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A photo-induced C-S radical cross-coupling of aryl iodides and disulfides under

transition-metal and external photosensitizer free conditions for the synthesis

of aryl sulfides at room temperature has been presented, which features mild

reaction conditions, broad substrate scope, high efficiency, and good functional

group compatibility. The developed methodology could be readily applied to

forge C-S bond in the field of pharmaceutical and material science.
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Introduction

Aryl sulfides, as a ubiquitous structural motif in functional molecules, plays a unique

role in pharmaceutical (Le Grand et al., 2008; Ilardi et al., 2014; Xiao et al., 2019; Golosov

et al., 2021; Mourtas et al., 2020; Hai et al., 2021; Liu and Jiang, 2013; Barce Ferro et al.,

2020) and material science (Figure 1). (Boyd 2016; Lu et al., 2017; Zhang et al., 2018; Hou

et al., 2022) Hence, the development of efficient methods for the construction of C-S bond

has attracted considerable attentions from chemical researchers. Traditionally, transition

metal-catalyzed cross coupling of aryl halides and thiol/thiophenol constitutes the

mainstream route to aryl sulfides (Figure 2A) (Fernández-Rodríguez et al., 2006;

Alvaro and Hartwig, 2009; Timpa et al., 2014; Fu et al., 2015; Amiri et al., 2016a;

Guzmán-Percástegui et al., 2016; Shiri et al., 2016; Chen et al., 2019; Gupta 2022; Jones

et al., 2018; Liu et al., 2019; Isshiki et al., 2021; Cheng-YiWang et al., 2021; Yu et al., 2021).

However, several troublesome drawbacks still exist, including expensive catalysts and

ligands, high temperature and narrow substrate scope. In addition, the metal catalyst-

poisoning enabled by thiols further limited the applicability of these reactions, so several

alternatives to thiols had been explored (Clark et al., 1989; Akkilagunta and Kakulapati,

2011; Ke et al., 2011; Park et al., 2011; Prasad and Sekar, 2011; Reddy et al., 2011; Singh

et al., 2013; Zhao et al., 2013; Firouzabadi et al., 2015; Tber et al., 2016; Ge et al., 2019; Liu

et al., 2020). Although the use of thiol substitutes can eliminate the difficulties caused by
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thiols, these methods also have certain disadvantage, such as the

tedious procedures for the synthesis of S-Alkylisothiouronium

salt (Zhao et al., 2007), 1,3-propanedithiol equivalent (Liu et al.,

2003) and 2-[bis (alkylthio) methylene]-3-oxo-N-o-

tolylbutanamides (Dong et al., 2006). The pursuit of more

efficient and environment-friendly approaches for the

formation of C-S bond is of great urgency. Consequently,

numerous newly developed methods emerge to replace the

traditional methods. For instance, transition metal-catalyzed

decarbonylation of thioester from readily available carboxylic

acids has been regarded as another noteworthy strategy for

achieving C–S bond formation (Figure 2B). (Ichiishi et al., 2018;

Bie et al., 2021; Han Cao et al., 2021; Liu and Szostak, 2021)

Reduction of sulfoxides also serves as a direct route to sulfides

(Shiri and Kazemi, 2017; Lin et al., 2021; Zhang 2022). The

synthesis of aryl sulfides using phenylboronic acid as substrate

requires the participation of magnetic nanoparticles or

expensive transition metals (Xu et al., 2012; Rostami et al.,

2015a; Rostami et al., 2015b; Amiri et al., 2016a; Amiri et al.,

2016b; Rostami et al., 2017; Wang et al., 2017; Cheng et al.,

2018; Farzin et al., 2018; Atashkar et al., 2019; Gavhane et al.,

2019; Khakyzadeh et al., 2019). With the development of

photocatalytic reaction, photocatalytic synthesis of aryl

sulfide has become an effective way. In the past few years,

the photoredox transition metal-catalyzed C–S cross-coupling

between aryl halides and thiols/disulfides have been widely

developed, in which a series of Cu, Ni, Pd, and Rh transition

metals are still utilized as catalysts (Figure 2C). (Uyeda et al.,

2013; Wang et al., 2013; Johnson et al., 2016; Jouffroy et al.,

2016; Jouffroy et al., 2016; Oderinde et al., 2016; Li et al., 2020;

Sandfort et al., 2020; Brahmachari et al., 2021; Qin et al., 2021;

Yang et al., 2021)

Meanwhile, A series of photo-induced transition-metal

and photosensitizer free C−S cross-coupling methods has

been developed (Bunnett and Creary, 1974; Liu et al., 2017;

Pramanik et al., 2020; Dawei Cao et al., 2021; Nandy et al.,

2021; Saroha et al., 2021; Shun Wang et al., 2021; Uchikura

et al., 2021; Wang et al., 2022). For the metal-free synthesis of

aryl sulfides, Hong and co-workers developed a convergent,

organocatalytic visible-light-mediated process for the

synthesis of diaryl sulfides (Hong et al., 2017). Kibriya’s

group developed a metal-free visible-light-promoted

oxidative coupling between thiols and arylhydrazines to

afford diaryl sulfides using a catalytic amount of rose

bengal as photocatalyst under aerobic conditions (Kibriya

et al., 2018). Inspired by the aforementioned seminal

studies and our pursuit of developing greener and more

sustainable methods to forge C-S bonds, we have developed

a metal-free photo-catalyzed C-S cross-coupling of aryl iodide

and disulfides for the efficient synthesis of aryl sulfides under

mild conditions (Figure 2D). It is worth noting that the

present reaction features many advantages, including the

use of clean and renewable light source, no participation of

metal and photosensitizer, high efficiency, and excellent

functional group compatibility, providing an

environmentally friendly and expedient approach for the

construction of aryl sulfides and congeners.

FIGURE 1
Representative drugs containing aryl sulfide motif.

FIGURE 2
The C-S formation methods with aryl halides and thiols/
disulfides.
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Results and discussion

The C-S cross-coupling between 4-iodophenol (1e) and 1,2-

diphenyldisulfide (2a) was selected as the model reaction for the

optimization of reaction conditions. The reaction parameters,

including the equivalent of disulfide, light, solvent, base, reaction

time, were examined and the results were summarized in Table 1;

Supplementary Table S1, S2. The investigation towards the amounts

of disulfides was first conducted, as demonstrated that 0.5 equiv. of

diphenyldisulfide 2a enabled the formation of 4-(phenylthio) phenol

(3e) in 56% yield (Table 1, Entry 1). The further increase of the

disulfide amounts failed to improve the reaction yields (Table 1,

Entry 2-3 and Supplementary Table S2). Then, the base effect of the

reaction was investigated by using diverse organic and inorganic

bases, which indicated that 50 mol% of TMG (1,1,3,3-

Tetramethylguanidine) could give the best result (Table 1, entries

4-7 and Supplementary Table S2). Other additives were also tested

and inferior yields were obtained (Supplementary Table S2).

Subsequently, the screening of organic solvents revealed DMSO

and ethyl acetate acted as the good medium, whereas other protic

solvents and non-polar solvents led to the yield decline Table 1,

entries 8-10 and Supplementary Table S2). Furthermore, shortening

the reaction time had a detrimental impact on the reaction, whereas

prolonging the reaction time to 18 h or 24 h could not obviously

promote the reaction yield (Table 1, entries 12-14). The sources of

TABLE 1 Optimization of the reaction conditionsa.

Entry 2a (equiv) Light Solvent Base (equiv) Time (h) Yield [%]b

1 0.5 300WHg CH3CN DBU (1) 12 56

2 1 300WHg CH3CN DBU (1) 12 47

3 2 300WHg CH3CN DBU (1) 12 43

4 0.5 300WHg CH3CN DBU (0.5) 12 63

5 0.5 300WHg CH3CN o-Anisidine (0.5) 12 79

6 0.5 300WHg CH3CN TMG (0.5) 12 82

7c 0.5 300WHg CH3CN Others 12 <80
8 0.5 300WHg EA TMG (0.5) 12 89 (87)

9 0.5 300WHg DMSO TMG (0.5) 12 81

10d 0.5 300WHg Others TMG (0.5) 12 <80
11 0.5 300WHg EA TMG (0.5) 6 37

12 0.5 300WHg EA TMG (0.5) 18 88

13 0.5 300WHg EA TMG (0.5) 24 85

14e 0.5 Others EA TMG (0.5) 12 NR

15f 0.5 300WHg EA TMG (0.5) 12 28

aReaction conditions: 1e (0.1 mmol, c = 0.1 mol/L), 2a (0.05 mmol), RT, N2, 12 h.
bYield was determined by 1H NMR, with 1,3,5-trimethoxybenzene as an internal standard and the isolated yields were given in parenthesis.
cSee the supporting Information.
dSee the supporting Information.
eSee the supporting Information.
fReaction was carried out under air. TMEDA: N, N, N, N-tetramethylethylenediamine; DIPEA:N, N-Diisopropylethyl-amine; DBU: 1,8-Diazabicyclo [5.4.0] undec-7-ene; TMG: N, N′, N′-
tetramethyl-guanidine; DABCO: 1,4-Diazabicyclo [2.2.2]octane; DMAP: N-(4-Pyridyl) dimethylamine; THF: tetrahydrofuran; DMF: N, N-Dimethylformamide; EA: ethyl acetate.

The bold values (Entry 8) is the best optimized reaction condition.

TABLE 2 Scope of the C-S coupling of (hetero)aryl iodides with
diphenyldisulfide.

General conditions: 1 (0.1 mmol), 2 (0.05 mmol), TMG (0.05 mmol), EA (1.0 ml) at

25 C for 12 h under N2.
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light were also evaluated by the employment of 500WXe lamp, blue

and green LED, 35Wwhite fluorescent lamp and in the dark, but no

product 3e was detected under the above conditions. (Table 1, entry

14 and Supplementary Table S1). Finally, the air atmosphere could

sharply inhibit the reaction. (Table 1, entry 15 and Supplementary

Table S2).

With the optimized reaction conditions in hand, the scope of the

photo-catalyzedC-S cross-couplingwas investigatedwith a variety of

(hetero) aryl iodides and disulfides and the results were summarized

in Table 2. Various substituted phenyl iodides reacted smoothly with

diphenyldisulfide to deliver the corresponding aryl sulfides 3a–i in

good yields, irrespective of the electronic effect of the substituents.

Noteworthy is that several sensitive functional groups, such

as −OH, −NO2 and allyl, were all tolerant in the current reaction

system (3e–g, 3ab). The transformation is also applicable to the aryl

iodides with strong electron-withdrawing groups, producing the

sulfide products 3h–i in 68%–80% yields. In addition, p-tolyl

disulfide and 4,4′- dithiodiphenol were viable substrates to

participate in the reaction to lead to the desired products 3aa

and 3ab with high efficiency.

The substrate scope of the photo-catalyzed C-S cross-coupling was

further extended with different (hetero) aryl iodides and dimethyl

disulfide. As shown in Table 3, the cross coupling of (hetero) aryl

iodides with dimethyl disulfide proceeded to afford the methyl (aryl)

sulfane products 3j-z in moderate to excellent yields. Various

substituents, including −CN, −CO2Me, −CF3, naphthalene and

heterocyclic scaffolds, were all compatible with the reaction system.

The electron effect and the steric hindrance of the (hetero) aryl iodides

exerted a marginal influence on the reaction, as verified by the

comparable yields of the obtained products. The observation depicted

inTables 2, 3 exhibited the broad substrate scope andexcellent functional

group tolerance of the photo-catalyzedC-S bond cross coupling reaction.

The protocol could also be applied to construct C-Se and C-Te

bond by using diselenide and ditelluride as coupling partners

(Table 4). A series of aryl selenoethers 3ac-am were obtained in

moderate to excellent yields, in which several sensitive functional

groups and strong electron-withdrawing substituents were tolerant. In

addition, two diaryltellane products 3an and 3aowere furnished with

high efficiency under the current photo-reduced reaction system.

To investigate the mechanism of sulfuration reaction, the on-off

experiment was carried out and no product formation was observed

during thedark conditions in this experiment (Figure 3). It demonstrated

that light irradiation is crucial for this sulfuration reaction and a radical

chain propagation pathway is possibly not involved in the reaction.

To gain mechanistic understanding of this transformation, we

turned our attention toward exploring the key intermediate and the

nature of the reaction pathway. As depicted in Eq. 1 and Figure 4,

when the radical scavengers of TEMPO (2,2,6,6-

tetramethylpiperidine-N-oxide) was added into the reaction, the

desired product 3e was not detected at all and the coupling

product 4 of aryl radical with TEMPO was successfully detected

by LC-MS, which indicated that the reaction possibly involved a

radical process.

TABLE 3 Scope of the C-S coupling of (hetero)aryl iodides with
dimethyl disulfide.

General conditions: 1 (0.1 mmol), 2 (0.05 mmol), TMG (0.05mmol), EA (1.0 ml) at

25 C for 12 h under N2.

TABLE 4 Scope of the C-Se/C-Te coupling of (hetero)aryl iodides with
diselenide/ditelluride.

General conditions: 1 (0.1 mmol), 2 (0.05 mmol), TMG (0.05mmol), EA (1.0 ml) at

25°C for 12 h under N2.

FIGURE 3
On-off experiment kinetic profile.
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On the basis of the above experimental results and related

literatures (Discekici et al., 2015; Dong et al., 2019; Wu et al., 2019),

a plausible mechanism of this reaction has been proposed (Figure 5).

Under the irradiationof ultraviolet light, the aryl iodide 1 absorbs energy

to reach the excited state 1’, and the bond of disulfide subsequently

undergoes homolysis process to produce sulfur radical 7 (Schmidt et al.,

1964; Ogawa et al., 1998). Then, the strong base cleaves the carbon-

iodine bond uniformly to produce aryl radical 5 and iodine radical 6.

Finally, the cross coupling of free radicals 7 and 5 delivers the desired

aryl sulfoether product 3. In addition, the remaining iodine radicals are

transformed into elemental iodine through homocoupling reaction1.

Conclusion

In conclusion, an efficient and transition metal-free photo-

catalyzed C-S cross-coupling reaction have been developed. An

array of (hetero) aryl sulfides could be accessed from the readily

FIGURE 4
The radical trapping experiment.

FIGURE 5
Proposed reaction mechanism.

1 According to standard conditions, the systemwas dark-brown after the
reaction was completed. When an appropriate amount of sodium
thiosulfate solution was added, the system became colourless and
transparent. The comparison before and after the reaction can be
found in the SI.
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available aryl/hetero iodides and disulfides in an easily-

operative and environment-friendly manner. A series of aryl

selenoethers and diaryltellanes were also delivered by the

developed method. The protocol is also charactered by no

participation of metal catalyst or photosensitizer, broad

substrate scope and good functional group tolerance. It is

expected that this methodology will have wide application in

the synthesis of functional sulfur-containing molecules in the

field of pharmaceutical and material science.
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