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In cancer, recurrently mutated sites in DNA and proteins, called hotspots, are thought to be raised by pos-
itive selection and therefore important due to its potential functional impact. Although recent evidence
for APOBEC enzymatic activity have shown that specific types of sequences are likely to be false, the iden-
tification of putative hotspots is important to confirm either its functional role or its mechanistic bias. In
this work, an algorithm and a statistical model is presented to detect hotspots. The model consists of a
beta-binomial component plus fixed effects that efficiently fits the distribution of mutated sites. The algo-
rithm employs an optimal stepwise approach to find the model parameters. Simulations show that the
proposed algorithmic model is highly accurate for common hotspots. The approach has been applied
to TCGA mutational data from 33 cancer types. The results show that well-known cancer hotspots are
easily detected. Besides, novel hotspots are also detected. An analysis of the sequence context of detected
hotspots show a preference for TCG sites that may be related to APOBEC or other unknown mechanistic
biases. The detected hotspots are available online in http://bioinformatica.mty.itesm.mx/
HotSpotsAnnotations.

� 2020 The Author. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

It is thought that recurrently mutated amino-acid positions in
cancer genes, namely mutation hotspots, are likely to have an
important functional impact [1]. Several well-known examples
support this view. One of the most frequent hotspots, BRAF
V600E mutation, is known to over-activate the RAS pathway
[2,3]. BRAF is top mutated in thyroid carcinoma [4], melanoma
[5], and hairy-cell leukemia [3], and also frequent in colon and lung
cancers [6–8]. Other hotspots are also well-known such R132H in
IDH1 for low-grade gliomas [9], G12/G13 in KRAS for lung [10],
and Q61 in NRAS for melanoma [11]. Many other genes also show
hotspots [12].

Some non-cancer genes seem to show hotspots that become
clear when mutations from all cancers are aggregated [1,12,13].
For example, in Chang et al. analysis [13], the RRAS2 showed a hot-
spot in Q72, which is still not marked as a cancer gene in the Cos-
mic curated database revision 2019 [14] neither detected for
positive selection in Martincorena analysis [15]. This suggests that
the identification of putative novel hotspots is important in cancer.
Some methods have been reported regarding the detection of
mutation hotspots. Of the seminal approaches, there was a ten-
dency to identify regions [16,17] or domains [1,18] when the avail-
able mutations were more limited. Similarly, some approaches
focused on the three-dimensional protein structure to identify
mutation-rich 3D-regions [19–21]. Then, position-specific models
were proposed [12,13,22,23]. These approaches used a binomial
or a Poisson distribution to model mutation distribution across
genes. Nevertheless, the mutation distribution per gene may
depend on cofactors such as sequence context [12], gene length
[24], cancer type [25,26], mutational processes [26,27], or relative
position along nucleosomes [28]. Modeling all these cofactors
together is a very difficult task given its complexity and lack of data
to sufficiently estimate embed parameters. To account for these
and other unknown factors, an over-dispersion model is preferred
[15,24,29]. Thus, other approaches utilize more appropriate mod-
els such as the beta-binomial model [24,29], which were applied
to non-coding regions.

Although the above methods have been useful, there are some
pitfalls. Some approaches use binomial or Poisson models with
one or two cofactors [12,13,22] but this may lead to many uncon-
vinced predictions. For example, there are 20 genes reported by
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Chang et al. [13] that show significant ‘‘hotspot” associations where
the ‘‘hotspots” are supported by two mutations only (e.g. SESN2 in

https://www.cancerhotspots.org/), which still seems biologically
weak for validation purposes. Pursuing experimental validations
on SENS2 would be very difficult if there is no available informa-
tion about the parameters fitted and all related information used
regarding the gene and mutations. Some methods use randomiza-
tion of the mutations to estimate significance [1] but this would
lead to biased estimations if not all cofactors are considered, which
is difficult because there is still uncertainty about possible cofac-
tors. Other methods use well-known cancer genes as positive con-
trols and presumed negatives to estimate sensitivity and specificity
[30]. One of the reported problems of this strategy is that it sacri-
fices sensitivity for specificity [30], which may show difficulties
when used as a discovery tool. In this context, simulations may
be a good strategy.

One of the strengths of methods that detect regions, domains,
and 3D structures is that estimations can be more reliable because
many more mutations can be analyzed within regions than within
positions. Nevertheless, this is also a weakness because it is known
that the sequence context plays a role [12] and these methods lack
nucleotide sequence resolution. Another issue is that some meth-
ods focus on single nucleotide variants, presumably because of
the lack of corrections for small insertions and deletions (INDELS)
[13]. Regarding the types of mutations, most referred methods
focus mainly on missense mutations. This is sensible because these
hotspots mark positions on the protein that may change its func-
tion. Besides, missense mutations represent a large proportion of
all mutations. Nevertheless, other mutations may be interesting
such as those generated by small insertions and deletions that
may easily accumulate at repetitive sequences [31]. A deeper anal-
ysis of methods is presented elsewhere [32].

In this work, firstly, a comparison of the fitting of the distribu-
tion of all types of small mutations by two canonical distributions
(Binomial, Geometric) and two more that consider over-dispersion
(Beta-Binomial, and Zero-Inflated Beta-Binomial) is presented. The
comparison leads to the determination that, overall, the beta-
binomial model seems to be the best model. Then, to account for
genuine hotspots that do not fit well even considering over-
dispersion by the beta-binomial, a mixture model with fixed effects
is proposed to better fit the observed mutation distribution per
gene without covariates. The need of fixed effects on high frequent
mutations suggests the presence of hotspots. Simulations show
that the proposed mixture model is accurate. Then, the mixture
model has been applied to The Cancer Genome Atlas (TCGA) dataset
and the putative hotspots are analyzed. The analysis shows that
there is a bias for a sequence context centered at the mutation
position and that systematic bias is observed in most co-
localized olfactory receptors and other co-localized gene families.
More importantly, some detected genes not considered as muta-
tions hotspots show comparable statistics that current well-
known cancer genes carrying hotspots. To the author knowledge,
this is one of the few methods that use simulations to evaluate
the sensitivity and specificity of the proposed method.
2. Material and methods

2.1. Mutational data

The mutation annotation files (maf) were obtained from the

public cancer repository TCGA (http://firebrowse.org/) in January
2018 corresponding to 33 cancer types, 10,182 patients, and
3,175,929 mutations (Supplementary Table 1). Only mutations
annotated to an amino acid position within its corresponding tran-
script were used.
2.2. Distribution of mutated positions

For each gene, the mutations were counted per amino acid posi-
tion depending on their corresponding transcript and protein.
Then, the number of amino acid positions having mg,i mutations
(from 0 toMg) were aggregated where g is the gene, i is the number
of mutations, andMg is the maximal number of mutations of gene g
at any amino acid position.

2.3. Distribution models

To find the optimal parameters to fit a distribution model to
the histogram of mutational data, a numerical method imple-
mented in the optim function from the stat package was used
minimizing the difference to the observed distribution
(method=‘‘L-BFGS-B” for function optim in stats package in R,

https://cran.r-project.org/). To estimate the difference between
fitted and observed distribution was based on the G-test statistic,
G ¼ 2

P
oilog oi=eið Þ, which is equivalent to the Kullback–Leibler

divergency metric used to compare distributions. The geometric
and binomial distributions were fitted using the stat package in
R. The Zero-inflated beta-binomial (ZIBB) was fitted using the
gamlss package in R. The beta-binomial was fitted using the emd-
book package in R.

2.4. Beta-binomial model with fixed effects

Conceptually, the problem is schematized in Fig. 1A while the
algorithm is shown in Fig. 1B. The model, M ¼ BetaBin a; bð Þ þ F,
assumes a fixed effect on positions with an excess of mutations
presumably due to hotspots where Mk is the number of positions
carrying k mutations, F is the fixed hotspot effect vector, and
BetaBin is the beta-binomial density function scaled conveniently
to sum the total number of mutations minus the sum of F. A step-
wise algorithm was devised to fit this model. The algorithm starts
setting Fk = 0 and fitting the beta-binomial model using an opti-
mization algorithm as described in previous section. Then, a
matrix of improvements is estimated where each cell represents
an independent possible fixed effect in a mutation number k (in
columns) and at a fraction of the total number of sites (in rows).
The value of the cell is a ratio of improvement equal to the G
statistic before applying the fixed effect divided by the G statistic
after applying the representing fixed effect. The largest ratio rep-
resents an improvement if higher than 1 and therefore it is taken.
The corresponding level (positions) and number of mutations fi,k
are aggregated to the F vector of fixed effects. The algorithm con-
tinues until the largest ratio is not greater than 1 (no improve-
ment), when the number of steps is larger than 2 times the
maximum number of mutations, or when the G statistic is lower
than 1 to avoid over-fitting. To improve speed, the 0 positions
(k = 0), the zero mutations (mg,i = 0), fractions that do not achieve
at least 1 mutation in any k mutations, or fractions representing
mutations already calculated, are not explored. The output of
the algorithm is the fixed effect vector F representing the muta-
tions and the magnitude (number of positions), Fk, that cannot
be explained by the beta-binomial model, and the updated param-
eters a, and b. The algorithm was implemented in R and is avail-
able upon request.

2.5. Simulations

For simulations, the parameters a and b were taken from the
observed distributions of the fitted beta-binomial models obtained
for cancer data. Then the F vector was added depending on the sim-
ulation. For no hotspots, Fk = 0, otherwise some Fk > 0. In any case,
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Fig. 1. Hotspot concept and proposed algorithm. (A) Cartoon conceptualization of
random mutations along a protein (top) and similar number of mutations resulting
in two hotspots (bottom). Histogram of positions per number of mutations. The fit
of a Beta-binomial model is shown as blue dashed line. Count are missing for clarity.
(B) Proposed algorithm to find the optimal a, b, and F parameters of the mixed
model that better fit the observed mutation distribution. In each iteration (i), Fk, the
k component of F, is updated from the best improvement, if any. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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after running theproposed algorithm, if the fitted value of Fk is larger
than 50% of themutations at k, the residue positions having kmuta-
tions were recognized as hotspots. From the 2,000 genes taken for
simulations, only 1,973 genes generated successful distributions.
2.6. Hotspots from cancer data

For cancer data, a hotspot or biased position was recognized if
the fitted value of Fk is larger than 50% of the mutations, whose
mutations were 4 or more, and whose q-value (corrected p-
value) was �0.01. These criteria were used to avoid calling hot-
spots at positions of low number of mutations (e.g., mutations < 4)
that helped to improve model fitting but unlikely to represent hot-
spots (see Supplementary Fig. 1).
2.7. Sequence context

The context sequence of a mutation was annotated using the R
package BSgenome.Hsapiens.NCBI.GRCh38.
3. Results

3.1. Comparisons of competing distributions

To determine the best canonical distribution matching the
observed mutations distributions in cancer, a comparison was per-
formed between binomial, geometric, beta-binomial, and zero-
inflated beta-binomial (ZIBB) [33]. For this, the Kullback-Leiber
divergency metric was used to determine which distribution pro-
vides the best fit to the observed distribution. The ZIBB was
included due to the observation that sites at zero mutations seem
to be exacerbated. Under randomness, the binomial is the expected
result. Nevertheless, the results show that the beta-binomial and
the geometric functions capture the largest number of genes (Sup-
plementary Fig. 2A). The former is expected because the beta-
binomial can capture over-dispersion commonly present in bino-
mial data [34]. However, the geometric distribution performed sur-
prisingly high. Then, to assess whether there is a preference of a
density function for cancer genes, the same process was performed
for cancer genes according to Cosmic [14] or Martincorena [15]
and, on the other hand, for olfactory factors, which are believed
to be mostly negative for cancer genes [35]. The results demon-
strate that the beta-binomial and the geometric distributions dom-
inates the best fit (Supplementary Fig. 2A). If only the beta-binomial
and the geometric distributions were compared, 63% of the genes
were best fitted using the beta-binomial (Supplementary Fig. 2B).
Moreover, for those genes best fitted with the geometric distribu-
tion, 98% would best fit the beta-binomial if the geometric were
not considered whereas the genes best fitted with beta-binomial
would not prefer the geometric (Supplementary Fig. 2C). These
results suggest that, overall, the best distribution tested is the
beta-binomial.
3.2. Hotspot detection algorithm

As shown above, the beta-binomial distribution seems to be a
good model for most of the genes and it has been used to estimate
recurrent alterations [36–38]. The use of a distribution is interest-
ing because it provides the probability of observing k mutations
allowing the possibility of assigning a p-value to biased amino acid
positions (putative hotspots). Although a distribution could be a
good model, the presence of hotspot mutations or biased sites
would artificially increase the mutations counts at specific posi-
tions generating longer tails. This will generate deviations in the
parameter values modifying the corresponding p-values and there-
fore falsely calling or not calling hotspots at uncertain conditions.
To handle this, a mixed model is proposed having two components
as M ¼ BetaBin a; bð Þ þ F where Mk is the count of amino acid posi-
tions mutated k times. Without hotspots or deviated sites, the F
vector is zero (all Fk = 0) and the number of amino acid sites
mutated are explained entirely by the beta-binomial component.
This would generate very low differences between the observed
and fitted distribution, which is measured by the Kullback-Leiber
(KL) divergency (or G-test, see Methods). In the presence of hot-
spots or sequence biases, the KL divergency will be higher. Never-
theless, within the model, F can absorb the excess of amino acid
positions at k mutations (Fk > 0), providing a better fit for the
beta-binomial and lowering the KL divergency. Therefore, the prob-
lem is to find the optimal values of a, b, and F. For this, the devised
stepwise algorithm, schematized in Fig. 1B, first sets Fk = 0, then
finds the most deviated amino acid positions at k mutations look-
ing for lower values of cell scores. This is achieved exploring the
possible combinations of k mutations and fractions of amino acid
positions. In the example shown in Fig. 1B, the first iteration finds
F7 = 1 while the second iteration finds F6 = 1. The process ends
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because there is no sufficient improvement at the third iteration. In
this way, the fitted beta-binomial, conditioned to the fitted F, is
more representative of most sites and mutations providing an
unbiased estimation of the probability of k mutations at updated
parameters a and b, which can be very different to those parame-
ters without using the fixed effect at the start of the algorithm.
Indeed, the differences are clear in both parameters for cancer data
(Supplementary Fig. 3A-B). The convergence of the algorithm was
relatively fast (Supplementary Fig. 3C-D). Only 13 genes needed
more than 10 iterations.

3.3. Assessing the performance of the proposed algorithm

To objectively evaluate the performance of the proposed algo-
rithm, simulations were used. The first simulation was performed
assuming no hotspots. To simulate realistic scenarios, all genes
were first fit to the beta-binomial without a fixed effect. Then, the
observed ag, and bg values for 2,000 random genes g were used
to generate positions distributions at the same number of the
observed mutations. Finally, the proposed algorithm was run with
this artificial data. The results show that the proposed algorithm
has a specificity of 84.3% recognizing 0 hotspots when there are
none (Fig. 2A).

The second simulation was performed assuming one or more
hotspots (or biased amino acid positions). Note that the number
of amino acid positions or the number of mutations is important
because it could deviate far from the overall distribution or can
be masked within dense regions of the distribution. For example,
Fig. 2. Performance of the proposed algorithm on simulated data. (A) Distribution of
Injection of nHot hotspots in position rMut, relative to the maximum number of mutatio
right histogram show the result of adding 2 or 1 hotspots carrying 3 or 5 mutations res
rMut = +1 refers to 1 mutation greater than 4 (at 5 mutations). Finally, the nHot is the num
results of all simulations having hotspots. Here ‘detected hotspot’ stand for the sum o
depending on rMut and nHot. Each combination shows the percentage of simulated ge
(rounded for clarity, some cells may differ by 0.05).
in Fig. 1A, there is one hotspot carrying 6 mutations and another
carrying 7 mutations, which are at +3 and +4 mutations farther
than the last mutated ‘random’ mutation at 4. Similarly, in
Fig. 2B, two examples are shown. First, two hotspots are added
having 3 mutations (relative to the maximum 4, these are at
rMut = �1). Then one hotspot is added at 5 mutations (rMut=+1).
To generalize for any gene, for the simulations, the number of
amino acid positions injected were nHot={1, 3, 5} whereas the
number of mutations tested was rMut={�3, �2, �1, 0, 1, 3, 5} rela-
tive to the maximum number of observed mutations. In this way,
injected hotspots at rMut � 0 are harder to detect because are
mixed with the overall distribution. Contrary, high values of rMut
or larger nHot are easier to detect because the alteration has a dee-
per impact on the distribution. For these simulations, the same
2,000 genes employed in the first simulations were used. The
results show that the proposed algorithm only fails to detect at
least one hotspot in 15% of the simulations (Fig. 2C). Thus, the algo-
rithm has an overall sensitivity of 85%. Nevertheless, in more than
10% of the simulations, more than one hotspot was detected. To
study the conditions of this behavior deeply, the performance of
the algorithm for different rMut values was analyzed as shown in
Fig. 2D. The ideal well-known hotspots should contain more than
the maximum random mutations, which corresponds to rMut > 0.
The performance in these ideal hotspots was �99% for 1, 3, and 5
injected hotspots. If the hotspots are precisely the ones at the max-
imum number of mutations (rMut = 0), the performance is 76% if
there is only one hotspot, or close to 100% if there are 3 or more.
If a hotspot is present but in the observed data is still below the
the number of detected hotspots in simulation 1, which does not inject hotspots. (B)
ns (4 in the example shown). The left histogram shows initial data. The middle and
pectively where rMut = �1 refers to 1 mutation less than 4 (at 3 mutations), while
ber of amino acid positions added to the specified number of mutations. (C) Overall
f Fk values > 0 from fitted F vectors. (D) shows the performance of the algorithm
nes that showed the corresponding hotspots at the relative number of mutations
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maximum number of mutations (corresponding to rMut < 0), the
performance decreases with both nHot, and rMut (Fig. 2D). This
scenario seems counterintuitive but because data in cancer has
not been uniformly nor comprehensive acquired in all cancer
types, it may be still useful if detected. In these cases, if only one
hotspot is present, the overall performance decreases to 81%,
50%, or 21% corresponding to �1, �2, and �3 relative mutations
and more than 15% of the times another false ‘hotspot’ is detected
(see rows at rMut = �1, �2, �3 and columns 2, 4, and 6). When
three or five hotspots are present below the maximum mutations,
the performance is in general higher but also increases the number
of false ‘hotspots’ detected.

In summary, the proposed algorithm has an ideal performance
(>99% sensitivity and specificity) when the hotspots are those at
the maximum number of mutations and the performance
decreases with the number of hotspots or the relative position to
the maximum number of mutations.
3.4. Detecting hotspots in cancer data

From the proposed algorithm, the fixed effects F absorbs those
positions that cannot be explained by the beta-binomial model
alone. Thus, the fixed effect vector F mark hotspots while the fitted
beta-binomial is able to, less biasedly, estimate its probability. The
p-value was then corrected by a false discovery rate (FDR)
approach [39]. Because potential hotspots are only those with a
sensible number of recurrent positions, the FDR correction was
estimated for sites whose recurrence were 4 or more. Only posi-
tions having FDR � 0.01 were considered as hotspots. This was
applied to TCGA mutational data, which includes 3,175,929 muta-
tions from 10,182 patients across 33 cancer types (Supplementary
Table 1). As a correction, hotspots were also called if the number of
mutations were 9 or greater which includes many amino acid posi-
tions in TP53, PIK3CA, and PTEN, which result presumably to the
overwhelming number of hotspots in these genes (Supplementary
Fig. 4). The detected hotspots are part of a database, Hotspots Anno-

tations [40], available online (http://bioinformatica.mty.itesm.mx/

HotSpotsAnnotations). Some representative examples of the hot-
spot detection are shown in Fig. 3. For a well-known cancer gene,
EGFR, 4 hotspots are clearly recognized carrying from 11 to 27
mutations. In addition, there were 4 AA positions carrying 5 muta-
tions, 1 of 6 mutations, and 2 of 7 mutations that were effectively
recognized by the algorithm but that were not significant under
the above criteria after FDR correction. Similarly, for NBPF12 and
GK2, not recognized as cancer genes in COSMIC, there were 1 hot-
spot accumulating 12 mutations in NBPF12, and 4 hotspots show-
ing 5 to 6 mutations in GK2. In total, 3,860 hotspots were detected
in 3,115 genes where 2,639 genes had only 1 hotspot, 378 genes
contain 2 hotspots, and 98 genes showed 3 or more hotspots
(Fig. 4A). These hotspots cover 39,815 mutations representing
1.25% of the total mutations and 0.19% of the mutated sites. Com-
mon cancer genes showed many hotspots such as TP53, PIK3CA,
APC, PTEN, CDKN2A, ARID1A, FBXW7, NFE2L2, and 6 or more were
estimated in ERBB2, CTNNB1, BRAF, CIC, KMT2D, and DNAH5. The
Table 1 shows the 98 genes showing 3 or more hotspots ordered
by maximum number of mutations in a hotspot and the number
of hotspots. This list is highly enriched in cancer genes, it contains
38% (n = 37, p < 10�53) and 39% (n = 38, p < 10�31) cancer genes
from Cosmic [14] and Martincorena [15] respectively. Additionally,
this list was compared with other cancer gene lists from Lawrence
[41] (n = 34, p < 10�43), High Confidence Drivers (HDC) [42] (n = 37,
p < 10�38), and NetSig5000 [43] (n = 3, p < 10�3). Hotspots contain-
ing many mutations or hotspots are commonly well-known and
present in several cancer gene lists because they have been spotted
time ago such as IDH1 in gliomas, BRAF in thyroid, melanoma, and
other cancer types. Nevertheless, an analysis of the distribution of
mutations show high density corresponding to mutations between
5 and 9 reaching ~70% of detected hotspots (Fig. 4B). This suggest
that many hotspots are needed to be analyzed and experimentally
studied.

TTN showed 7 ‘hotspots’ but has been marked repeatedly as a
‘false positive’ gene due to its size (35,991 aa for isoform
NP_001254479). Although the distribution of mutations and the
fitting for TTN seems to correctly detect departures from the
expected beta-binomial distribution (Supplementary Fig. 5A), a
possible modeling problem is the intrinsic assumption of homoge-
nous background mutation rates that could be wrong for very long
genes. To determine possible modeling failures for TTN, the model
was fitted by non-overlapping windows of size 1,000 aa along the
gene. The results show that the p-value assigned to 5 of the 7 des-
ignated ‘hotspots’ are even more significant by the local fitting
(Supplementary Fig. 5B) suggesting that detections for the whole
gene are acceptable. Nevertheless, the estimations of the back-
ground mutation along the 35 fitted windows shows systematic
increases from 0.68 to 0.80 along the gene (Supplementary
Fig. 5C, probability of mutations = 0) suggesting that most precise
estimations could be done by local fitting.
3.5. Variant types and sequence context in hotspots

Most hotspots methods focus on missense and nonsense muta-
tions, which cover around 75% of all mutations. This has the advan-
tage of focusing on clear biological effects but has the disadvantage
of ignoring possible sequence biases that may help to recognize
mechanistic effects. In addition, the proposed algorithm is inspired
in estimating biases in the distribution of mutations along protein
coding regions, which will be affected by selecting types of muta-
tions. Therefore, all small mutations types were used. The disad-
vantage, however, is that not all variant types may show an
interesting biological effect. In addition, it is known that hotspots
may be focalized in specific sequence contexts [44]. Accordingly,
a comparison of variant types and sequence contexts were per-
formed between hotspots and the overall data in unique positions.
To clearly expose the differences, only hotspots carrying 10 or
more mutations were compared as shown in Fig. 5 while the com-
plete analysis is shown in Supplementary Fig. 7. From the input
data, the most frequent variant types are missense, silent, and non-
sense accumulating 1.44, 0.564 and 0.116 million mutations. In
hotspots, although the most frequent mutations are missense
(n = 750) surprisingly, frame shift deletions counts are very similar
(n = 742) even that frame shift deletions are more than 20 times less
frequent in the overall data. Frame shift insertions were also high
(n = 327).

The Fig. 5 clearly show that while the sequence context TCN

dominates the overall mutated positions mainly in the TCT

sequence context (where the C marks the site of mutation), the

TCG is by far the most recurrent context for hotspots while TCT,

TCA, and TCC generally decrease. This pattern seems to be clearly
present in missense and nonsense and partially also in silence muta-
tions suggesting that there is some type of preference or selection

for the TCG context in these types of variants. Similarly, for hot-

spots carrying 5 to 9 mutations, the TCG increase is also observed
(Supplementary Fig. 6). However, in these hotspots, an increase in

GCG, then CCG and ACG, were also present suggesting that the

overall preference for 5 to 9 mutations seems to be xNCG. All these
results concur with the pattern of mutations from APOBEC [44].

For frame shift deletions the observed differences are not so
strong, suggesting that, overall, selection pressure is absent or
low. The highest increases in differences (+5 relative %) were in
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Fig. 3. Examples of hotspots detections. Three examples of hotspots detections from TCGA data. The figures at left show the mutations along the protein sequence of three
genes (EGFR, NBPF12, GK2). Point colors correspond to different cancer types. Symbols correspond to different types of mutations (circles correspond to missense mutations).
The histograms at right show the corresponding amino acid positions (vertical, in logarithmic scale) per number of mutations (horizontal). The beta-binomial component is
represented in light bar colors and dotted line. The fixed effect is represented by darker bar colors. Significant hotpots are marked. Non-significant fixed effects are also
shown. Figures taken from http://bioinformatica.mty.itesm.mx/HotSpotsAnnotations developed in our research group.

Fig. 4. Distribution of detected hotspots per gene and mutations. (A) Hotspots per gene. Vertical axis in logarithm scale. (B) Hotspots per number of mutations.
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ACC, CTT, and TTA. For other types of variants, the changes or the
number of occurrences in hotspots are low.

3.6. Hotspots across cancer types

It is known that cancer types differ in the frequency of muta-
tions per gene [35]. It has also been proposed that driver mutations
may accumulate from 1 to 10 depending on the cancer type [15].
Therefore, a comparison of hotspots across cancer types were per-
formed. First, it was noted that the percentage of samples not car-
rying any hotspot mutation formed three to four clusters of cancer
types (Fig. 6A), which also correlated with the overall mutation
rate. The clusters include more than 60% of samples (TGCT, KIRP,
KIRC, MESO, PCPG, PRAD, KICH, and ACC), then between 25% and
60% of samples (THCA, THYM, OV, GBM, BRCA, CESC, LAML, DLBC,
LIHC, SARC, CHOL), those between 10% and 25% (PAAD, LGG, LUSC,
HNSC, ESCA, LUAD, BLCA, STAD), and those below 10% (SKCM,
COAD, UCEC). UVM, UCS, and READ show also low percentage of
samples not carrying hotspots but its distribution is more similar
to one of the first three clusters. STAD, SKCM, COAD, and UCEC
show around 20% or more samples carrying 10 or more hotspots,
which is also consistent with the high rate of mutations of these
cancer types. It is well known that TP53, PIK3CA, and RAS gene
family show recurrence in many cancer types but others genes
are more specific. For example, IDH1/2 in gliomas, AKT1 and
GATA3 in BRCA, SPOP in PRAD, and BRAF in THCA. Therefore, three

http://bioinformatica.mty.itesm.mx/HotSpotsAnnotations


Table 1
Genes showing 3 or more recognized hotspots.

Gene HotSpots Mutations Min-Max Lists* Gene HotSpots Mutations Min-Max Lists*

BRAF 6 11–594 CML H ZNF442 3 8–11
KRAS 4 24–564 CML H MDN1 3 7–11 H
PIK3CA 22 9–290 CMLNH KIAA2026 3 6–11
TP53 63 16–251 CML H PPM1D 3 6–11 CML
NRAS 3 15–203 CML H DDX17 3 5–11
PTEN 15 10–112 CML H DNAH5 5 9–10
FBXW7 9 9–69 CML H CSMD3 3 9–10 C
JAK1 3 14–60 CM MECOM 3 9–10 C H
CTNNB1 6 30–50 CML H ATRX 3 7–10 CM H
HRAS 4 7–50 CML H C5orf42 3 7–10
CDKN2A 12 10–41 CML H UVRAG 3 5–10
APC 18 9–40 CML H DNAH7 3 9–9
ERBB2 6 9–40 CML H TTN 7 8–9
PPP2R1A 3 13–33 CML H OR51S1 4 8–9
NFE2L2 9 7–32 CML H RASA1 3 8–9 MLNH
ARID1A 9 9–29 CML H SAMD9 3 8–9
EGFR 4 11–27 CML H MGA 4 7–9 ML H
KMT2D 5 9–26 CM ADAMTS3 3 7–9
FGFR2 3 8–25 CML H ALB 3 7–9 M
SCAF4 3 10–24 CHD1 3 7–9
SF3B1 4 7–21 C L H ZNF14 3 7–9
SPOP 4 9–19 CML H ZNF732 3 7–9
MBD6 3 12–17 M ZNF292 4 6–9
KMT2B 3 11–17 M ADNP 3 6–9 L
PIK3R1 4 10–17 CMLNH TRIM23 3 6–9 L
MFRP 3 6–17 KIF20B 4 7–8 H
CD93 3 12–16 CWF19L2 3 7–8
TPTE 4 9–16 OR2T2 3 7–8
CHD4 3 11–15 CML H UNC79 3 7–8
KANSL1 4 8–15 M FAM193A 3 6–8
CTCF 3 11–14 CML H ZNF502 3 6–8
ZBTB7C 3 9–14 SLCO1B7 4 5–8
NF1 4 8–13 CML H CCDC27 3 7–7
PRKDC 3 8–13 CFAP61 3 7–7
CIC 5 7–13 CM H MSH6 4 6–7 C
ARHGAP5 3 7–13 CM VPS13C 4 6–7
SMAD2 3 7–13 CML H BTBD7 3 6–7
YLPM1 3 7–13 M TDRD6 3 6–7
MYOCD 3 10–12 L GTF3C4 3 5–7
THSD7B 3 10–12 PTPN11 3 5–7 CML H
CASP8 4 9–12 CML H CCDC168 4 6–6
ANK3 3 9–12 L GK2 3 6–6
CNTNAP2 3 9–12 C RALGAPA1 3 6–6 H
ZFHX4 3 9–12 CSGALNACT1 3 5–6
CNOT1 3 7–12 H PTPN13 3 5–6 C H
HCN1 3 9–11 RPS6KA5 3 5–6
PBRM1 3 9–11 CML H MAN2A1 4 5–5
ALG13 3 8–11 B3GAT2 3 5–5
C6 3 8–11 CLCA4 3 5–5

* Values in column ‘‘Lists” are C for Cosmic, M for Martincorena, L for Lawrence, N for NetSig5000, and H for HCD.
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approaches were performed to highlight cancer-specific hotspots.
First, the top 10 most frequent hotspots per cancer type were esti-
mated as shown in Table 2. Beside the above cancer-specific genes,
other high frequent hotspot can be noted such as GTFI2 in THYM,
GNAQ in UVM, CTNNB1 in LIHC, VHL in KIRC, CDKN2A in HNSC,
and NFE2L2 in LUSC. Second, an analysis of the number of cancer
types per hotspot shows that most hotspots (91%) are formed by
mutations from 2 to 6 cancer types (Fig. 6B). Thus, only 95 hotspots
(2.46%) are strictly cancer type-specific (Fig. 6C). For example, VHL
p.158 in KIRC, APC p.935 in COAD, and CDH1 p.23 in BRCA. Third,
because of these results, for each hotspot the major cancer type
was calculated. Then, if its contribution to the total number of
mutations were higher than 50% or if it were higher than 25%
and the number of mutations were higher than 10, it was selected
as ‘cancer-enriched’. Thus, the number of hotspots per cancer type
was very high for UCEC, STAD, SKCM, and COAD as shown in
Fig. 6C, presumably due to high mutations rates. The Table 3 shows
the hotpots for the rest of cancer types and the complete list is
shown in Supplementary Table 1. This is interesting because it
highlights genes not well studied such as NBPF12 in BRCA, LPAR6
or ASXL2 in BLCA, and FGGY in LUSC, which is being studied
recently [45].

3.7. Model parameters correlates with background mutation rates

The estimation of background mutation rates is important for
mutation detection methods because it helps to determine devia-
tions [46]. Instead of the expected number of mutations, the fitted
beta-binomial model can be used to provide estimations of the
probability of k mutations along chromosomes. By definition, con-
tiguous genes should show similar probabilities even that the fit-
ting was independent. Small deviations of an overall probability
should highlight important genes and systematic deviations
should show artifactual genes or regions. To validate this, the esti-
mated p-values were compared between genes along chromo-
somes. The Fig. 7 shows a representative example of the
estimations for the chromosome 1 (Supplementary Fig. 7 shows
all chromosomes) for the p-value of 0 and 1 mutations (shown in
black and red respectively). It is clear that the smoothed mean
show some peaks that colocalize with olfactory receptors (vertical



Fig. 5. Comparison of mutated context sequences in hotspots. The heatmap at left show the relative percentage of all mutated positions per mutation type and context
sequence found in the whole dataset of TCGA data used. Only selected mutations types are shown for clarity (those found in hotspots of 10 or more mutations as shown in
middle heatmap). Only distinct mutation sites are considered. Total positions (N) at top, are shown in thousands (k = 1000). The heatmap at the middle shows equivalent
percentages found at hotspots positions carrying 10 or more mutations. To facilitate interpretation, the heatmap at the right show the difference of the percentages. The
Supplementary Fig. 6 show details of other mutations types and hotspots of 5 to 9 mutations.

Fig. 6. Distribution of hotspots across cancer types. (A) Percentage of samples along number of hotspots. (B) Different types of cancer that present a hotspot. (C) shows the
95 hotspots found at one cancer type only. Supplementary Table 2 shows the genes that are strict cancer type-specific. (D) Hotspots that are majorly represented by one
cancer type. Supplementary Table 3 shows the genes that are enriched by cancer type.
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gray lines), which has been shown to be highly correlated to late
replication timing, low expression, and higher mutation rates
[35]. Other gene clusters can be identified, for example, late corni-
fied envelope (LCE) gene cluster in Chr1 (Fig. 7), regenerating fam-
ily member (REG) in Chr2, protocadherin beta gene cluster
(PCDHB) in Chr5, the histone 1 cluster in Chr6, among others (Sup-



Table 2
Top 10 most frequent hotspots per cancer type (# patients GENE position).

Type Top 1 2 3 4 5 6 7 8 9 10

ACC 6 TMEM247
128

5 CTNNB1 45 3 CTNNB1
34

2 MUC4
3515

2 OR4K2 207 2 RPL22 15 2 TP53 125 2 TRIL 394

BLCA 35 PIK3CA
545

30 FGFR3
249

24 TP53 248 22 ERBB2
310

18 PIK3CA
542

15 TP53 280 14 RXRA
427

11 KRAS 12 10 TP53 285 9 C3orf70 6

BRCA 133 PIK3CA
1047

69 PIK3CA
545

41 PIK3CA
542

25 AKT1 17 21 GATA3
308

20 TP53 273 19 TP53
175

16 PIK3CA
345

12 GATA3
407

11 PIK3CA
546

CESC 37 PIK3CA
545

23 PIK3CA
542

10 MAPK1
322

7 FBXW7
505

7 KRAS 12 6 ERBB2 310 6 FBXW7
465

6 PIK3CA
726

5 KLF5 419 4 C12orf43
28

CHOL 5 IDH1 132 2 ERBB2 755 2 IDH2 172
COAD 102 KRAS 12 49 BRAF 600 35 PIK3CA

545
32 KRAS 13 27 SETD1B 5 27 TP53 175 23 APC

1450
21 PIK3CA
1047

21 XYLT2 526 21 ZBTB20
692

DLBC 2 B2M 1
ESCA 15 TP53 248 11 TP53 175 9 TP53 273 6 PIK3CA

545
6 TP53 135 5 TP53 220 5 TP53 282 4 NFE2L2 79 4 PIK3CA

1047
4 TP53 187

GBM 22 IDH1 132 21 EGFR 289 14 EGFR 598 13 TP53 248 7 PTEN 130 7 TP53 175 7 TP53 273 6 PIK3R1
376

6 TP53 282 5 PTEN 173

HNSC 24 PIK3CA
545

20 CDKN2A
80

18 PIK3CA
542

15 PIK3CA
1047

13 TP53 248 13 TP53 273 12 TP53
175

11 CDKN2A
58

11 HRAS 12 11 HRAS 13

KICH (none)
KIRC 9 VHL 155 9 VHL 158 2 PBRM1

710
2 PWWP2A
270

KIRP 5 KRAS 12 4 ERBB2 755 3 PIK3CA
542

2 BRAF 600 2 FGFR3 373 2 NFE2L2 82 2 OR13G1
54

1 AHR 383

LAML 12 NPM1 287 10 DNMT3A
882

10 FLT3 835 9 IDH2 140 7 IDH1 132 5 KIT 816 4 NRAS 13 4 RIMS4 85 3 KRAS 12 3 NRAS 61

LGG 390 IDH1 132 59 TP53 273 20 IDH2 172 14 TP53 248 12 CIC 215 10 TP53 220 9 TP53 179 8 TP53 175 7 TP53 282 6 ATRX
1426

LIHC 17 CTNNB1
32

17 CTNNB1
45

12 CTNNB1
33

10 TP53 249 8 EEF1A1
432

6 CTNNB1 37 6 CTNNB1
41

6 MUC4
3515

5 CTNNB1 34 5 TP53 126

LUAD 136 KRAS 12 23 EGFR 858 10 TP53 125 10 TP53 249 10 TP53 273 9 BRAF 600 8 BRAF 469 8 KRAS 13 8 TP53 245 7 TP53 158
LUSC 18 TP53 125 17 PIK3CA

545
17 TP53 158 17 TP53 273 16 NFE2L2

34
14 NFE2L2
29

14 TP53
157

14 TP53 245 12 PIK3CA
542

11 TP53 248

MESO 2 PTEN 246 2 TP53 273
OV 21 TP53 248 20 TP53 273 16 TP53 175 12 TP53 195 10 TP53 187 9 TP53 176 9 TP53 241 8 TP53 163 8 TP53 220 8 TP53 245
PAAD 132 KRAS 12 10 TP53 248 8 GNAS 201 8 KRAS 61 6 CDKN2A

80
5 CDKN2A
83

5 TP53 175 5 TP53 273 5 TP53 282 4 SMAD4
361

PCPG 16 HRAS 61 2 FGFR1 546 2 HRAS 13
PRAD 19 SPOP 133 14 SPOP 131 8 SPOP 102 5 TP53 248 4 IDH1 132 4 PIK3CA

542
3 CTNNB1
32

3 CTNNB1 33 3 HRAS 61 3 TP53 163

READ 41 KRAS 12 13 TP53 175 11 TP53 248 10 APC 876 10 TP53 273 9 TP53 282 8 KRAS 13 7 APC 1114 7 APC 1450 7 NRAS 61
SARC 5 TP53 175 4 TP53 187 4 TP53 248 3 KRTAP1-3

40
3 TP53 132 3 TP53 213 3 TP53 220 3 TP53 224 3 TP53 275 2 C3orf20

312
SKCM 243 BRAF 600 110 NRAS 61 22 RAC1 29 21 SLC27A5

554
17 MAP2K1
124

16 IDH1 132 15 BCL2L12
17

13 KCNH5
147

13 KLHDC7A
635

13 RQCD1
131

STAD 31 XYLT2 526 30 ZBTB20
692

29 ACVR2A
435

28 DOCK3
1850

26 SLC3A2
298

25 RPL22 15 25 UBR5
2120

24 LARP4B
163

23 SPECC1
301

22 RNF43
659

TGCT 11 KIT 816 7 KRAS 12 3 KRAS 61 3 NRAS 61 2 KRAS 146 2 NRAS 12 2 PIK3CA
545

THCA 281 BRAF 600 39 NRAS 61 17 HRAS 61 5 INTS2 577 5 INTS2 578 3 AKT1 17 3 NUP93 15 2 BRAF 601 2 KPNB1 871 2 KRAS 61
THYM 62 GTF2I 424 4 HDAC4 746 4 HRAS 13 3 HRAS 117 2 NRAS 61 2 SF3B1 700
UCEC 78 PTEN 130 67 KRAS 12 49 SETD1B 5 47 RPL22 15 41 JAK1 860 41 PIK3CA

1047
40 RNF43
659

32 DOCK3
1850

31 PIK3CA 88 27 CTNNB1
33

UCS 7 FBXW7 465 7 KRAS 12 7 TP53 248 5 PIK3CA
1047

5 PIK3CA
545

5 PPP2R1A
179

4 TP53 273 3 FBXW7
479

3 FBXW7 505 3 PPP2R1A
183

UVM 37 GNAQ 209 34 GNA11
209

14 SF3B1
625

2 GNAQ 183 2 SF3B1 666
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plementary Fig. 7). Specific deviations such as CDKN2A in Chr9,
PTEN in Chr10, TP53 in Chr17 among other are also visible (Supple-
mentary Fig. 7). These results show that the proposed algorithm
provides consistent estimations. Moreover, these estimations are
able to capture variations in background mutations rates.
4. Discussion

This manuscript shows an algorithm to identify highly recur-
rent mutations at specific amino acid positions in cancer. The algo-
rithm fits the distribution of amino acid positions along number of
mutations using a mixed model that includes a beta-binomial
model plus a fixed effect (Fig. 1). The algorithm proposed made
some assumptions and has not been extensively optimized. For
example, the termination criteria of nu‘‘mber of iterations and G
statistic threshold of 1. Nevertheless, the results support an accept-
able and competitive performance.

The comparisons of different distributions lead to select the
beta-binomial model. This makes sense because, in principle, the
mutation can be seen as a binomial process during replication
and/or repair. Then, instead of fixing p along the gene in the bino-
mial process, p is random drawn from a beta distribution, which
absorbs uncertainty due to patient, different positions, and
sequence contexts resulting in allowing more uncertainty, cover-
ing observed over-dispersion, and fitting the data better. Other sta-
tistical models could be tested but the justification, the
interpretation, and the adequacy of the model may be difficult.



Table 3
Cancer enriched hotspots.

Cancer HotSpot N % Cancer HotSpot N % Cancer HotSpot N %

BLCA FGFR3 249 30 83 BRCA PIK3CA 1047 133 47 LGG IDH1 132 390 85
ERBB2 310 22 55 AKT1 17 25 47 IDH2 172 20 77
TP53 280 15 33 GATA3 308 21 95 CIC 215 12 92
RXRA 427 14 82 PIK3CA 345 16 40 ATRX 1426 6 60
TP53 285 10 34 GATA3 407 12 75 CIC 1512 6 55
C3orf70 6 9 45 PIK3CA 726 10 33 EGFR 252 5 45
ERCC2 238 9 100 CDH1 23 9 100 LUAD EGFR 858 23 100
AHR 383 8 73 HIST1H2AE 128 9 43 BRAF 469 8 36
FGFR3 373 8 80 SF3B1 700 8 57 BRAF 466 6 46
KDM6A 555 8 100 ERBB2 755 7 39 STK11 51 6 75
LPAR6 316 7 88 NBPF12 125 7 58 OR2T2 14 4 50
SF3B1 902 7 100 PIK3CA 453 7 28 SNRPD3 96 4 67
RARS2 6 6 43 RTF1 235 5 42 GBM EGFR 289 21 78
TP53 271 6 32 ERBB2 777 4 31 EGFR 598 14 74
CELSR3 356 5 83 FOXA1 226 4 57 PIK3R1 376 6 46
MROH2B 1109 5 56 HNSC CDKN2A 80 20 49 KRTAP4-6 62 4 57
PDE3A 275 5 42 CDKN2A 58 11 52 PTEN 132 4 36
TFPI2 222 5 50 HRAS 12 11 58 LIHC CTNNB1 32 17 40
ACTB 158 4 57 HRAS 13 11 35 CTNNB1 45 17 46
ASXL2 330 4 67 CDKN2A 153 10 56 EEF1A1 432 8 73
C12orf43 28 4 50 CDKN2A 110 9 43 MUC4 3515 6 40
FOXQ1 135 4 80 RAC1 159 6 75 ADRA1D 554 4 80
HIST2H2BE 71 4 44 TP53 298 6 33 THCA BRAF 600 281 47
RB1 405 4 44 CDKN2A 88 5 38 HRAS 61 17 34
TMCO4 13 4 50 EP300 1399 5 33 INTS2 577 5 62

LUSC TP53 125 18 26 KRT6A 487 5 71 INTS2 578 5 71
TP53 158 17 33 CDKN2A 51 4 27 PRAD SPOP 133 19 100
NFE2L2 34 16 50 OV TP53 195 12 30 SPOP 131 14 88
NFE2L2 29 14 48 RIF1 1718 6 55 SPOP 102 8 89
TP53 157 14 36 ZNF12 417 6 86 UVM GNAQ 209 37 92
NFE2L2 79 10 34 FAH 153 5 62 GNA11 209 34 89
TP53 234 9 38 BRAP 577 4 67 SF3B1 625 14 67
CDKN2A 84 7 41 DDR2 85 4 67 CESC MAPK1 322625 10 53
MB21D2 311 7 28 SLC9A4 353 4 36 KLF5 419 5 38
CDKN2A 108 6 40 LAML NPM1 287 12 100 KIRC VHL 155 9 90
KRT5 492 6 55 DNMT3A 882 10 83 VHL 158 9 100
NFE2L2 31 6 55 FLT3 835 10 100 THYM GTF2I 424 62 97
TP53 105 5 31 IDH2 140 9 82 HDAC4 746 4 33
FGGY 484 4 44 NRAS 13 4 27 ACC TMEM247 128 6 30
NFE2L2 30 4 40 RIMS4 85 4 40 READ SMAD4 537 5 50
PTEN 245 4 40 STAD (444 see Suppl) TGCT KIT 816 11 65

UCEC (1076 see Suppl) SKCM (252 see Suppl) COAD (249 see Suppl)

Fig. 7. Model estimations along chromosome 1. The figure shows the density estimations of 0 mutations (dots in black) and 1 mutation (dots in red). The red line in top and
black line in bottom show the smoothed estimation (window = 5). The mean value, 0.818 for the former and 0.151 for the last, is shown at right and represented by a
horizontal gray line. Vertical gray lines represent genomic positions for annotated olfactory receptors. Some genes farther than 3 standard deviations are annotated.
Supplementary Fig. 7 shows equivalent information for all chromosomes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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One of the problems when proposing a predicting or discovery
algorithm is how assessing the accuracy. Although other algo-
rithms and models have been proposed, most of them use lists of
positive and/or negative curated genes as benchmarking. Instead,
simulations were used here showing that, overall, the sensitivity
and specificity was ~85%. More importantly, in conditions common
for hotspots such as at highest number of mutations, the algorithm
shows accuracies around 99%.
Few genes such as TP53, PIK3CA, and PTEN, showed a different
tendency in fitting than most genes (Supplementary Fig. 4). This is
presumably due to the high number of hotspots and mutations
backed up by the observation that closer genes such as CDKN2A,
GATA3, and APC also show high hotspots. This is not a problem
because these are well-known cancer genes. Nevertheless, it would
be interesting to observe other genes once more mutation data is
aggregated in the coming years.
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It is assumed that a hotspot have functional impact in cancer
[1]. Nevertheless, recent advances have shown that many hotspots
arise by artifacts in local sequences such as hairpins susceptible for
APOBEC enzymatic activity [44], including the detected gene
MB21D2. Therefore, it is difficult to confirm in advance which hot-
spots will be functional. However, the first step is to detect those
that under a certain model seems to be potential hotspots. These
hotspots are provided here. Thus, how hotspots must be selected
for functional validation? First, those that are well-known cancer
genes whose hotspot have not been experimentally tested. Second,
the genes showing many hotspots or high number of mutations at
the hotspot. These would provide further certainty that any of its
hotspots are indeed functional. Nevertheless, in the analysis of can-
cer data, most genes only show 1 hotspot and most hotspots were
found supported by less than 10 mutations (Fig. 4). Third, check
that the gene has not been listed for APOBEC activity [44]. In this
context, the database HotSpotsAnnotations has been created

(http://bioinformatica.mty.itesm.mx:8080/HotSpotsAnnotations)
which has been annotated for APOBEC, the ratio of non-
synonymous by synonymous mutations, and can be manually
annotated by the research community [40]. Fourth, further verifi-
cation is needed if the gene is super-sized or within artifactual
regions such as those around olfactory receptors. Fifth, check the
criteria of the ratio of non-synonymous to synonymous mutations
[15]. Finally, frame shifts deletions and insertions have not been
well studied in the hotspot context and in statistical models.
Around one third of the detected hotspots included these mutation
types.

The observation that TCG is more prone to form hotspots does
not seem to be due to the lack of covariates in the model used. This
is based on the fact that sequence context in hotspotswere analyzed
after normalization by percentage comparing the observed muta-
tional spectra and the hotspots. That is, if all mutational contexts
would have similar probability of being established as a hotspot,
similar percentages would be observed in hotspots. Instead, more

than two-fold was observed in TCG for single nucleotide variants.
Most hotspots carry between 5 and 9 mutations (70%) and also

are formed by mutations of different cancer types (91%). Therefore,
many hotspots were only detected when mutation from all cancer
types were aggregated highlighting the importance of integrating
databases. Consequently, as more mutation data is accumulated,
more precise detections can be done. One issue is that all datasets
must be processed in compatible pipelines, genome annotations,
and transcripts to avoid inconsistencies. In this context, other data-
bases such as those from the International Cancer Genome Consor-
tium (ICGC) should improve and confirm the results.
5. Conclusion

Simulations of the proposed algorithm that fit a mixed model of
beta-binomial plus a fixed effect demonstrated excellent perfor-
mance for hotspots at highest mutations (around 99% accuracy)
and acceptable overall performance (85%). The algorithm was
applied to TCGA cancer data detecting more than 3,860 hotspots
after FDR correction that account for around 1.25% of the total
number of mutations and 0.19% of the mutated amino acid sites.
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgements

I thank Dr. Jose Tamez, Dr. Emmanuel Martinez, and all partic-
ipants in the Bioinformatics seminar for their comments and
recommendations.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2020.06.022.

References

[1] Miller ML, Reznik E, Gauthier NP, Ciriello G, Schultz N, Miller ML, et al. Pan-
cancer analysis of mutation hotspots in protein domains. Cell Syst
2015;1:197–209. https://doi.org/10.1016/j.cels.2015.08.014.

[2] Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of
the BRAF gene in human cancer. Nature 2002;417:949–54. https://doi.org/
10.1038/nature00766.

[3] Tiacci E, Trifonov V, Schiavoni G, Holmes A, Kern W, Martelli MP, et al. BRAF
mutations in hairy-cell leukemia. N Engl J Med 2011;364:2305–15. https://doi.
org/10.1056/NEJMoa1014209.

[4] Cancer T, Atlas G, Agrawal N, Akbani R, Aksoy BA, Ally A, et al. Integrated
genomic characterization of papillary thyroid carcinoma. Cell
2014;159:676–90. https://doi.org/10.1016/j.cell.2014.09.050.

[5] Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat J-P, et al. A
landscape of driver mutations in melanoma. Cell 2012;150:251–63. https://
doi.org/10.1016/j.cell.2012.06.024.

[6] Muzny DM, Bainbridge MN, Chang K, Dinh HH, Drummond JA, Fowler G, et al.
Comprehensive molecular characterization of human colon and rectal cancer.
Nature 2012;487:330–7. https://doi.org/10.1038/nature11252.

[7] Cancer T, Atlas G, Network TCGAR, institution.) (Participants are arranged by
area of contribution and then by, Institute G data analysis centres: B
sequencing centres: B, Hammerman PS, et al. Comprehensive genomic
characterization of squamous cell lung cancers. Nature 2012;489:519–25.
Doi:10.1038/nature11404.

[8] Salimian KJ, Fazeli R, Zheng G, Ettinger D, Maleki Z. V600E BRAF versus Non-
V600E BRAF mutated lung adenocarcinomas: cytomorphology, histology,
coexistence of other driver mutations and patient characteristics. Acta Cytol
2018;62:79–84. https://doi.org/10.1159/000485497.

[9] Gliomas L. Comprehensive, integrative genomic analysis of diffuse lower-grade
gliomas. N Engl J Med 2015:2481–98. https://doi.org/10.1056/
NEJMoa1402121.

[10] Collisson EA, Campbell JD, Brooks AN, Berger AH, Lee W, Chmielecki J, et al.
Comprehensive molecular profiling of lung adenocarcinoma. Nature
2014;511:543–50. https://doi.org/10.1038/nature13385.

[11] Akbani R, Akdemir KC, Aksoy BA, Albert M, Ally A, Amin SB, et al. Genomic
classification of cutaneous melanoma. Cell 2015;161:1681–96. https://doi.org/
10.1016/j.cell.2015.05.044.

[12] Chang MT, Bhattarai TS, Schram AM, Bielski CM, Donoghue TA, Jonsson P, et al.
Accelerating discovery of functional mutant alleles in cancer. Cancer Discov
2018;8:174–83. https://doi.org/10.1158/2159-8290.CD-17-0321.

[13] Chang MT, Asthana S, Gao SP, Lee BH, Chapman JS, Kandoth C, et al. Identifying
recurrent mutations in cancer reveals widespread lineage diversity and
mutational specificity. Nat Biotechnol 2015;34:155–63. https://doi.org/
10.1038/nbt.3391.

[14] Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. COSMIC: the
catalogue of somatic mutations in cancer. Nucleic Acids Res 2019;47:D941–7.
https://doi.org/10.1093/nar/gky1015.

[15] Martincorena I, Raine KM, Gerstung M, Dawson KJ, Haase K, Van Loo P, et al.
Universal patterns of selection in cancer and somatic tissues. Cell 2017;171
(1029–1041):. https://doi.org/10.1016/j.cell.2017.09.042e21.

[16] Tamborero D, Gonzalez-Perez A, Lopez-Bigas N. OncodriveCLUST: exploiting
the positional clustering of somatic mutations to identify cancer genes.
Bioinformatics 2013;29:2238–44. https://doi.org/10.1093/bioinformatics/
btt395.

[17] Jia P, Wang Q, Chen Q, Hutchinson KE, Pao W, Zhao Z. MSEA: detection and
quantification of mutation hotspots through mutation set enrichment
analysis. Genome Biol 2014;15:489. https://doi.org/10.1186/s13059-014-
0489-9.

[18] Baeissa H, Benstead-hume G, Richardson CJ, Pearl MG. Identification and
analysis of mutational hotspots in oncogenes and tumour suppressors.
Oncotarget 2017;8:21290–304.

[19] Tokheim C, Bhattacharya R, Niknafs N, Gygax DM, Kim R, Ryan M, et al. Exome-
scale discovery of hotspot mutation regions in human cancer using 3D protein.
Structure 2016:3719–32. https://doi.org/10.1158/0008-5472.CAN-15-3190.

[20] Gao J, Chang MT, Johnsen HC, Gao SP, Sylvester BE, Sumer SO, et al. 3D clusters
of somatic mutations in cancer reveal numerous rare mutations as functional
targets. Genome Med 2017;9:4. https://doi.org/10.1186/s13073-016-0393-x.

[21] Niu B, Scott AD, Sengupta S, Bailey MH, Batra P, Ning J, et al. Protein-structure-
guided discovery of functional mutations across 19 cancer types. Nat Genet
2016;48:827–37. https://doi.org/10.1038/ng.3586.

http://bioinformatica.mty.itesm.mx%3a8080/HotSpotsAnnotations
https://doi.org/10.1016/j.csbj.2020.06.022
https://doi.org/10.1016/j.cels.2015.08.014
https://doi.org/10.1038/nature00766
https://doi.org/10.1038/nature00766
https://doi.org/10.1056/NEJMoa1014209
https://doi.org/10.1056/NEJMoa1014209
https://doi.org/10.1016/j.cell.2014.09.050
https://doi.org/10.1016/j.cell.2012.06.024
https://doi.org/10.1016/j.cell.2012.06.024
https://doi.org/10.1038/nature11252
https://doi.org/10.1159/000485497
https://doi.org/10.1056/NEJMoa1402121
https://doi.org/10.1056/NEJMoa1402121
https://doi.org/10.1038/nature13385
https://doi.org/10.1016/j.cell.2015.05.044
https://doi.org/10.1016/j.cell.2015.05.044
https://doi.org/10.1158/2159-8290.CD-17-0321
https://doi.org/10.1038/nbt.3391
https://doi.org/10.1038/nbt.3391
https://doi.org/10.1093/nar/gky1015
https://doi.org/10.1016/j.cell.2017.09.042
https://doi.org/10.1093/bioinformatics/btt395
https://doi.org/10.1093/bioinformatics/btt395
https://doi.org/10.1186/s13059-014-0489-9
https://doi.org/10.1186/s13059-014-0489-9
http://refhub.elsevier.com/S2001-0370(20)30311-1/h0090
http://refhub.elsevier.com/S2001-0370(20)30311-1/h0090
http://refhub.elsevier.com/S2001-0370(20)30311-1/h0090
https://doi.org/10.1158/0008-5472.CAN-15-3190
https://doi.org/10.1186/s13073-016-0393-x
https://doi.org/10.1038/ng.3586


V. Trevino / Computational and Structural Biotechnology Journal 18 (2020) 1664–1675 1675
[22] Chen T, Wang Z, Zhou W, Chong Z, Meric-bernstam F, Mills GB, et al. Hotspot
mutations delineating diverse mutational signatures and biological utilities
across cancer types. BMC Genomics 2016;17. https://doi.org/10.1186/s12864-
016-2727-x.

[23] Munro D, Ghersi D, Singh M. Two critical positions in zinc finger domains are
heavily mutated in three human cancer types 2018:1–17.

[24] Juul M, Bertl J, Guo Q, Nielsen MM, Świtnicki M, Hornshøj H, et al. Non-coding
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