec-
tion, superinfection with RV enhances influenza disease severity.105

Only recently was a mathematical model developed to begin ex-
amining respiratory virus coinfections.42 The model assessed how 
resource competition between two viruses could alter viral load dy-
namics of each virus (Figure 3). In this model, target cells could be in-
fected by either virus, which have different infection rates (ie, �a and 
�b) (see Figure 3). The remaining populations retained the structure of 
the standard viral kinetic model and allowed for different rates of the 
eclipse phase (ka,b), infected cell clearance (�a,b), virus production (pa,b
), and virus clearance (ca,b). Coinfection of single cells was excluded. 
The model replicated in vitro data from coinfection with IAV and 
RSV, where IAV inhibits RSV growth,104 and with IAV and PIV, where 
PIV enhances IAV growth.103 A key result was that varied infection 
kinetics and outcomes could manifest from changing the virus dose 
or the intrinsic virus growth rate. Although RSV dose may not affect 
the interaction during IAV-RSV coinfection,106 the finding is relevant 
for RV-IAV coinfection.105 However, interference in the infection of 
epithelial cells is not the proposed mechanism for these viruses.105 
The model prediction could be interpreted in another way. That is, 
when the interaction between viruses is competitive, target cells be-
come limited because the first or fastest virus infects the majority of 
these cells and, thus, limits the second virus. The reduction in target 
cells could reflect other mechanisms, such as changes in type I IFNs 
or macrophages. Although few studies have modeled viral–viral coin-
fection, new information about the underlying biology should arise 
as more experimental data emerges and new models are developed.

5  | INFLUENZ A-BAC TERIA COINFEC TION 
KINETIC S

Complications arising from bacterial superinfections have accounted 
for a significant percentage of influenza-related morbidity and mor-
tality during pandemic influenza (40%-95%) 107-110 and during sea-
sonal influenza (2%-35%).111 Common pathogens responsible for this 
enhanced disease include the gram-positive bacteria Streptococcus 
pneumoniae (pneumococcus) and Staphylococcus aureus.107 Similar 
to some virus–virus pairings, pre-infection with bacteria can limit 

influenza virus infection.112 Antecedent bacterial infections prior to 
influenza have not been well studied. However, a wealth of knowl-
edge exists about the viral, bacterial, and host responses that affect 
bacterial invasion and the development of pneumonia in influenza-
infected hosts.3-10 Multiple studies indicate immune exacerbation as 
a key driver of coinfection severity. A plethora of immune responses, 
including MΦs, neutrophils, NK cells, T cells, B cells, and various cy-
tokines and chemokines, are altered during influenza virus infection 
and/or during bacterial coinfection.3-10 The varying time scales and 
interconnectedness of host responses has made establishing the 
contribution and regulation of each factor complicated. In recent 
years, a series of iterative mathematical and experimental studies 
unraveled some of the complex host-pathogen interactions and iden-
tified important mechanisms that drive bacterial establishment dur-
ing influenza virus infection (discussed below).41,44,113 Examining the 
host-pathogen feedbacks during influenza-bacterial coinfection first 
required a quantitative description of a pneumococcal infection.64

5.1 | Host control of pneumococcal pneumonia

Pneumococci readily colonize the nasopharynx of healthy adults 
and children114-116 and occasionally migrate to other tissues to cause 
severe disease, such as otitis media, pneumonia, meningitis, and 
septicemia.117 When pneumococci invade the lung, host responses 
are relatively efficient in clearing the bacteria. If pathogen removal 
mechanisms like the ciliated epithelium or MΦs become compro-
mised, such as from comorbidities like an underlying respiratory 
disease or virus infection, bacteria can permeate the lower airways. 
Infection with more virulent pneumococcal strains and/or a high 
dose can also result in pneumonia.118

For most bacterial infections, a simple model like the ones used 
for viruses cannot be used. This is because pneumococci are extracel-
lular pathogens and their growth and clearance dynamics are highly 
dependent on interactions with host immune responses.60,64 Indeed, 
modeling pneumococcal dynamics required equations for several 
arms of the immune response to accurately capture bacterial kinet-
ics from infections with varied initial doses.64 Fortunately, many of 
the important players, including alveolar macrophages (aMΦs), neu-
trophils, inflammatory MΦ (iMΦ), and pro-inflammatory cytokines, 
were known. However, the regulatory feedbacks between these 
populations had not been established. This presents one of the main 
challenges but also a major benefit to modeling infection kinetics. 
The model I developed with coinvestigators described the interplay 
between pneumococci, aMΦs, neutrophils,  iMΦs, cytokine signaling 
between these populations, and the resulting inflammation/damage 
caused by bacterial-mediated injury of healthy epithelial cells and by 
neutrophil infiltration and cytotoxicity.64

This model mimics infection data from a variety of conditions, 
including changes in bacterial dose, bacterial strain, murine strain, 
and under antibacterial therapy.60,64,119 The model accurately pre-
dicts that the ratio of aMΦs to bacteria regulates bacterial growth 
in the early stages of infection and that there is a critical threshold 
for which a clearance phenotype can be attained.64 Indeed, this has 
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been observed in several data sets 44,120-122 and recently shown 
for varying combinations of aMΦs and bacteria.44 The subsequent 
neutrophil response further dictates bacterial growth kinetics and 
outcome.60,64,119 Sensitivity of the system revealed that neutrophil-
mediated damage of the epithelium is an important predictor of 
outcome.64 Understanding the role of tissue damage during infec-
tions is important and often more closely related to the probability 
of survival than to pathogen levels. Modeling immune-mediated 
lung damage has not been attempted for influenza but will undoubt-
edly prove useful, particularly because tissue damage and defects in 
tissue repair affect influenza-bacteria related mortality.123

5.2 | Host-pathogen regulation during influenza-
pneumococcal coinfection

Throughout influenza virus infection, epithelial cells are infected 
and die, and inflammation accumulates as host immune responses 

work to halt virus spread. As lung tissue becomes injured and the 
host immune response weakens, bacterial pathogens readily invade 
and cause pneumonia.3,4,6-10,124 Heightened lethality occurs when 
bacteria invade during the virus resolution phase with the maximum 
synergistic effect at 7 days post-influenza.112

Following bacterial infection, viral loads rebound and bacte-
rial titers increase to high levels within ~24 hours (Figure 4).41 In 
addition, many host responses are elevated (eg, type I IFNs) while 
others are dampened (eg, T cells). To investigate the mechanisms 
that govern these dynamics and begin disentangling the host im-
mune response, the standard viral kinetic model was paired with the 
aMΦ subset of the pneumococcal model (Figure 4).41 The remaining 
populations (ie, neutrophils, inflammatory macrophages, cytokines, 
and damage) in the pneumococcal model were not used because 
corresponding models that describe the dynamics of these popula-
tions during IAV infection are not available. The coinfection model 
altered different terms in the model to examine both pre-defined 

F IGURE  4 Viral–Bacterial Coinfection Model. Model schematic, equations, and dynamics for a viral–bacterial coinfection model where 
influenza virus depletes aMΦ (MA) or renders them dysfunctional according to 𝜙̂(V), which reduces bacterial clearance.41 In addition, bacteria 
(P) enhances virus production according to the function â(P). Bacteria replicate logistically (r(1−P∕KP)) and are cleared at rate �Mf

(

P,MA

)

MA. 
The remaining equations are given by the standard viral kinetic model. These interactions result in a rebound of virus and rapid bacterial 
growth (cyan). The bacterial growth trajectory is defined by a threshold (green),44 such that bacterial titers will decline when bacteria-aMΦ 
pairs are below the threshold (black), remain constant when bacteria-aMΦ pairs are at the threshold (green), and increase when bacteria-
aMΦ pairs are above the threshold (cyan). Because aMΦs decline throughout an influenza virus infection, the dose required to initiate an 
infection also declines. See Ref. 41 for fits to viral and bacterial load data, Refs. 113,125,126 for validation of the model predictions, and Ref. 
44 for validation of the threshold
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hypotheses and novel hypotheses. The dynamics generated by the 
model are in good agreement with experimental data and showed 
that only two alterations were needed to explain the dynamics 
(Figure 4).41 In the model, bacteria increase the rate of virus pro-
duction from infected epithelial cells (pI2) according to the saturat-
ing function â(P)=aPz (Figure 4). This term drives the viral rebound. 
There was no pre-defined hypothesis or evidence for this increase, 
but its inclusion in the model was critical. This novel hypothesis sub-
sequently guided several in vitro experimental studies,125-127 where 
at least two potential underlying mechanisms were discovered. 
First, S. aureus, another common coinfecting bacteria, was shown to 
inhibit IFN signaling in influenza-infected cells, which resulted in in-
creased virus production.125 Although it is unknown if pneumococci 
have this same ability and to what extent this occurs in vivo, partic-
ularly considering the enhanced IFN levels during coinfection,86-88 
it is an intriguing finding and validates the model-generated hypoth-
esis. Second, pneumococcal neuraminidases, NanA and NanB, have 
been shown to promote virus replication 126,128 presumably through 
cleavage of viral NA. Unsurprisingly, increased viral loads were not 
observed when the two pathogens were simultaneously adminis-
tered to cell cultures.127 This reduced synergism is consistent with in 
vivo results indicating that the order and timing between pathogens 
is important.112

The model also predicted that virus infection decreases the rate 
of bacterial clearance by aMΦs according to the saturating func-
tion 𝜙̂(V)=𝜙V∕(KPV+V) , where KPV is the half-saturation constant 
(Figure 4). This term drives bacterial invasion and was initially in-
cluded to assess previous reports that aMΦs became dysfunctional 
during influenza.120 Although the model could not distinguish 
whether these cells were functionally impaired or were lost during 
infection, the changes to the aMΦ population were sufficient to 
drive the bacterial load dynamics.41 In addition, the resulting pa-
rameter estimate indicated that the strength of this reduction was 
significant (ie, �(V)=85−90%). A follow-up experimental study that 
tracked the aMΦ population with a labeling dye and employed a 
novel and robust flow cytometry gating strategy better defined the 
aMΦ dynamics during IAV infection.113 This study showed a pro-
found depletion of aMΦs over the course of influenza,113 which 
may be specific to BALB/cJ mice.129 In C57BL/6 mice, aMΦs may be 
functionally inhibited.129 Fortunately, the model remains accurate 
because the underlying mechanism is not defined by the model. 
Remarkably, the experimental data showed that aMΦs were re-
duced at 7 days post-influenza by the exact value that the model 
predicted, that is, 85%-90%.113 This study effectively validated the 
model and the estimate of 𝜙̂(V). In addition, the data and model to-
gether helped identify why bacterial invasion 7 days after influenza 
results in maximal lethality.112 How aMΦs become depleted and 
how their loss alters other host responses and lung function 76,130-

132 remain open questions.
Parameter estimation played a key role in identifying these 

mechanisms and in determining that they are independent.41 The 
lack of correlation between the parameters involved in the two func-
tions, â(V) and 𝜙̂(V), suggested that they described distinct processes. 

Unsurprisingly, there were correlations within each function (ie, a 
is correlated to z, and � is correlated to KPV).41 Notably, these cor-
relations did not inhibit accurate parameter values from being ob-
tained.41,113 These studies illuminate the critical nature of validating 
a model’s predictions to expand its capabilities through correct-
ing any inaccuracies (eg, altering functional forms or adding new 
equations) and completing new analyses (eg, as in 36,44). It remains 
unclear if the function describing the increase in virus production 
(â(P)=aPz) is accurate. However, the new aMΦ data suggested that 
the effect on these cells does not saturate (ie, 𝜙̂(V)≠𝜙V∕(KPV+V)). 
A more mechanistic model for aMΦ interactions with influenza virus 
is likely required. Nevertheless, approximating aMΦ depletion 𝜙̂(V) 
through produced robust predictions.41,44

5.3 | The non-linear threshold regulating 
phenotype and heterogeneity

The new knowledge about aMΦ dynamics and the connection 
of these data to 𝜙̂(V) allowed for another iteration of the model-
experiment exchange.44 By simulating the model with values for 
𝜙̂(V) between 0 (0% depletion) and 1 (100% depletion), it was 
observed that this parameter is a bifurcation parameter that 
regulates bacterial growth trajectories.44 Mathematical analy-
ses were used to derive the non-linear threshold that defines 
the dynamical switch between growth and clearance pheno-
types (Figure 4). That is, bacteria-aMΦ pairs that fall below the 
threshold will result in bacterial clearance while pairings above 
the threshold will lead to bacterial growth. The threshold can 
be used to identify the dose needed for successful bacterial in-
vasion during influenza. It also suggests that there is a critical 
point where any dose will initiate the secondary infection (dot 
on threshold curve in Figure 4). This is defined by a relation be-
tween the rates of bacterial growth (r) and clearance (�MMA), 
that is, 𝜙̂crit=1− r∕(𝛾MMA). This information was used to design 
confirmatory experiments, which examined bacterial kinetics 
for over 20 different combinations of bacteria and aMΦs.44 The 
data showed that the threshold was accurate, the rate of bacte-
rial growth/clearance increases with distance above/below the 
threshold, the phenotype switches if complete clearance is not 
attained within ~4 hours, and pairings below the threshold re-
sult in heterogeneous bacterial titers.44 This information suggests 
that the behavior can be predicted for any bacteria-aMΦ pair-
ing, which is ideal. It also aids in the interpretation of bacterial 
load data and allows for exploration of therapies that manipulate 
bacterial loads (eg, antibiotics) and aMΦs (eg, immunotherapy or 
antivirals).36

5.4 | Defining the contribution of other mechanisms

In addition to identifying the mechanisms described above, the model 
also defined the time scales on which they act. For high-dose infec-
tion, the slope in the bacterial dynamics changes at ~10 hours post-
bacterial infection.41 This indicates that the contribution of aMΦs 
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to clearance is short lived, which has been observed experimen-
tally.44,120-122 However, bacteria grow exponentially after this time, 
which suggests that neutrophils have little contribution to controlling 
bacterial kinetics when the dose is sufficiently high.41 This is consist-
ent with experimental evidence that these cells become dysfunc-
tional throughout influenza.133-137 The contribution from neutrophils 
may be higher during low-dose infection,41 but this has not been 
explored in detail. A better understanding of how other cell types 
and cytokines regulate pathogen kinetics and outcomes of influenza-
bacterial coinfection should manifest as new models for influenza are 
developed.

5.5 | Connecting mathematically derived 
mechanisms to omics data

The focus of many infectious disease studies has recently switched 
from collecting qualitative data to collecting large, quantitative 
‘omics’ data sets that simultaneously measures multiple variables 
(eg, proteins, metabolic factors, and viral and host transcripts). 
Omics studies require computational approaches that assess cor-
relations between different measurements. The computational 
methods for this type of data are frequently network-based and 
take into account known interactions (eg, protein–protein) or pre-
dicted interactions (ie, correlations) between biological variables. 
However, one limitation of this analysis is that it cannot readily 
assess the dynamic feedback of variables (eg, non-linearities like 
saturating effects), which often occur on distinct time scales. In 
contrast, mathematical descriptions of infection processes quanti-
tate the intricate host-pathogen feedbacks and link causation and 
correlation. Kinetic models determine the time scales of various 
mechanisms, the rate, magnitude, and effectiveness of immune 
responses, and whether bifurcating behavior is possible. As more 
omics data become available, it will be valuable to relate this infor-
mation to the network analyses because each approach may have 
related and distinct conclusions. For instance, an omics study that 
profiled gene expression patterns during influenza-pneumococcal 
coinfection found that lethality is correlated with an early increase 
in bacterial replication.123 Interestingly, the kinetic studies de-
scribed above made the same conclusion but also identified the 
regulatory mechanism that governs this behavior.41,44 Likewise, 
the omics study identified a defect in lung repair mechanisms,123 
which the model did not address. Making these types of connec-
tions could be significant, particularly because tissue level changes 
are correlated with disease outcome.

6  | MODELING THE POTENTIAL FOR 
UNIVERSAL VACCINES

Preventing influenza virus infections through vaccination is ideal. 
However, vaccines often lack efficacy because the virus mutates 
rapidly and novel viruses emerge through recombination. In addi-
tion, initiating a robust and long-lasting response to the vaccine is 

challenging. Even when immunity is generated by a natural infection, 
long-term protection may not be guaranteed.138 Furthermore, some 
evidence from mathematical and experimental studies suggests that 
viral epitopes may be masked from recognition by B cells,29,30 which 
inhibits the generation of new antibodies during subsequent vaccina-
tions or infections. The model and data were in agreement that the 
fold increase in antibody titer from baseline declines with repeated 
vaccination. This was due to an antigen dose threshold that depends 
on the level of pre-existing antibodies and dictates the level of anti-
body boosting that can be attained. Sufficiently high antigen doses 
may be able to reduce the masking of antibodies.30 However, this 
could be difficult and may complicate protection by a universal vac-
cine, which aims to broadly protect against infection with any influ-
enza virus subtype.

7  | ANTIVIR AL THER APY: THE C A SE FOR 
IMMUNOMODUL ATORY DRUGS

Without effective vaccines, antivirals remain the primary measure 
for combatting influenza virus infections. The two major antivirals 
used to treat influenza are M2 inhibitors (M2Is) and NA inhibitors 
(NAIs).66 While M2Is disrupt ion-channel activity of the M2 protein 
to limit virion uncoating inside the cell,139,140 NAIs limit virus spread 
within the lung by preventing virions from being cleaved from in-
fected cells and infecting new host cells.139 This reduces symptoms 
and slows disease progression, but does not significantly reduce the 
viral burden.140 Antiviral efficacy is greatest when the drug is ad-
ministered prophylactically or within the first 24-48 hours of symp-
tom onset.141 Prophylaxis with NAIs has the most profound effect 
with a 2.5-3.0 log10 reduction in viral loads.66,139,142 As discussed 
above, model analysis of viral kinetic models revealed that this is 
because the processes that the drugs target (ie, the viral life cycle) 
dominate only in the early stages of infection.65 Reduced efficacy 
and less than 1 log10 lower viral load are achieved if the drug is given 
in latter stages of infection (>3 days pi)143 when viral load kinet-
ics are influenced predominantly by clearance mechanisms (eg, in-
fected cell clearance (δ) and, to a lesser extent, virus clearance (c)).65

Estimates of antiviral efficacy can be obtained from simulating 
the model and altering the rate of virus production, p(1−�V), where 
�V is the efficacy of the antiviral.14 Drug effectiveness is equal to 1 
when the drug is 100% effective and 0 when the drug is inactive 
or absent. Model simulations suggest that targeting virus infection 
(β) would yield similar results as targeting virus production and that 
increased efficacy would be needed for an antiviral that improves 
clearance of free virus (c).36 Unsurprisingly, a therapy designed to 
improve the timing and/or rate of infected cell clearance (δ) could 
result in faster resolution.36

7.1 | Detecting off target immune effects

A secondary effect of NAI therapy was detected in one study that 
assessed viral load kinetics when therapy was initiated either early 
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or late in the infection.36 An extra term (−�TT) in the target cell equa-
tion together with the reduction in the rate of virus production 
(p(1−�v)) was needed in the model to simultaneously capture the 
data36: dT∕dt=−�TV−�TT, where �T is the efficacy of the antiviral in 
reducing the number of cells susceptible to infection. The require-
ment of the −�TT term in the model suggests that the antiviral limits 
the number of cells that can be infected. Indeed, this was indepen-
dently observed in an experiment that assessed the area of the lung 
infected during therapy.54 Neither the model nor the viral load data 
identify the underlying mechanism. Interestingly, the predicted ef-
ficiency of this off-target effect was significantly greater than the 
predicted efficacy of the antiviral inhibiting virus production (70% vs 
10%).36 The lack of reduced viral loads even when fewer cells are in-
fected 36 may suggest that infected cells are relatively long lived and 
that treatment does not shorten the time required to activate viral 
clearance mechanisms. The host variables that contribute to the re-
duced number of infected cells under NAI therapy remain unknown. 
Nevertheless, the reduced lung involvement would undoubtedly 
reduce symptoms, improve wound healing capabilities, and reduce 
subsequent comorbidities (eg, bacteria superinfection (discussed 
further below)).

7.2 | Potential adverse consequences of 
antiviral therapy during virus coinfection

Although antivirals exist for treatment of influenza virus infec-
tion, antivirals targeting other coinfecting viruses (eg, RV, RSV, 
and PIV) have not been approved for use or are currently in de-
velopment.144 Given that different virus pairings result in differ-
ent outcomes (ie, infection enhancement or reduction), use of 
anti-influenza therapy could result in beneficial or adverse con-
sequences.42 In the case of IAV-RSV coinfection, where influenza 
viruses reduce RSV growth,104,106 antiviral therapy that limits IAV 
infection could inadvertently result in a resurgence of RSV repli-
cation. It’s unclear if the off-target effects of NAIs would be suf-
ficient to facilitate or limit spread of the second virus. Conversely, 
in coinfections where disease is enhanced (eg, IAV-RV coinfec-
tion105), anti-influenza therapy could restrict the second virus 
from invading or significantly reduce coinfection-related patho-
genesis. This situation may have similarities to influenza-bacterial 
coinfection, where antiviral therapy can lessen the synergism 
(discussed further below).143 Predicting outcomes from each of 
these scenarios are needed and ideal for investigation with math-
ematical models.

7.3 | A role for antivirals and combination therapy in 
limiting bacterial coinfection

Because antivirals restrict viral growth and influenza disease severity, 
morbidity and mortality from invading bacterial pathogens can also 
be reduced.143 However, the time-dependent efficacies observed 
during IAV infection are also reflected during bacterial coinfection, 
where NAI prophylaxis is more potent in reducing coinfection-related 

mortality143 (A.M. Smith, unpublished data). The mechanisms un-
derlying the improved outcome are currently unknown and may be 
a consequence of reduced pathogen burden and/or reduced inflam-
mation. Antivirals can limit bacterial-induced increases in virus pro-
duction126 (A.M. Smith, unpublished data) and, thus, eliminate the 
post-bacterial viral rebound (A.M. Smith, unpublished data). In ad-
dition, it is possible that NAI-induced alterations to host responses 
have downstream consequences on the functionality of macrophages 
and neutrophils, which are critical for bacterial clearance. A dimin-
ished viral burden also minimizes the detrimental effect on aMΦs, 
which somewhat slows bacterial growth (A.M. Smith, unpublished 
data). Therapeutic manipulation of the aMΦ population has been ex-
amined experimentally 113 and mathematically (ie, 𝜙̂(V)(1−𝜀a), where 
�a is the efficacy of the therapy).36 As expected, bacterial burden and 
pneumonia were reduced.113 Although antibiotics have diminished 
efficacy during coinfection,145 analytical results suggest that combi-
nation therapy could increase the chances of successful immunother-
apy or antiviral treatment by over 200%.36 This is because changes 
in the bacterial growth rate (r) also facilitates different outcomes of 
influenza-bacterial coinfection.36 Similar to the degree of aMΦ deple-
tion (𝜙̂(V)), the bacterial growth rate (r) is a bifurcation parameter and, 
thus, a drug target (eg, with protein synthesis inhibitors).36 However, 
the efficacy needed to sufficiently reduce bacteria through this class 
of drugs may be higher than immunomodulatory drugs.36

8  | CONCLUDING REMARKS AND 
PERSPEC TIVES

Influenza viruses continue to infect millions each year. Increased se-
verity and case fatality rates due to secondary bacterial pneumonia 
have been emphasized by studies of the 1918, 1957, 1968, and 2009 
influenza pandemics.107,109,110,146 Influenza viruses that cause severe 
disease support higher incidence of bacterial coinfection, yet only 
a proportion of infections result in a coinfection.94-96 Furthermore, 
other respiratory viruses may also coinfect and enhance influenza-
related disease.103,105,106 Factors that impact influenza severity and, 
thus, coinfection risk are not well understood. Given that numer-
ous viruses and bacteria can enhance influenza virulence and that 
two or more pathogens are often detected in individuals with pneu-
monia, understanding how different pathogens synergize is critical. 
Potentially even more important is discovering how antecedent viral 
or bacterial infections decrease influenza spread because the under-
lying mechanism(s) could be leveraged as drug therapy. However, 
knowledge about host immune control during influenza remains 
limited.

Mathematical models have been a key to evaluate host immune 
responses during influenza, disentangle factors that contribute to 
resolution and coinfection risk, and identify regulatory mecha-
nisms ripe for drug targeting. In recent years, influenza models and 
techniques have improved together with better availability of data 
sets that measure numerous variables simultaneous and are sam-
pled on frequent time scales. New imaging techniques have also 
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facilitated a deeper understanding of the infection at the tissue 
level. This has allowed for robust development and parameteriza-
tion of models, and verification of their accuracy in the laboratory. 
However, challenges still remain. The lack of non-linear dynam-
ics in some data (eg, constant viral loads during mid-infection 
(Figure 2)) makes it challenging to assess specific host immune 
responses with a single data set. Incorporation of data from infec-
tions with modified experimental conditions (eg, low dose, aged 
hosts, coinfection, and/or antimicrobial therapy) should improve 
accuracy and reveal important dynamics that are not otherwise 
observable.

A substantial step in improving the quality of mathematical models 
lies with experimentally validating the models and their predictions, 
although few studies have taken this approach. Theoretical models 
yield a significant amount of insight some of which cannot be tested 
(eg, the rate of virus infection). This emphasizes the value of employing 
these methods in studying influenza virus infections and coinfections. 
However, designing experiments that test model-derived hypoth-
eses has proven critical to identifying host-pathogen mechanisms 
and model accuracy. More studies of this nature should help refine 
the model formulations, allow for more in-depth investigation of host 
responses, and limit misinterpretation of theoretical results. As tech-
nological advances continue to improve data quality and quantity and 
more data on viral–bacterial and viral–viral coinfections materializes, 
mathematical analyses like those described here will be critical.
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