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Background-—Heart tube looping to form a 4-chambered heart is a critical stage of embryonic heart development, but the gene
drivers and their regulatory targets have not been extensively characterized at the cell-type level.

Methods and Results-—To study the interaction of signaling pathways, transcription factors (TFs), and genetic networks in the
process, we constructed gene co-expression networks and identified gene modules highly activated in individual cardiomyocytes at
multiple anatomical regions and developmental stages using previously published single-cell RNA-seq data. Function analyses of
the modules uncovered major pathways important for spatiotemporal cardiomyocyte differentiation. Interestingly, about half of the
pathways were highly active in cardiomyocytes at the outflow tract (OFT) and atrioventricular canal, including well-known pathways
for cardiac development and many newly identified ones. We predicted that these OFT-atrioventricular canal pathways were
regulated by a large number of TFs actively expressed at the OFT–atrioventricular canal cardiomyocytes, with the prediction
supported by motif enrichment analysis, including 10 TFs that have not been previously associated with cardiac development (eg,
Etv5, Rbpms, and Baz2b). Furthermore, we found that TF targets in the OFT–atrioventricular canal modules were most significantly
enriched with genes associated with mouse heart developmental abnormalities and human congenital heart defects, in comparison
with TF targets in other modules, consistent with the critical developmental roles of OFT.

Conclusions-—By analyzing gene co-expression at single cardiomyocytes, our systematic study has uncovered many known and
additional new important TFs and their regulated molecular signaling pathways that are spatiotemporally active during heart
looping. ( J Am Heart Assoc. 2019;8:e012941. DOI: 10.1161/JAHA.119.012941.)
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P renatal heart development is controlled by evolutionarily
conserved genetic networks1,2 consisting ofwell-recognized

transcription factors (TFs) (eg, Gata4, Nkx2-5, and Tbx5),3–5

signaling pathways (eg,WNTandBMP),6,7 and dynamic epigenetic
networks that are modulated by histone modifications or DNA
methylation.8–10 These networks ensure the precise establish-
ment of gene expression pattern and concurrent differentiation of
cardiovascular cell types in an orderly spatial and temporal
manner. However, transcriptional regulatory networks involved in

cardiac looping have not been fully deciphered, partially because
of the lack of appropriate experimental technology for resolving
cellular and developmental heterogeneity.

The introduction of single-cell RNA-seq technology has
started to overcome this limitation. It revolutionizes the
studies of gene regulation in embryonic developments by
providing a systematic and high-throughput way to profile the
expression of hundreds to thousands of cells simultaneously,
resulting in the discovery of new cell types, cell state
transitions and functions, as well as gene markers that are
associated with unique cells populations and functions.11–18

The single-cell RNA-seq (scRNA-seq) data, however, have
generally not been fully exploited for addressing the dynamic
expression of transcription factors and their cooperative or
competitive interactions, even though it is well appreciated
that the expression and targets of TFs are fundamental for
deciphering the cardiac genetic programs.

In this study, we took a systematic approach to analyze
scRNA-seq data to characterize gene co-expression in differ-
entiating cardiomyocytes at multiple anatomical locations of
early cardiac developmental stages, and to investigate their
regulation and maintenance by TFs. Our results indicate that
the genetic programs for cardiac cell differentiation at the
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outflow tract–atrioventricular canal (OFT-AVC) are extremely
complex, involving many critical pathways that are regulated
by a significantly large number of TFs. This finding suggests
that mutations in the genes regulating OFT-AVC development
likely confer a high risk for congenital heart defects (CHD).

Methods
The authors declare that all supporting data are available
within the article and its online supplemental files. The scRNA-
seq data sets were obtained from previous publications12,14;
data set 1 is accessible from the Gene Expression Omnibus
(GEO; GSE76118), and data set 2 can be obtained from the
GNomEx database (https://b2b.hci.utah.edu/gnomex/), with
accession numbers 272R, 274R, 275R, 276R, 277R1, 279R1,
280R, 281R, and 439R.

Single Cell RNA-Seq Data
The first single-cell transcriptional data set of murine embry-
onic cardiac cells (data set 1) was obtained from GSE76118.
The cells were captured from different anatomical locations at
different time points and contained a total number of 2233
cells: cardiomyocytes (1252), epicardial cells (EPs) (40),
endothelial cell (ECs) (191), mesenchymal cells (MCs) (281),
and the cells with 2 or more cell-type characters (360).14 The
second data set (data set 2)12 was downloaded from the
GNomEx database, with accession numbers 272R, 274R, 275R,
276R,277R1,279R1,280R,281R,and439R.The869cellswere

mainly isolated from atrium or ventricle of murine heart cells
from embryonic to postnatal days, with 484 cardiomyocytes,
146 ECs, 104 fibroblast-enriched cells, and 135 other cells.

Data Processing and Quality Control
Raw counts of gene expression data in data set 1 were directly
obtained from the GEO, with read aligned by STAR (2.4) and
expression qualified by HTSeq (0.6.1), according to the original
authors.14 For data set 2, only fastq files were available in the
GNomEx database. Thus, we used the HISAT219 to align reads to
the mouse genome (GRCm38.79) with its default “soft-clip
adapters,” followed by SAMtool 1.420 to generate alignment files
and HTSeq (0.6.1)21 to compute read counts. To remove outlier
cells (eg, doublets or abnormal cells), we qualified each cell by its
total UMI and the number of expressed genes, and discarded
cells not within standard normal distribution. After these quality
controls, in data set 1, read counts of cells ranged from 0.55 to
3.3 million, and the numbers of expressed genes per cell were
>4000. Similarly, cells in data set 2 were retained with counts
from 0.3 to 2.1 million and >2500 expressed genes. Further-
more, geneswith reads in<50% of cells were discarded, resulting
in 12 792 genes for further analysis, including 1275 TF genes,
9694 protein-coding genes, and 1823 noncoding genes.

Cell Clustering, Dimension Reduction, and
Trajectory Construction
The raw gene count data were processed using packages tidyr
(v0.8.0),22 dplyr (v0.7.4),23 and scater (v1.6.1) packages24 in R.
Clustering cells was carried out mainly with principal compo-
nent analysis, t-distributed stochastic neighbor embedding by
the package Rtsne (0.13),25 and k-means clustering by the
package SC3 (1.6)26 in R. Ordering cells in a trajectory
corresponding to a biological process was also performed by
the packagemonocle (v2.6.1).27We carried out this analysis for
atrial cardiomyocytes, using data from left atrium, right atrium,
and AVC of E9.5 and 10.5, ventricular cardiomyocytes, using
data from left ventricular septum, right ventricular septum, left
ventricle, and right ventricle of E9.5 and 10.5, and OFT
cardiomyocytes, using data from OFT, proximal outflow tract,
and distal outflow tract. In each case, the top 1000 most
dispersed genes were used in an unsupervised manner.
Furthermore, plots in this study were generated by ggplot2
(v2.2.1)28 while heat-mapwas built by pheatmap (v1.0.8)29 in R.

WGCNA Co-Expression Network
Signed weighted gene co-expression network was built from
the expressed genes in data set 1, using the package
weighted gene co-expression network analysis (WGCNA)
(v1.61)30 in R, with the scale-free topology fit index over 0.8.

Clinical Perspective

What Is New?

• This study identifies gene modules that show distinct and
enriched spatiotemporal expression in murine embryonic
cardiomyocytes at the single-cell level, and characterizes
their relevance to functional pathway and congenital heart
defects.

• Using new bioinformatics approaches, this study investi-
gates the transcription factor regulatory networks regulating
these modules systematically.

What Are the Clinical Implications?

• This work can help in better understanding the regulatory
targets and functional roles of many well-known cardiac
transcription factors, but also predicts additional transcrip-
tion factors likely playing similar roles in embryonic
cardiomyocyte development.

• Further studies are needed to confirm the molecular
functions of the cardiac transcription factors newly impli-
cated in embryonic heart developments and heart diseases.
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More specifically, we estimated soft thresholding power and
chose 10 to construct gene network using data set 1. In
WGCNA, the adjacencies are used to represent gene connec-
tion strengths of gene network. In signed weighted network,

Adjacency score ¼ ð0:5� ð1þ CorÞÞ̂ power

where Cor is correlation coefficient, and power is soft-
thresholding power.

From the intramodular connectivity analysis, we defined
hub genes as the top connected genes (eigengene-based
connectivity, or called signed connectivity, between the gene
and module eigengene [kME] ≥0.25).

Consensus Module Analysis
The preservation of the gene modules from data set 1 was
supported by consensus module analysis using the package
WGCNA.31 The analysis built consensus modules by combining
data set 1 and data set 2 and then tested whether the modules
generated with data set 1 alone were preserved in the
consensus modules (ie, if the genes of a given module in data
set 1 were significantly enriched in any consensus module from
both data sets, with P<0.05). The Cytoscape32 and Gephi
tools33 were used to visualize gene co-expression networks of
the modules; the node size represented connections and the
length of an edge indicated the strength of the connection.

Differential Expression Analyses
The differentially expressed (DE) genes of different single-cell
clusters or subgroups were identified by the package edgeR
(v3.20.1),34 with adjusted P<0.05 as significant. Batch effects
were removed when detecting differentially expressed genes,
including spatial factor, temporal factor, and the condition
variable.

Microarray Data and Differentially Expressed
Analysis
The microarray of cardiomyopathy patients was obtained from
the GEO (GSE57338),35 and the data for Bmp2/4, Hey2,
Nr2f2, Tbx3, and Tbx5 were also downloaded from the GEO,
with accession numbers GSE34502, GSE6526, GSE63759,
GSE73862, and GSE77576, respectively.36–40 All the microar-
ray data were processed using the package oligo (v1.42.0)41

in R, and the DE genes were detected using the package
limma (v3.34.5),42 with adjusted P<0.05.

Gene Sets, Phenotype, and Disease-Associated
Enrichment Analyses
Pathway (GO, KEGG and Reactome)43–45 and gene set
enrichment analyses were performed using the ToppGene

suite46 and gene set enrichment analysis (v3.0),47 respec-
tively, with FDR <0.05 as a cutoff in David and FDR <0.1 in
gene set enrichment analysis. Phenotype and disease-
associated enrichment analyses were also carried out using
the ToppGene suite, with false discovery rate (FDR) <0.05.
The enriched phenotype and disease terms (IDs) from the
ToppGene were cross-compared with the disease category
information in the MGI (Mouse Genome Informatics),48 IMPC
(International Mouse Phenotyping Consortium),49 and Dis-
GeNET50 databases to retrieve terms related to cardiovascular
systems, heart phenotypes, and cardiac diseases, resulting in
395 gene sets associated with abnormal heart phenotypes
and 99 gene sets linked to cardiac diseases.

The MGI: http://www.mousemine.org/mousemine/begin.
do
The IMPC: https://www.mousephenotype.org/data/search?
type=phenotype
The DisGeNET: http://www.disgenet.org/web/DisGeNET/
menu/browser?1.

Cardiac, Literature-Based, and Noncardiac TFs
To uncover potentially novel TFs involved in regulating cardiac
development, we used heart phenotype- or disease-asso-
ciated gene sets from the MGI, IMPC, and DisGeNET
databases, and literature search to separate TFs into 3
groups. “Cardiac TFs” were the TFs that have been associated
(ie, annotated) within any of the heart-phenotype gene sets
from the 3 databases. The rest were then classified either as
“literature-based cardiac TFs,” if there was a literature support
for a function in heart development, or otherwise as
“noncardiac TFs,” to indicate their unknown roles in cardiac
development or function.

TF-Target Analysis
One hundred twenty-three TFs considered as key drivers were
selected by these criteria: (1) a member of the 5 selected
modules (4, 5, 6, 7, 8), (2) high expression (average cpm >1 in
the given module), and (3) a hub gene in the module. To
predict the TF-target relationship, we used the adjacency
scores computed by WGCNA. Considering all the genes
(n=12 792) in the signed weighted gene co-expression
network of data set 1, the top 20% adjacency values were
≥0.0017. Thus, for a TF, any gene with an adjacency ≥0.0017
was considered to be a candidate target of this TF. In TF-
target preservation analysis, this cutoff (adjacency ≥0.0017)
was also applied to define TF-targets in consensus gene co-
expression networks from both data sets 1 and 2. Because
TF-target analysis was based on the top adjacency, a TF and
some of its targets might be in different modules, and our TF-
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target consensus analysis included all the targets. On the
other hand, to investigate the regulatory roles of TFs in the
spatiotemporal modules, our enrichment analysis of a TF’s
targets discarded the targets that were in different module
from the TF.

TF-Driver Score
To investigate and predict the effects of a TF on a given
pathway, GO term, or heart phenotype gene set, we imported
an approach, termed “key driver analysis,”30,51–54 which
estimates the functions of a key driver by enrichment analysis
of the driver’s targets. The targets of 123 TFs were qualified
by this approach, and we scored the results by the following
formula,

Score ¼ Ts=Ttotal
MEs=MEtotal

where Ts: TF targets in the pathway; Ttotal: total TF’s targets;
MEs: the over-representing module genes in the pathway;
MEtotal: total module genes

For each TF, we first investigated its module and the
pathways, Gene Ontology (GO) terms and gene sets enriched
in this module, then performed the enrichment analysis of this
TF’s targets, and finally selected the overlap between the 2
enrichment results. After determining the pathways, GO
terms, and gene sets, we detected TF-driver scores of
individual TFs to explore their potential functions.

DNA Motif Enrichment Analysis
To obtain regulatory regions of mouse genes, we downloaded
the murine heart E10.5 H3K27ac ChIP-seq data from the
ENCODE project55 (ENCSR582SPN). The peaks, correspond-
ing to either promoters or enhances, from �50 kb to +50 kb
of the transcription start site of a gene were used for motif
analysis. The enrichment of TF binding motifs was performed
using the AME (v4.12.0)56 of the MEME suite (FDR <0.05).
Motif visualization and similarity analysis were carried out
using package motifStack (v1.22.0)57 and MotIV (v1.34.0)58

in R.

Animals
Wild-type CD1 mice were obtained from Charles River
Laboratories. All mouse experiments were performed
according to the guideline of the National Institute of Health
and the protocol approved by the Institutional Animal Care
and Use Committee of Albert Einstein College of Medicine.
Noontime on the day of detecting vaginal plugs was
designated as E0.5.

RNA Extraction and Quantitative Polymerase
Chain Reaction
The hearts were isolated from E9.5 and E10.5 embryos and
separated into 3 parts: AVC, OFT, and ventricle. Tissues from
4 hearts were pooled as 1 sample and subjected to total RNAs
extraction using Trizol (Life Technology) according to the
manufacturer’s manual. First-strand cDNA was synthesized
using the Superscript IV Reverse Transcriptase Kit (Life
Technology). Quantitative polymerase chain reaction was
performed using the Power SYBR Green PCR Master Mix (Life
Technology). Gene-specific primers were used (Table S1). The
relative expression level of genes was normalized to the
expression level of Gapdh and calculated using the 2-DDCT
method. Biological repeats were performed using 4 different
samples. Student t test was used for comparison between
groups and the P value <0.05 was considered significant.

Results

Extraction of CM scRNA-seq Data
The general approaches of our study are composed of
construction of gene coexpression networks from scRNA-seq
data, functional enrichment analysis, and prediction of genes
and pathways regulated by transcription factors (Figure 1).
Our study started from the scRNA-seq data that were
previously obtained from mouse embryonic hearts at embry-
onic day (E) 8.5 to postnatal day (P) 21.12,14 In these 2
studies, �3000 single cells in total were captured for RNA-
seq from multiple dissected heart zones (eg, outflow tract and
left atrium) at different developmental stages (Figure 2). To
date, these scRNA-seq data remain highly unique for their
high gene coverage and anatomical spatial information, when
compared with many subsequent scRNA-seq data obtained by
droplet-based platforms,59,60 and thus are especially suitable
for our study. The data sets were composed of multiple
cardiac cell types, including endothelial cells (EC), MC, and
fibroblast-enriched cells, and cardiomyocytes. To identify
cardiomyocytes from these data, we used unsupervised
clustering methods, similarly to the original reports. Principal
component analysis showed that cells from each of the 2
studies (“data set 1” and “data set 2”) could be segregated
into 2 parts, confirmed by k-means clustering and t-
Distributed Stochastic Neighbor Embedding analysis (Fig-
ure S1A and S1D). Based on the expression of known cardiac
markers, we were able to identify the cardiomyocytes
(expressing Tnnc1 and Tnni3), EC (expressing Cdh5 and
Tek), and MC (expressing Col1a1 and Ptn) clusters (Fig-
ure S1E). Although we were unable to directly compare our
cell clustering result to the original reports because cell type
information was not provided in the publicly released
data,12,14 the proportion of cells in these clusters and the
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expression profiles of known markers demonstrated that we
had reproduced the original clustering sufficiently and sepa-
rated cardiomyocytes from other cardiac cells successfully
(Figure S1E).

Spatiotemporal-Specific Transcriptional
Heterogeneity of Cardiomyocytes
As cardiomyocytes were captured at different developmental
stages and anatomical locations, we first studied the contri-
butions of these 2 factors (time and location) and additional

technical factors to gene expression variation (see Methods).
We found that the number of expressed genes in individual
cardiomyocytes and anatomical origin explained the most
expression variations, followed by developmental stage, but
sequencing depth (“counts”) was not a main factor (Fig-
ure S2A). Thus, we considered that the gene expression
heterogeneity across cardiomyocyte groups mostly reflected
biological difference, consistent with the original reports.12,14

We should point out that in this study we did not directly
integrate the 2 data sets but analyzed them together, as they
were generated with 2 quite different strategies and thus

Figure 1. Workflow for inferring transcription factor (TF)-target regulatory network. A, Overview of our approach for identifying and
characterizing gene co-expression patterns in cardiomyocytes. The t-distributed stochastic neighbor embedding (tSNE) map indicates the gene
expression similarity among cardiomyocytes, while the weighted gene co-expression network analysis (WGCNA) heatmap shows co-expression
patterns of genes across cardiomyocytes in different spatial or temporal subgroups. The plot for the predicted TF targets display a TF (dash
circle) and its targets that are in the same gene module, with colors for different types of module genes. B, Schematic illustration of function
analysis for TF targets. Left panel shows that the potential functional roles of a TF could be predicted by enrichment analysis of its targets, with
the dashed box highlighting targets of a TF (red). Right panel shows the enrichment results from the analysis of targets for less-studied TFs, with
colors for TF-driver scores that quantify the potential regulatory effects of a TF on individual gene sets. See Methods for details. A indicates
atrium; AVC, atrioventricular canal; DO, distal outflow tract; LA, left atrium; LS, left ventricular septum; LV, left ventricle; OFT, outflow tract; PO,
proximal outflow tract; RA, right atrium; RS, right ventricular septum; RV, right ventricle.
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could have batch effects. Data set 1 served as the primary
data source for our analyses and conclusions, while data set 2
was used mostly to confirm our findings of gene co-
expression among cardiomyocytes at different anatomical
locations or developmental stages.

Accounting for developmental stages and anatomical
locations, the cardiomyocytes in data set 1 could be
approximately classified into 4 main clusters (Figure 2A).
Excluding outliers (cells in gray in Figure 2A), E8.5 car-
diomyocytes appeared as 1 cluster, while the cardiomy-
ocytes at E9.5 and E10.5 could be segregated into 3
clusters based on anatomical locations: “atrial cluster” (left
atrium, right atrium, and AVC), “ventricular cluster” (LV, left
ventricular septum, RV, right ventricular septum), and
“outflow tract cluster” (E9.5 outflow tract and distal outflow
tract) (Figure 2A and Figure S2B). We also noticed that
E10.5 cardiomyocytes from proximal outflow tract showed
higher gene expression similarity to RV cardiomyocytes than
E9.5 OFT or E10.5 distal outflow tract cardiomyocytes. In
summary, the E8.5 to E10.5 cardiomyocytes can be
separated mainly by their temporal (developmental stages)
and spatial (anatomical locations) origins that reflect their
developmental trajectories.

We next carried out signed WGCNA (see Methods) to
define co-expressed gene modules, and studied their

relationship to the 4 main cardiomyocytes clusters. The
analysis resulted in 10 gene modules from the 12 792 genes
expressed in both data sets (Figure 2B), with the module
sizes ranging from 63 to 7524. Interestingly, the 10 modules
contained different proportions of noncoding genes and TFs
(Figure S2C and Table S2), suggesting potentially different
degrees of regulation complexity. A comparison of the
WGCNA result with the t-distributed stochastic neighbor
embedding cell clustering map and cell sample origins
revealed that some of the module eigengenes, representing
the first principal component of gene expression profiles in
individual modules, displayed a strong correlation with
specific cardiomyocytes clusters or groups (Figure 2B and
2C, Figure S2B). Therefore, our work unveiled cardiomy-
ocytes from different temporal or spatial origins, for which
we identified genes with highly similar expression patterns.
To address the robustness of the gene modules, we
performed consensus module analysis by incorporating the
scRNA-seq data of cardiomyocytes from E9.5 to 18.5 in data
set 212 (see Methods). The results confirmed that all gene
modules were reproducible (ie, “preserved,” Figure 3 and
Figure S3), indicating that most modular genes have similar
co-expression correlation in the 2 data sets, and the gene
expression pattern is most likely a result of gene programs
regulating embryonic cardiomyocytes development.

Figure 2. Identification of gene expression patterns for cardiomyocytes at different anatomical location or developmental stage. A, The t-SNE
map of the cardiomyocytes in data set 1. B, Ten gene modules generated by WGCNA (weighted gene co-expression network analysis). Columns
of the heatmap represent individual cardiomyocyte cells, grouped by their anatomical and developmental stage origins, while each row is a gene
module, with heat-map colors indicating the relative expression of its eigengene. C, Module eigengene patterns at t-SNE map of cardiomyocyte
cells, with colors for module eigengene expressions. AVC indicates atrioventricular canal; OFT, outflow tract; t-SNE, t-distributed stochastic
neighbor embedding.
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Functional Analysis of the WGCNA Module Genes
We performed GO and pathway analyses to characterize the
enriched functions of module genes (see Methods), focusing
on the spatial and temporal modules (Figure 4A and
Table S3). In the temporal modules, the genes of module 6
(E8.5 cardiomyocytes module) were enriched for function
terms in regulation of cell differentiation, positive regulation of
gene expression, and response to endogenous stimulus,
including module genes Gsk3b, Notch2, and St13 (Figure 4B),
indicating that this gene module is mainly involved in cell
differentiation, concordant with the proliferation of early-stage
cardiomyocytes.61,62 The module 5 (E10.5 cardiomyocytes
module) genes were enriched in oxidative phosphorylation,
electron transport chain, and cardiac muscle contraction
signaling known to be highly active in late-stage cardiomy-
ocytes.63 Not only did this module include troponin and
ryanodine receptor genes, but also it contained a number of
important electron transport genes from mitochondrial
genome, such as mt-Co2, mt-Co3, and mt-Atp6 (Figure 4B),
indicating distinct enhancement of mitochondrial ATP synthe-
sis along with cardiomyocyte development (Table S3).

In contrast, the OFT-AVC module genes (from spatial
module 4) were enriched for terms important in cardiac
morphogenesis, tube development, cardiovascular system
development, and cellular response to growth factor stimulus.
These processes have been reported to activate OFT remod-
eling.62 Interestingly, transforming growth factor b (TGFb),
bone morphogenetic protein (BMP), and SMAD pathways, with

their key regulators Bmp2/4, Tgfb2, Id1/2/3, and Smad 6/7
(Figure 4B), were enriched in module 4; they are known for
roles in OFT and/or AVC development and morphogene-
sis.7,62,64 Interestingly, our analysis showed that genes in
additional signaling pathways, such as nerve growth factor,
vascular endothelial growth factor, SCF (stem cell factor)-KIT,
platelet-derived growth factor, mitogen-activated protein
kinase, AKT, insulin-like growth factor, interleukins, leptin,
and insulin, were also significantly overrepresented in this
module. These results indicate that OFT-AVC formation and
remodeling are tightly regulated by a complex network of
signaling pathways in response to both external growth
factors and endogenous stimuluses. Our finding is consistent
with previous studies of protein and gene networks critical for
heart development,65,66 but our analysis also uncovered
additional novel pathways that were not described before,
such as DAP12 (also called KARAP) signaling (Figure 4A and
Table S3). For module 7 (ventricular cardiomyocytes module),
function analysis identified enriched terms in muscle structure
development, cardiovascular system development, and regu-
lation of cardiac contraction. The module 8 genes, actively
expressed in atrial cardiomyocytes, exhibited significant
enrichments in cell movement, response to endogenous
stimulus, and ion signaling. Additionally, some well-known
cardiac genes involved in cardiac contraction were members
of these 2 modules, such as cardiac myosin Myl2 and Myh7 in
module 7, and Myh6 and tropomyosin Tpm2 in module 8
(Figure 4B and Table S2). All these results emphasize that our
unbiased and systematic function analysis of spatiotemporal
module genes uncovered both known and potentially novel
signaling pathways in cardiomyocytes at different anatomical
locations or heart looping stages, thus providing molecular
profiles for the diverse developmental processes and cellular
functions in embryonic cardiomyocytes.

Modular Enrichment of Cardiac Phenotype- and
Disease-Associated Genes
We next addressed how genes associated with different heart
phenotypes or diseases were distributed in these gene
modules, using the ToppGene and Fisher exact test (see
Methods). Surprisingly, the results indicated that even though
modules 1, 2, and 3 contained >80% of the expressed genes,
phenotype or disease marker genes were most significantly
enriched in modules 4, 5, 7, and 9 (adjusted P<0.05)
(Figure 4C and Table S4). These results support the value of
our demarcation of gene modules, as it separated correctly
the developmental and disease-relevant gene modules from
others. In addition, this analysis uncovered the genetic
relationship between developmental process and heart
abnormalities, thus highlighting the developmental bases of
some heart diseases.

Figure 3. Preservation analysis of the weighted gene co-
expression network analysis modules. The dot size indicates the
odds ratio and the y-axis shows the significance. The red line
indicates the threshold (P<0.05) for significant preservation.
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Figure 4. Enrichment analysis of genes in selected modules. A, The top 7 representative enriched Gene Ontology (GO) terms
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in the 5 selected modules. The networks in the middle illustrate
the co-expression networks of genes in these modules, with the nodes representing genes and node sizes proportion to the
numbers of co-expressed genes. Functional terms and pathways for individual modules are depicted by matching colors. B,
Expression patterns of hub genes in 5 selected modules. C, Enriched phenotype- and disease-associated gene sets in the
modules. The gene sets (columns) associated with heart phenotypes and diseases were enriched in the gene modules. The colors
in the heat-map show statistical significance of enrichments, and some representative gene sets are labeled at the bottom. ALK
indicates Anaplastic lymphoma kinase; EDS, Ehlers–Danlos syndrome; EDSP, Ehlers-Danlos syndrome progeroid; JDSSDHD, joint
dislocations, short stature, craniofacial dysmorphism, and congenital heart defects; SEMDJL, Spondyloepimetaphyseal dysplasia
with joint laxity; NGF, nerve growth factor.
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Prediction of Targets for Spatiotemporal
Transcription Factors
After studying the spatiotemporal expression of genes by co-
expression networks and functional enrichment analysis, we
set out to address the primary goal of the current study: how
the spatiotemporal expression and networks were regulated
and maintained. In total, 186 TFs were present in the 5
selected modules (temporal- or spatial-specific modules). One
hundred three of them were highly expressed in module 4
(OFT-AVC module), including T-boxes TFs (Tbx2, Tbx3, and
Tbx20), Kruppel-like TFs (Klf3, Klf4, Klf6, and Klf7), Gata family
(Gata2, Gata3, Gata5, and Gata6) and Id family (Id1, Id2 and
Id3), as well as a large number of TFs whose functions in
cardiac development remain unclear, like Bach2, Etv5, and
Skil. We also found that 12 TFs were in the E10.5 module
(module 5), 27 TFs were active expression in the E8.5 module
(module 6), 20 and 24 TFs in ventricular module (module 7) or
atrial module (module 8), respectively, including well-studied
cardiac genes Hey2, Irx4, Sox5, and Tbx5. The expression
patterns of some representative TFs in these modules are
shown in Figure 5A.

To predict the targets for individual TFs, we used the
adjacency scores computed by WGCNA for quantifying the co-
expression strengths between genes, whereas we considered
a gene as a TF’s target if their pairwise adjacency score was at
the top 20% of all adjacency scores in the full co-expression
network (see Methods). As such, TFs in the same module
could have a very different list of targets. To support our TF-
target prediction, we first performed motif analysis for 82 TFs
that have known DNA binding motifs. The result showed that
for �80% of them, the corresponding motifs (or the motifs for
the same TF family) were significantly enriched in the
regulatory regions (defined by enriched H3K27ac modifica-
tion, see Methods) of their targets (Figure 5B and Table S5).
Next, we re-analyzed several published microarray gene
expression data sets, in which the expression of Hey2,
Nr2f2, Tbx3, and Tbx5 in hearts was disrupted.36–40 We asked
whether the differentially expressed genes upon knockdown
or knockout of these TFs were correlated with the targets
predicted by our method, using the v2 test. The results
showed significant correlations, Hey2 (P<2.2e-16), Nr2f2
(P=1.246e-06), Tbx3 (P=0.00056), and Tbx5 (P=1.457e-05).
Lastly, we repeated the TF-target prediction using the
consensus gene network built by both scRNA-seq data sets
and found that for 184 of the 186 TFs the predicted targets
were reproducible (P<0.05) (Figure 5C and Table S6, see
Methods). To sum up, all these analyses and results support
our TF-target prediction.

To study TFs with potentially major roles in cardiac-looping
stage cardiomyocyte development, we then focused on TFs
that are likely “key drivers,” central nodes in a co-expression

network,30,51–54 and studied what functional pathways they
may regulate. Specifically, we selected TFs that were hub
genes and actively expressed in individual modules, resulting
in 123 TFs (Figure 5D and Table S6, see Methods).

Function Analysis of Well-Known Transcription
Factors Across Cardiac Looping Stages
From the 123 TFs, we started with 64 that were previously
associated with cardiac phenotypes (referred to as “cardiac
TFs,” see Methods), and asked in which pathways their
targets were involved. Since we have already determined
pathways, function terms, and heart phenotype-associated
gene sets enriched in each module, we only analyzed the
enrichments of a TF’s targets in these pathways or terms. The
analysis identified key drivers by “TF-driver scores,” which
tested the association between a TF’s targets and an enriched
pathway or term in a gene module (see Methods). As an
example, shown in Figure 6A, TGFb signaling pathway was
enriched in module 4 (Table S3), containing 17 module-4
genes. Among them, 12 genes were predicted targets of Id3
and 7 for Pitx2, while both Id3 and Pitx2 were in this signaling,
with TF-driver score 1.28 and 2.84, respectively. This result
suggested that these 2 TFs could be key drivers of this
pathway (driver score >1, see Methods), and that Id3 was
likely more important than Pitx2 to the TGFb signaling
because the former putatively regulated more targets in this
pathway, consistent with a previous report that Id3 was
directly activated by BMPs in TGFb signaling.64 Extending this
TF driver analysis to all the 64 cardiac TFs, we found that
�80% (n=51) of cardiac TFs were likely key regulators of the
signaling pathways enriched in our 5 selected modules, with
most cardiac TFs controlling multiple pathways (Figure 6B,
Figures S4 and S5 and Table S7), such as the well-studied
Gata family, T-boxes TFs, Gli3, Hey1/2, Id1/3, Klf6, Loxl2,
Mecom, Mef2c, and Nr2f2. On the other hand, ranking the
pathways by the number of TF regulators, we found that
regulations of the pathways in cardiomyocyte differentiation
appeared extremely complex; the top-ranked pathways, such
as extracellular matrix organization, elastic fiber formation,
TGFb signaling, Hippo signaling, axon guidance, and Anaplas-
tic lymphoma kinase (ALK) in cardiac myocytes, were
predicted to be regulated by >30 cardiac TFs simultaneously.

We also extended this analysis to heart phenotype- or
disease-associated gene sets. The results suggested that
�85% (n=54) of cardiac TFs were involved in the regulation of
gene sets implicated in multiple heart abnormality or diseases
(Table S7), concordant with these TF being defined as “cardiac
TFs.” Interestingly, the cardiomyopathy-associated genes
were overrepresented in modules 4, 5, and 7 (Table S3),
and mainly regulated by Gli3, Klf6, Loxl2, Hopx, Hey2, Irx4, and
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Myocd. In summary, our analysis, in an unsupervised manner,
revealed the potentially functional roles of the spatiotempo-
rally expressed cardiac TFs in differentiating cardiomyocytes
at critical cardiac-looping stages.

Analysis of Targets for Less-Studied TFs in Heart
Looping
We next studied the 59 less-studied TFs (ie, associations with
abnormal heart phenotypes have not been clearly estab-
lished), as analyses of their targeted pathways could provide
new insights to their potential functions. Compared with the
above results for cardiac TFs, the targets of these less-studied
TFs, such as Cux1, Etv5, Id2, Irf5, Klf4, Nfil3, Myrf, and Skil,

were significantly enriched in many of the same heart
developmental terms or processes, supported by similarly
high TF-driver scores (Figure 6C and Figure S5). Furthermore,
our analysis showed that 45 of the 59 TFs were likely to
regulate multiple functional pathways that were enriched in
the selected gene modules (Figure 6B, Figure S4 and
Table S7), indicating their important functional roles. Inter-
estingly, even though the mouse phenotype databases did not
associate these TFs with an abnormal phenotype or disease,
21 of the 45 TFs have been reported to perform important
functions in heart development: Hes1, Hbp1, Skil, Irf5, Id2,
Cux1, Myrf, Kdm5b, Grhl1, Arhgap35, Gatad2b, Arid5b, Mga,
Peg3, Nfil3, Nr2f1, Ptrf, Camta1, Etv1, Id4, and Nfib.67–89 As
such, we named these TFs as “literature-based cardiac TFs,”

Figure 5. Spatiotemporally expressed TFs and their potential targeted genes. A, Expression patterns of 9 representative TFs (transcription
factors) in the selected modules. B, The enriched motifs in the predicted targets of the representative TFs, with TF names and q-values at the
top. C, Preservation of TF-targets. Bubbles in the plot represent different TFs, with colors for the significance of preservation and sizes for odds
ratios of target overlap. D, Mean expression and eigengene-based connectivity of the candidate TF drivers (n=123). In plot, x-axis represents the
correlations between TFs’ expression profiles and their corresponding module eigengenes, while y-axis represents the average expression values
for TFs. TFs indicates transcription factors.
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to distinguish them from the other “noncardiac TFs” that do
not have known evidence for a cardiac function (Table S6).
These findings support the biological relevance of our TF-
target prediction, and strongly indicate that the set of
noncardiac TFs (n=24) also have high possibilities to regulate
critical pathways in embryonic heart development.

Performing enrichment analysis of TFs’ targets for the
heart phenotype- or disease-associated gene sets enriched in
the 5 spatiotemporal modules, we found that the targets of
the 21 literature-based cardiac or the 24 noncardiac TFs were
significantly overrepresented in multiple gene sets, such as

abnormal cardiac OFT development, abnormal cardiovascular
development, abnormal heart ventricle morphology, and
abnormal cardiac muscle contractility (Figure 6D and Figures
S6 through S8). Notably, >60 phenotype- and disease-
associated gene sets were found to be under the regulations
of Hes1, Skil, Myrf, Etv5, Cux1, Irf5, and Id2. Most of them,
except Etv5, have been reported to play a functional role in
heart development, suggesting the potential heart genotype–
phenotype associations of these TFs.

To confirm the high expression of the OFT-AVC TFs, we
selected 10 less-studied TFs with the most predicted targets

Figure 6. Function and phenotype analysis of cardiac and noncardiac TF targets. A, A network showing genes in the transforming growth
factor b signaling. In left panel, 17 genes of module 4 were in this pathway, with overrepresentation P=1.91e-09. Node and edge connections in
right panel represent adjacencies between a TF and its targets, 12 genes targeted by Id3 and 7 genes for Pitx2. B, The number of enriched
pathways (y-axis) under the regulations of cardiac, literature-based cardiac, and noncardiac TFs. C, Predicted regulations of cardiac, literature-
based cardiac, and noncardiac TFs in 20 representative heart terms enriched in the selected weighted gene co-expression network analysis
modules. The colors in the heat-map show the TF-driver scores in functional terms, representing the regulatory effects of individual TFs on the
terms. D, Predicted functional roles of literature-based cardiac and noncardiac TFs in different heart phenotype- or disease-associated gene
sets, with the colors for TF-driver scores. TF indicates transcription factor.
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for quantitative polymerase chain reaction analysis. The
results showed that almost all of these 10 TFs had
significantly higher expressions at OFT-AVC than ventricles
at E10.5, with some also exhibiting higher expression in E9.5
OFT (Figure 7). Further analysis found that the more specific
expression patterns they had, the more heart-phenotype gene
sets these TFs are involved in, with Spearman correlation >0.7
and P<0.05 at both E9.5 and 10.5 stages (Table S7).

Expression Changes and Functional Roles of TFs
in Subgroups of Atrial or Ventricular
Cardiomyocytes
The above analyses considered cardiomyocytes from the
same spatial or temporal origin as a “homogeneous” group,
but cardiomyocytes in the same group actually showed subtle
transcriptional heterogeneity, because cardiomyocytes from
the same anatomical location could be a mixture of cells at
multiple developmental states. Therefore, we constructed
putative developmental trajectories based on top variable
genes (see Methods) in order to study potential cell state
transitions of cardiomyocyte development at atrium, ventricle,
or OFT (E9.5 OFT, E10.5 distal OFT and proximal OFT)
(Figure 8A and 8B, Figure S9). The analysis revealed 3 distinct
subgroups (“A”, “B,” and “C”) in each of the trajectories,
largely reflecting the temporal and spatial relationship of
cardiomyocytes at those locations (Figure S10).

Gene set enrichment analysis indicated that DE genes from
pairwise comparisons of the 3 atrial subgroups were enriched
for developmental pathways, such as cell cycle, mRNA
processing, protein metabolism, extracellular matrix organi-
zation, citric acid cycle, and gluconeogenesis (Figure 8C and
Table S8). In comparison, the enrichment of ventricular DE
genes among the 3 subgroups was mainly related to
myogenesis, oxidative phosphorylation, angiogenesis, epithe-
lial mesenchymal transition, apical junction, and Heme
metabolism pathways (Figure 8D and Table S8). Interestingly,
only a small number of DE genes (<60) were found among the

subgroups of OFT cardiomyocytes, even though cardiomy-
ocytes at this anatomical location were from 2 embryonic
heart stages (E9.5 and E10.5). Mapping the DE genes to the
above module genes showed that atrial DE genes were
significantly enriched in modules 4, 5, and 9, while ventricular
DE genes were enriched in modules 5 and 10 (Figure 8E).
Pathway analysis of the overlapped DE genes suggested that
both atrial and ventricular DE genes were dramatically
overrepresented in module 5 and enriched in pathways
related to muscle system process and muscle contraction
(Figure 8E), indicating our trajectories could represent devel-
opmental states of cardiomyocytes at different anatomical
heart regions.

To further support the importance of TFs in cardiomyocyte
development, we examined TFs that were differentially
expressed in atrial or ventricular subgroups, and contained
in the 5 gene modules. This resulted in 20 DE TFs in the atrial
and 10 in the ventricular subgroups (Figure 8F and Fig-
ure S11). Motif analyses showed that the regulatory regions
of these atrial DE genes were enriched for 5 TF motifs, Foxp1
(q-value 3.61e-59), Gli3 (q-value 3.07e-04), Htf4 (q-value
4.81e-03), Irf5 (q-value 2.71e-45), and Tbx3 (q-value 2.12e-
05) (Figure 8G). For the ventricular DE genes, Gli3 motif was
found (q-value 3.41e-04) (Figure 8G). The findings strongly
supported the regulations of cardiomyocytes differentiation
by these TFs that are expressed in a highly spatiotemporal
manner.

Discussion
Our analysis showed that across heart looping stages many
signaling and pathways involved in cardiomyocyte differenti-
ation were enriched in the OFT/AVC module (module 4) and
they were predicted to be highly regulated by 66 TFs, and
more so than genes in the other modules (Figure 9 and
Figure S12). In addition, we found that the proportion of TFs in
this module was much higher than those of other modules
(Figure S2C). Integrating the results of function analysis of

Figure 7. Quantitative polymerase chain reaction analysis of 10 TFs highly expressed in OFT-AVC. The bar-plots show expression fold-changes
(using Gapdh as reference). The statistical significances from comparisons of OFT-AVC to ventricle at E9.5 and E10.5 separately are indicated by
“*,” “**,” and “***” for P<0.05, 0.005, and 0.0005, respectively. OFT-AVC indicates outflow tract–atrioventricular canal; TF, transcription factor.
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“cardiac,” “literature-based cardiac,” and “noncardiac” TFs,
our study strongly suggests that the genetic program in
differentiating cardiomyocytes at OFT/AVC is not only
regulated by well-studied cardiac TFs, such as Tbx2/3, but
also under the complex regulation of other 64 TFs (Figure 9
and Figure S12), such as Gli3, Mecom, Loxl2, and Meis2,
including additional TFs whose cardiac functions are yet to be
addressed. The high expression of the 10 noncardiac TFs in
OFT/AVC was confirmed by quantitative polymerase chain
reaction analysis (Figure 7). Interestingly, we also found a
significant correlation between the expression patterns of the

noncardiac TFs and the number of heart phenotypes they
involved, with greater specific spatial expression correlated
with more phenotypes. Considering all the results, we
hypothesize that OFT/AVC formation and remodeling is likely
the most tightly regulated embryonic heart developmental
process. As such, mutations in the genes, especially TFs,
important for OFT/AVC development, are likely to be the high-
risk factors for congenital heart defects. In fact, we analyzed 2
sets of manually curated CHD-associated genes and found
that they were significantly enriched in the OFT-AVC module,
with the odds ratios of 2.39 (P=0.001) and 2.35 (P=0.0003)

Figure 8. Differentially expressed genes and TFs in atrial or ventricular cardiomyocytes. A, A trajectory of atrial cardiomyocytes, indicating
that the atrial cardiomyocytes consisted of 3 major subgroups (A through C). B, The trajectory of ventricular cardiomyocytes. C and D, Enriched
gene sets for the DE genes among the 3 subgroups of atrial (C) and ventricular (D) cardiomyocytes. Here, DE genes from each of the pairwise
comparisons were used for GSEA. The upregulated and downregulated genes are in red and blue nodes, respectively, while the edges of nodes
represent the overlapping genes in 2 pathways. E, Module enrichments of atrial and ventricular DE genes. The enrichment significance of atrial
or ventricular DE genes were represented by the red and blue lines, respectively, in left panel. The right panel shows the top 5 enriched
pathways of atrial or ventricular DE genes that were also identified in module 5. F, Spatiotemporally DE TFs at atria and ventricles. G, The
enriched motifs for atrial or ventricular DE TFs in (F). DE indicates differentially expressed; ECM, extracellular matrix; GSEA, gene set enrichment
analysis; TCA, tricarboxylic acid cycle; TFs, transcription factors.
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for the 186 CHD genes in the article by Sifrim et al90 and the
253 CHD genes in the article by Jin et al,91 respectively. We
also analyzed the genes with significantly higher expression in
ECs and MCs of OFT-AVC than the ECs/MCs of other
locations. The results indicated that only the group of genes
with higher expression in OFT-AVC ECs was significantly
enriched for the 253 CHD genes curated by Jin et al,
suggesting cell-type specificity of our finding.

It is worth noting that among the less-studied TFs, Etv5 and
Rbpms are especially strong candidates for future studies.
First of all, our analysis showed that Etv5 and Rbpms were
associated with hundreds of gene sets for various cardiac GO
terms or heart phenotypes (Figure 6C and 6D, Table S7).
Then, our quantitative polymerase chain reaction results
confirmed the high expression of Etv5 and Rbpms in OFT-AVC
at E9.5 and E10.5. Furthermore, these 2 TFs have been
implicated in development or diseases. Rbpms, as a coacti-
vator for the enhancement of TGFB1/Smad-mediated trans-
activation, has been shown to play important roles in
transcriptional regulation of human retinas,92 while Etv5 was
demonstrated to enhance angiogenesis in colorectal can-
cer.93 More interestingly, a recent study suggested that Etv5
is a candidate gene-regulatory-network driver in mouse
embryonic stem cells,94 consistent with our finding. Lastly,

Etv1 and Etv2 play key roles in regulating cardiomyocyte95 or
vascular endothelial cell development.96 As a member of the
same ETS family, Etv5 may work with Etv1/2 cooperatively or
independently during heart development, an interesting area
to explore in the future.

Although our study has analyzed more than 1000 cardiac
cardiomyocytes from multiple developmental stages and
anatomical locations, the number of total cells is relatively
small, considering that new scRNA-seq technology allows
expression profiling of tens of thousands or even up to
millions of cells.97 The inclusion of more cells from more time
points can certainly improve our results, especially in terms of
finding key TFs regulating cell fate commitment and lineage
specification. In theory, with all cardiac cells from the same
heart being sampled simultaneously, one can also study the
TF-regulatory networks and signaling cross-talks among differ-
ent cardiac cell types, an important matter not addressed in the
current study. Finally, it will be necessary to validate our TF-
target predictions using scRNA-seq data from wild-type hearts
and mutant hearts with the expression of selected TFs
compromised, such as previous studies of Nkx2-5 function.12,14

Nevertheless, the current study has identified key TFs,
including not fully characterized ones, that can play important
regulatory roles in embryonic heart development.

Figure 9. Summary of TFs and their regulatory functions in the spatiotemporal modules. The functional roles of the candidate TFs: cardiac,
literature-based cardiac, and noncardiac, in the 5 selected modules. Each bar-plot panel of individual modules shows the number of the enriched
functional pathways and heart phenotype- or disease-associated gene sets under the regulations of the designated TFs. AVC indicates
atrioventricular canal; OFTs, outflow tracts; TFs, transcription factors.
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SUPPLEMENTAL MATERIAL 



 Table S1. The primers of 

qPCRs.

Etv5-F AGAAAGAGGAAGTTTGTGGAC 
Etv5-R ATGAAGCACCAAGTTATCAGAC 
Rbpms-F CATTCAAGGGCTATGAAGGTTCTC 
Rbpms-R GCCTTAGCAAACTCTAGTCGT 
Baz2b-F CTTAGTTCTACAGCCAGCCC 
Baz2b-R CCATTTATACCTTTCTCAGGACCA 
Calcoco1-F GATAAGATCCTGAAGCTGAGTG 
Calcoco1-R TCCAGCAGTTCCTGTTTCTC 
Pbxip1-F TCTCACCTGCTTACTTTGGA 
Pbxip1-R TTCTTTCGTGACCTCTTCTTCAG 
Cbfa2t2-F AAACACCTTGACCATGCACTG 
Cbfa2t2-R GCTGAGAATCGTTGCTGAGAG 
Zfp292-F CTTACCTTGTCTGTCTTTGCAC 
Zfp292-R GAGTGAGTTCCCAAGCACAG 
Zfp827-F TTTAAAGTGAAGGAGGAGCCCA 
Zfp827-R TTGTAGCTTTCCGCTGAGAG 
Zfp945-F AAACTTCCTTAAGACTCAGGTG 
Zfp945-R CTTGAATGTTAACAGTTCCTGGG 
Chd6-F TAAACATGTGGAACGACCTG 
Chd6-R TCTGAAAGGAATGCGATGGA 

Table S2.  Gene expression matrix of individual modules (see Excel file) 

Table S3.  Enriched GO terms and Reactome and KEGG pathways in individual modules (see Excel 

file) 

Tables S4.  Enriched cardiac phenotype- and disease-associated gene sets in individual modules (see 

Excel file) 

Table S5.  Motif enrichment of 186 TFs (see Excel file) 

Table S6.  186 TFs in the five selected modules and their predicted targets (see Excel file) 

Table S7.  Enrichments of TF targets in GO terms, pathways and cardiac phenotype- and disease-

associated gene sets (see Excel file) 

Table S8.  DE genes of atrial, ventricular or OFT subgroups (see Excel file) 



A. PCA (principal component analysis) of cells in dataset 1 and 2. B,C. Clustering of cardiac cells in 

dataset 1 and 2. B) shows t-SNE (t-distributed stochastic neighbor embedding) map of cardiac cells in 

dataset 1, while C) shows t-SNE maps with k-mean clustering of cardiac cells in dataset 2 at four 

developmental stages (E9.5 ~ 18.5), with expression pattern of selected marker genes. D. 

Transcriptional similarity of cells as revealed by k-mean clustering for dataset 1. E. Expression of 

marker genes used for identification of cardiomyocytes and other cell types for both datasets.

Figure S1.  Clustering analysis of cardiac cell types in both datasets.



A. Gene expression variances in dataset 1 explained by different factors. B. The t-SNE (t-distributed 

stochastic neighbor embedding) map of CMs (cardiomyocytes) in dataset 1, with cells colored by 

anatomical locations (left panel) or stages (right panel). C. Gene numbers in individual modules. The 

left y-axis shows module sizes (ranging from 63 to 7,524), and the right y-axis indicates the 

proportions of TFs (transcription factors) and non-coding genes.

Figure S2.  t-SNE map and module preservation of cardiomyocytes.



The y-axis shows module assignments in dataset 1, while x-axis shows consensus modules in dataset 1 

and 2 combined, with each square indicates the numbers of overlapped genes. The color indicates the 

significance of overlaps.  

Figure S3.  Module preservation.  



The bar plot shows the numbers of enriched pathways (y-axis) under the regulations of cardiac, 

literature-based cardiac and non-cardiac TFs (transcription factors, the detailed version of Figure 6B). 

Figure S4.  Numbers of pathways regulated by candidate TFs.  



A. Heat-map displays the predicted regulations of the candidate TFs (transcription factors) in 20 

representative heart terms enriched in the selected WGCNA (weighted gene co-expression network 

analysis) modules (the detailed version of Figure 6C). The colors in heat-map shows the TF-driver 

scores for the functional terms, representing the regulatory effects of individual TFs on the terms. B. 

Top enriched cardiac pathways regulated by cardiac TFs, with color indicating the number of TF 

targets. C. The numbers of genes in the (B) pathways that were predicted to be targets of literature-

based cardiac or non-cardiac TFs.

Figure S5.  TF-targets in enriched heart developmental pathways.



Figure S6.  TF-targets in enriched cardiac 

disease-associated gene sets. 

Heat-map shows the detailed version of Figure 6D, 

and displays the predicted roles of all the literature-

based cardiac and non-cardiac TFs (transcription 

factors), measured as their TF-driver scores (colors) 

for different heart phenotype- or disease-associated 

gene sets. 



Figure S7.  Enrichment analysis of TF-targets in cardiac disease-associated gene sets. 



Heat-map shows the enrichment of the targets of literature-based cardiac or non-cardiac TFs 

(transcription factors) in different heart phenotype- or disease-associated gene sets, with color 

for enrichment significance. 



Figure S8.  The number of TF-targets in cardiac disease-associated gene sets. 



Heat-map shows the number of targets of literature-based cardiac or non-cardiac TFs (transcription 

factors) enriched in different heart phenotype- or disease-associated gene sets that are shown in Figure 

S7, with color for the number of targets. 



The trajectory indicates three groups (A, B and C) of CMs (cardiomyocytes) at outflow tract, with 

colors for different groups. 

Figure S9.  A trajectory of CMs at outflow tract. 



The atrial trajectory, with color indicating cells at different heart stages (A), at anatomical locations 

(B), or by spatiotemporal factors (C). The ventricular trajectory, with color by heart stages (D), 

anatomical locations (E), or spatiotemporal factors (F). 

Figure S10.  Trajectories of atrial and ventricular CMs (cardiomyocytes).



The plots display expression patterns of three representative DE (differentially expressed) TFs 

(transcription factors) of atrial subgroups or ventricular subgroups, according to Figure 8F. 

Figure S11.  Expression patterns of representative atrial and ventricular TFs.



The bar-plot displays the number of the enriched gene sets under the regulation of the candidate TFs 

(transcription factors): cardiac, literature-based cardiac and non-cardiac, in the five selected modules 

(the detailed version of Figure 9).  

Figure S12.  Summary of the full list of the spatiotemporal TFs.




