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Abstract

Genomic imprinting in mammals was discovered over 30 years ago through elegant embry-

ological and genetic experiments in mice. Imprinted genes show a monoallelic and parent of

origin–specific expression pattern; the development of techniques that can distinguish

between expression from maternal and paternal chromosomes in mice, combined with high-

throughput strategies, has allowed for identification of many more imprinted genes, most of

which are conserved in humans. Undoubtedly, technical progress has greatly promoted

progress in the field of genomic imprinting. Here, we summarize the techniques used to dis-

cover imprinted genes, identify new imprinted genes, define imprinting regulation mecha-

nisms, and study imprinting functions.

Mammals have two sets of chromosomes, one inherited from each parent. With the exception

of postmeiotic germ cells, mammalian cells maintain a diploid genome during embryonic and

postnatal development, and normally both alleles are equally expressed in cells. Intriguing

observations from mouse genetic studies in the 1970s showed functional differences between

paternal and maternal chromosomes in specific regions [1–3] and raised the possibility that

the two sets of chromosomes are not functionally equivalent during embryonic development.

One line of evidence supporting parent-of-origin effects on embryonic development came

from Johnson’s observations of the mutant “hairpin-tail” mouse line, which carried a large,

proximally located deletion in chromosome 17 [4]. He showed in utero the lethality of off-

spring receiving this deletion from a maternal parent, whereas paternal inheritance led to via-

ble and fertile animals [4]. Similarly, mutant mice carrying chromosomal translocations

(Robertsonian or reciprocal translocations) were used to generate mice with uniparental

disomies (maternal or paternal duplication with corresponding deficiency) and determine the

parent of origin for distinct chromosomal regions [5, 6]. Some of these disomic embryos dis-

played parental-specific lethality, suggesting the possibility “that haploid expression of particu-

lar maternal or paternal genes is important for normal mouse development” [6].

Several years later, in 1984, the most direct evidence of functional nonequivalence of mam-

malian parental genomes was provided by the Solter and Surani laboratories: reconstructed

diploid embryos containing two maternal or two paternal genomes were generated through
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improved nuclear transfer technology [7–10]. Specifically, they placed a male or female pronu-

cleus (isolated from a newly fertilized egg) in a host-fertilized egg from which the pronucleus

had been removed to generate bipaternal (also known as androgenetic [AG]) or bimaternal

(gynogenetic or parthenogenetic [PG]) embryos. However, the reconstructed bipaternal or

bimaternal mouse embryos failed to survive; only the embryos with one maternal and one

paternal genome produced viable and fertile offspring. The nuclear transfer experiments

strongly suggested that genomic imprinting of parental genomes may be essential for complete

embryogenesis. Meanwhile, a whole-genome screen of mouse with Robertsonian transloca-

tions led to identification of 13 subchromosomal regions in which both a maternal and pater-

nal chromosome are required for normal development [3, 11].

Subsequent efforts were made to identify specific imprinted genes based on previous obser-

vations. Emergent techniques in mouse genetics (positional cloning, gene knockout, and

allele-specific activity in hybrids) enabled researchers to distinguish between expression from

maternal and paternal chromosomes, and the first three imprinted genes—insulin-like growth

factor 2 receptor (Igf2r) [12], insulin-like growth factor 2 (Igf2) [13, 14], and H19 (a noncoding

RNA) [15]—were identified in 1991. To date, approximately 150 imprinted genes have been

identified in mice, most of which map to the 13 subchromosomal regions identified in the

1980s. The majority of imprinted genes are located in clusters that contain several protein-cod-

ing genes and at least one noncoding RNA [1]. Mechanistic studies have revealed that each

cluster possesses a parent of origin–specific differentially DNA-methylated region (DMR),

which is established during gametogenesis and generally controls imprinted expression of part

or all of the cluster and therefore is also termed the imprinting control region (ICR) [16].

High-throughput sequencing strategies (including RNA-sequencing [RNA-seq] and

genome-wide DNA methylation sequencing tools) using reciprocal hybrids of two mouse

strains have been employed to identify imprinted genes based on parental-specific expression

patterns or regions containing parental-specific DNA methylation [17, 18]. Meanwhile, hap-

loid embryonic stem cells (haESCs) with a single set of chromosomes from sperm efficiently

support the generation of mice after injection into oocytes [19]. In combination with clustered

regularly interspaced short palindromic repeats (CRISPR)-Cas9 (an efficient genome/epigen-

ome-editing system established from bacteria), haESCs open new avenues for functional analy-

ses of imprinted genes during early embryonic development [19–21]. Technical advances have

enabled the discovery of imprinting, identification of imprinted genes, and understanding of

the functions and mechanisms of imprinting. We propose that new techniques will further

advance the progress of imprinting studies in the future.

Embryological reconstruction strategies demonstrate critical roles

for imprinted genes in embryonic development

AG and gynogenetic/PG embryos generated through nuclear transfer technology exhibited

opposite phenotypes of developmental defects: AG embryos developed predominantly extra-

embryonic lineages and had poorly developed embryonic tissue; PG embryos developed pre-

dominantly embryonic tissue and had limited development of extraembryonic components [9,

10]. To further investigate the fate of PG or AG cells during fetal and postnatal development,

chimeric mice were generated by combining PG or AG cells with normal embryos through

embryo aggregation or blastocyst injection technologies [22–29]. Consistent with previous

observations in uniparental embryos, chimeras generated by combining AG/PG and normal

embryos produced PG cells that efficiently contributed to descendants of inner cell mass

(ICM) but not trophectoderm (TE)-derived cells; chimeric AG cells contributed strongly to all

TE-derived cells but rarely to ICM-derived cells [23, 29]. Interestingly, when AG or PG ICM

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008151 June 20, 2019 2 / 15

https://doi.org/10.1371/journal.pgen.1008151


cells were injected into normal blastocysts to produce chimeric embryos, the presence of AG

cells significantly increased embryonic growth, whereas PG cells substantially reduced the size

of chimeric embryos [27], likely because of the dosage changes of Igf2, a paternally expressed

imprinted gene [14]. These observations support the parental conflict theory [30] and suggest

that parental imprinting establishes the balance of gene dosage, which is critical for normal

embryonic growth regulation.

Early nuclear transfer experiments demonstrated that genomic imprinting may impede the

development of uniparental embryos and posed the intriguing question of whether the PG or

AG embryos can develop to term when the dosage of imprinted genes is epigenetically or

genetically manipulated. To test this, Kono and colleagues developed a serial nuclear transfer

technology to construct PG embryos containing two sets of chromosomes from full grown (fg)

oocytes with a normal maternal imprinted state and nongrowing (ng) oocytes in which de

novo methylation of maternal-specific imprinting had not been established [31, 32]. They first

fused an ng oocyte from a newborn mouse with an fg oocyte without the germinal vesicle

(nucleus) to produce reconstructed oocytes, which were subjected to in vitro maturation to

develop to metaphase II (MII, ng MII) stage. In the second nuclear transfer, the genome of ng

MII oocytes was used as a donor for transfer into fg MII oocytes. The reconstructed oocytes

were then parthenogenetically activated in activation medium without cytocholasin B, leading

to exclusion of the two second polar bodies and formation of diploid PG embryos [31]. Using

this technology, they showed that PG embryos containing ng oocytes with a single deletion of

H19 successfully developed to term and survived to adulthood with low efficiency [33] and

later showed that PG embryos generated from ng oocytes with a double mutation of H19-

DMR and intergenic germline-derived (IG)-DMR could develop into viable and fertile adults

with a much higher efficiency, nearly comparable with that of in vitro fertilization [34]. The

results provide direct evidence that these two paternally methylated ICRs are barriers to the

normal development of PG embryos.

The generation of cloned animals through somatic cell nuclear transfer (SCNT) [35–38]

provides new ways to study the function of imprinting during development. Successful SCNT

in different species has demonstrated that adult somatic cells generally sustain genomic

imprints that are established in the parental germline and stably maintained throughout

embryonic development [38]. In contrast, imprint-free primordial germ cells are unable to

support full-term development of cloned mouse embryos [39–41]. Similarly, mouse spermato-

gonial stem cells (SSCs) with a paternal imprinting state also failed to support cloned embryo

development. Our preliminary data showed that none of the 2,068 cloned embryos from SSCs

developed to term in vivo. These results strongly demonstrate that the correct imprinting state

is critical for mouse embryonic development after SCNT. However, the birth rate of cloned

mice is extremely low—approximately 2% of transferred embryos developed to term in surro-

gate mothers [36–38]. Interestingly, most cloned mice displayed an overgrowth of fetuses and

placentas when cultured cells were used as donors, a phenotype referred to as “large offspring

syndrome” [36, 42, 43], likely caused by epigenetic abnormalities, especially those in imprinted

genes [42, 43]. In contrast, when mouse fresh or primary-cultured cells were used for cloning,

the weight of the cloned placenta was consistently 2- to 3-fold above that of normal placenta,

whereas most of the cloned pups were not oversized at birth [44–48]. Consistently, the

imprinting state in the cloned pups mimicked that of the controls, whereas cloned placentas

exhibited a significant reduction in expression of several imprinted genes compared with con-

trol placentas [48]. These results suggest that the imprinting state established during gameto-

genesis is stably maintained in somatic cells and not readily transmuted in enucleated oocytes

[48]; imprinting loss in animals cloned from cultured cells probably happens in donor cells

upon prolonged culturing [42, 43, 49]. Moreover, the abnormality consistently observed in
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cloned placentas from both freshly isolated and cultured cells implies that reprogramming

errors—especially in imprinted genes—involved in placental function occur in extraembry-

onic lineages after nuclear transfer. This is consistent with recent observations from large-scale

knockout phenotyping analysis, which show that placentas are preferentially vulnerable to

defects after gene knockout [50], and likely explains the poor development of cloned embryos

in vivo [37]. This hypothesis has been validated by the observation that cloning efficiency is

significantly improved after replacement of the cloned placenta with a functional tetraploid

placenta [51]; the cloned ICM is functionally equivalent to the fertilized ICM and may be a

safe source of pluripotent cell derivation for therapeutic purposes [38]. Therefore, SCNT

embryos provide a defective developmental model that can be used to investigate differences

between cloned and fertilized embryos, which will not only aid our understanding of the

underlying mechanisms of embryonic development following natural fertilization but may

also provide the clues to improve the cloning efficiency for reproductive and therapeutic

applications.

Identification of imprinted genes using high-throughput analyses

Imprinted genes, differentially expressed from the maternal and paternal alleles, are controlled

by an allele-specific differentially methylated region. Therefore, to screen differentially

expressed genes or differentially methylated regions, the first challenge is to distinguish mater-

nal transcripts or DNA methylation from the paternal allele. There are three main strategies

used for this purpose [52, 53]: mouse strains carrying rearranged chromosomes including uni-

parental disomy or uniparental duplication of whole or specific chromosomal regions (gener-

ally produced by irradiation or chemical mutagenesis), Robertsonian translocations derived

from wild populations, and specific arrangements generated by the Cre-loxP recombination

system [52, 53]; PG or AG embryos/cells generated through embryo reconstitution; and filial

(F)1 hybrids from two different mouse strains with the single-nucleotide polymorphisms

(SNPs). These different approaches (divided here into three classes) have been employed to

identify novel imprinted genes: gene expression (subtractive hybridization, differential display,

microarray, and RNA-seq); epigenetic features (methylation representational difference analy-

sis [Me-RDA], restriction landmark genomic scanning [RLGS], bisulfite sequencing and

DNase-sequencing [DNase-seq]); and DNA sequence (computational analysis) (Table 1).

Systemic screening through subtractive hybridization of cDNA obtained from PG and nor-

mally fertilized embryos led to the identification of a series of paternally expressed genes

(Pegs), including Peg1/mesoderm-specific transcript homolog protein (Mest), Peg3, and Peg5
[54–56]. Using the same strategy to compare differential expression of genes between AG, PG,

and normal embryos or fibroblasts, the maternally expressed gene (Meg) Meg1/ growth factor

receptor bound protein 10 (Grb10) [57] and Pegs, zinc finger 1 (Zac1) and epsilon-sarcoglycan

(Sgce) [58], were identified. Another systematic screen based on the allelic expression com-

pared mRNA from two highly polymorphic mouse strains or that from uniparental and fertil-

ized embryos and identified paternally expressed delta homolog 1 (Dlk1) gene [59] and

maternally expressed 8 (Rian) [60].

With the rapid development of high-throughput technologies, novel imprinted genes were

efficiently identified through large-scale comparison of gene expression between PG and AG

embryos. Microarrays, which enable detection of the expression levels of thousands of genes at

one time, have been used to successfully identify imprinted genes including ankyrin repeat

and SOCS box containing 4 (Asb4), amino acid transport system A3 (Ata3), and decorin (Dcn)

[62]. RNA-seq, which detects the whole transcriptome, has been employed to identify three

new imprinted genes (1810044A24Rik, bladder cancer–associated protein [Blcap], and inositol
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polyphosphate-5-phosphatase F [Inpp5f]) in neonatal brains [63] and five new imprinted

genes (phosphodiesterase type 10 [Pde10], PHD finger protein 17 [Phf17], phosphatase and

actin regulator 2 [Phactr2], zinc finger protein 64 [Zfp64], and HtrA serine peptidase 3

[Htra3]) in embryonic day (E)17.5 placentae [64] from reciprocal F1 hybrids of two mouse

strains with specific SNPs.

Gene expression–related screening strategies can only detect genes expressed in the ana-

lyzed tissues at a given developmental stage, whereas DMRs established in germ cells can be

stably maintained in any tissue during development and provide a unique marker to identify

imprinted genes. Gametic DMRs often control a cluster of imprinted genes, so methods based

on DNA methylation can be used to screen an imprinted domain rather than a single

imprinted gene. Me-RDA and RLGS—both of which use methylation-sensitive enzymes to

identify and cut differentially methylated sequences between two samples—have been devel-

oped to identify novel imprinted genes [65–68, 72]. Additionally, high-throughput methyla-

tion analyses, such as whole-genome bisulfite sequencing (WGBS) and reduced representation

bisulfite sequencing (RRBS) combined with bioinformatic analysis have been used to effi-

ciently identify imprinted DMRs [17, 69]. However, if the parental origins of the alleles are het-

erozygous tissues in which a monoallelically expressed gene is identified by RNA-seq and

Table 1. Methods used to identify imprinted genes in mouse.

Screens based

on

Advantages Disadvantages Techniques Typical imprinted genes References

Gene

expression

Directly identify imprinted

genes according to allele-specific

expression

Limited to identification of expressed genes

in specifically analyzed tissues and

developmental stages

Subtractive

hybridization

Peg3, Peg1, Nnat, Meg1, Zac1,

Sgce
[54–58]

Differential

display

Dlk1, Rian, Impact [59–61]

Microarray Dlk1, Asb4, Ata3, Dcn [62]

RNA-seq Inpp5f, Blcap, Casd1, NMIT3,

Pde4d, Tbc1d12, Pde10, Phf17,

Phactr2, Zfp64, Htra3

[63, 64]

Epigenetic

modification

Epigenetic modifications

generally maintained

throughout development

Directly identify imprinted domains rather

than individual genes

RLGS Grf1, U2af1-rs1 [65, 66]

Me-RDA Nesp, Gnasxl, Nespas, Nap1l5,

Peg13, Slc38a4
[67, 68]

Bisulfite

sequencing

New DMRs [17, 69]

DNase-seq Smoc1, Epas1, Etv6, Otx2, Rbms1,

Slc38a1, Slc38a2
[70]

DNA sequence Find candidates more efficiently

in the whole genome

Need to be validated through experiments;

may leave out imprinted genes with

different sequence features

Bioinformatics

analysis

Mcts2 [71]

Abbreviations: Asb4, ankyrin repeat and SOCS box containing 4; Ata3, amino acid transport system A3; Blcap, bladder cancer–associated protein; Casd1, CASD1

domain containing protein; Dcn, decorin; Dlk1, delta homolog 1; DMR, differentially DNA-methylated region; DNase-seq, DNase-sequencing; Epas1, endothelial PAS

domain-containing protein 1; Etv6, ETS-variant gene 6; Gnasxl, guanine nucleotide-binding protein, alpha stimulating extra-large; Grf1, general regulatory factor 1;

Htra3, HtrA serine peptidase 3; Impact, impact RWD domain protein; Inpp5f, inositol polyphosphate-5-phosphatase F; Mcts2, malignant T cell amplified sequence 2;

Me-RDA, methylation representational difference analysis; Meg1, maternally expressed 1; Nap1l5, nucleosome assembly protein 1 like 5; Nesp, neuroendocrine secretory

protein; Nespas, neuroendocrine secretory protein antisense; Nnat, neuronatin; Otx2, orthodenticle homebox 2; Peg1, paternally expressed 1; Peg3, paternally expressed

3; Peg13, paternally expressed 13; Pde4d, phosphodiesterase 4D; Pde10, phosphodiesterase type 10; Phactr2, phosphatase and actin regulator 2; Phf17, PHD finger

protein 17; Rbms1, RNA binding motif single stranded interacting protein 1; Rian, maternally expressed 8; RLGS, restriction landmark genomic scanning; RNA-seq,

RNA-sequencing; Sgce, epsilon-sarcoglycan; Slc38a1, solute carrier family 38 member 1; Slc38a2, solute carrier family 38 member 2; Slc38a4, solute carrier family 38

member 4; Smoc1, secreted modular calcium-binding protein 1; Tbc1d12, TBC1 domain family member 12; U2af1-rs1, U2 small nuclear ribonucleoprotein auxiliary

factor 35 kDa subunit-related protein 1; Zac1, zinc finger 1; Zfp64, zinc finger protein 64

https://doi.org/10.1371/journal.pgen.1008151.t001
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DNA-seq, one cannot conclude that the gene is imprinted, because Cis-expression quantitative

trait loci (Cis-eQTL) and RNA editing are potentially confounding.

In addition to screening strategies that rely on parent of origin–specific transcription and

epigenetic marks, computational methods based on DNA sequence similarity shared in

known imprinted genes (CpG islands, noncoding RNA, and repeat elements) have also been

used to predict and identify new imprinted genes, generally combined with experimental vali-

dation [71, 73, 74].

Replacement of gamete genome with haESCs for imprinting

studies

The functional analysis of imprinted genes in vivo relies heavily on germline transmission of

gene knockouts of parental-specific alleles. However, both oocytes and sperm are structurally

specialized cells that cannot be genetically manipulated in vitro or in vivo. The standard gene-

targeting approach based on homologous recombination in diploid ESCs, although success-

fully used for the last 3 decades, is time-consuming and labor-intensive and has significant lim-

itations including the necessity of germline transmission, which is typically the rate-limiting

step [75, 76]. To overcome these challenges, scientists sought to use haploid cells, generated

from either sex, in place of the oocyte/sperm genome to produce animal models [77]. In 2011,

nearly 40 years after the first efforts to generate haploid embryos and cells [78, 79], mouse PG-

haESCs were successfully established from PG haploid blastocysts carrying only one set of

chromosomes from oocytes; the haploid state was maintained through regular enrichment

using fluorescence-activated cell sorting (FACS) during long-term in vitro culture [80, 81].

One year later, two separate research groups derived mouse AG-haESCs from reconstructed

embryos containing only sperm-derived chromosomes through injection of sperm into enu-

cleated oocytes or removal of female pronuclei from zygotes [19, 82]. Strikingly, except for the

haploidy and pluripotency that are the typical features of PG-haESCs, AG-haESCs also gener-

ally maintain paternal genomic imprints and can be used as a sperm replacement to support

full-term development upon injection into mature oocytes (intracytoplasmic AG-haESC injec-

tion [ICAHCI]) [19] (Fig 1B). The resulting animals are referred to as semicloned (SC) mice

because one-half of their genomes is from the cultured cells and the other is from different

oocytes [19]. Importantly, the AG-haESCs enabled in vitro genetic manipulation, thus provid-

ing new methods for the efficient production of genetically modified mice [21]. The birth rate

of SC mice was extremely low, with only approximately 4% of the transferred embryos devel-

oping to term, and half of those exhibiting a growth-retarded phenotype and dying shortly

after birth [19]. When the oocyte genome was replaced with that from PG-haESCs, the recon-

structed SC embryos developed to term with extremely low efficiency (0.7% of transferred

embryos) [83] (Fig 1C). We reasoned that the developmental failure of SC embryos was likely

caused by global DNA demethylation (including in imprinted DMRs) of haESCs induced by

2i culture medium [84]. We then demonstrated that loss of DNA methylation in H19 and IG-

DMRs that control the expression of Igf2/H19 and Dlk1/iodothyronine deiodinase 3 (Dio3),

respectively, led to the dysregulation of imprinted genes and growth retardation in embryos

[85]. When the H19-DMR and IG-DMR were removed in AG-haESCs, the resulting cells

(double knockout [DKO]-AG-haESCs) could efficiently support SC mice generation, with a

birth rate of approximately 20% of transferred embryos [85] (Fig 1D). Importantly, after multi-

ple rounds of gene modifications in vitro, these cells could still efficiently produce healthy

mice (which contained the corresponding genetic traits) in a single-step process through

ICAHCI [85]. Thus, DKO-AG-haESCs (termed “artificial spermatids”) are a feasible tool for

spermatid replacement in the efficient generation of mice with complex gene modifications.
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Previous observations in bimaternal mice generated from fusion of fg oocytes with ng

oocytes carrying H19-DMR and IG-DMR deletions [34], combined with the observation

that H19-DMR and IG-DMR are barriers to stable developmental of AG-haESCs, led us to

reason that correct expressions of Igf2/H19 and Dlk1/Dio3 loci are critical for the haESC

Fig 1. Generation of normal mice using haESCs as gamete replacements. (A) ICSI can generate normal mice. (B) The AG-haESCs support full-term

embryonic development through ICAHCI, but with very low developmental efficiency. The generated mice are termed SC mice. (C) The PG-haESCs

support full-term embryonic development through coinjection with sperm into enucleated oocytes, but with very low developmental efficiency. (D and

E) The AG or PG-haESCs with deletions of two or three paternal DMRs efficiently generate normal mice through ICAHCI or ICPHCI. (F) The sperm-

originated AG-haESCs with deletions in seven maternally imprinted regions (Nespas, Peg3, Snrpn, Kcnq1, Grb10, Igf2r, and Gnas) can be used to

replace oocyte genomes for full-term development of bipaternal embryos using tetraploid complementation technology. (G) It is not clear whether AG-

haESCs and PG-haESCs cultured in vitro can simultaneously substitute for paternal and maternal genomes and generate normal mice. The experiments

that have been performed are outlined with a solid box; proposed experiments are outlined with a dashed box. Birth rate: percentage of transferred

embryos. Surviving rate: percentage of born pups. AG, androgenetic; DMR, differentially DNA-methylated region; ESC, embryonic stem cell;

Grb10, growth factor receptor bound protein 10; haESC, haploid embryonic stem cell; ICAHCI, intracytoplasmic AG-haESC injection; ICPHCI,

intracytoplasmic PG-haESC injection; ICSI, intracytoplasmic sperm injection; Igf2r, insulin-like growth factor 2 receptor; Kcnq1, potassium voltage-

gated channel subfamily Q member 1; KO, knockout; Nespas, neuroendocrine secretory protein antisense; Peg3, paternally expressed 3; PG,

parthenogenetic; SC, semicloned; Snrpn, small nuclear ribonucleoprotein-associated protein N.

https://doi.org/10.1371/journal.pgen.1008151.g001
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genome to be used as a sperm replacement for embryonic growth in mice. Consistent with

this hypothesis, we and others confirmed that oocyte-originated PG-haESCs carrying both

H19-DMR and IG-DMR deletions could be used to efficiently generate live mice upon injec-

tion into oocytes [86, 87] (Fig 1E). Most recently, sperm-originated AG-haESCs with dele-

tions in seven maternally imprinted regions known to affect embryogenesis (neuroendocrine

secretory protein antisense [Nespas], Peg3, small nuclear ribonucleoprotein-associated pro-

tein N [Snrpn], potassium voltage-gated channel subfamily Q member 1 [Kcnq1], Grb10,

Igf2r, and Gnas) were used to replace the genome of oocytes for full-term development of

bipaternal embryos [88] (Fig 1F), further suggesting that maternally imprinted loci may also

be major barriers to the ability of haESCs to replace the oocyte genome. However, only two

live-born bipaternal pups were obtained, and both died in 2 days, suggesting that additional

critical imprinted genes need to be manipulated in AG-haESCs to enhance the fetal and post-

natal development of these embryos. Taken together, imprinting is indeed the specific epige-

netic feature of oocyte and sperm genome critical for normal embryonic development;

haESCs with correct expression levels of imprinted genes (generated by genetic modifica-

tions) may be used to replace both parental genomes for normal embryonic development

(Fig 1G).

Functional validation of imprinted genes through genome-editing

strategies

For over 30 years, the homologous recombination-based “knockout” method has been the

standard approach to determine the function of imprinted genes in vivo [75, 76]; loss of

imprinting (LOI) knockout models reveal specific functional effects of imprinted genes [89].

However, the conventional knockout strategy is time and labor consuming and greatly limits

the progress of functional analyses of imprinted genes. Recently, the RNA-guided CRISPR-

associated Cas9 endonucleases, developed from the microbial adaptive immune system, has

been widely applied as a highly versatile and efficient tool for genome editing in diverse organ-

isms [90–93]. CRISPR-Cas9–based genome editing requires a single guide RNA (sgRNA) to

direct Cas9 cleavage at a specific site; cleavage is followed by stimulation of nonhomologous

end joining (NHEJ) or homology-directed repair (HDR)-mediated genome editing and results

in precise and efficient genome editing [94–97]. Through direct injection into zygotes,

CRISPR-Cas9 was used to efficiently delete the large imprinted Rian long noncoding RNA

(lncRNA) in vivo, which abolished the expression of the corresponding Rian gene from the

maternally inherited allele [98], a manipulation that has been extremely difficult to achieve

using conventional methods. A nuclease-deactivated form of Cas9 (dCas9), which lacks the

nuclease activity but retains its RNA-guided DNA-binding activity [99], acts as a scaffold to

recruit other effectors to mediate site-specific transcriptional modulation or epigenetic regula-

tion without changing genomic content [90]. Fusion of dCas9 with DNA methyltransferase 3A

(DNMT3A) enables the addition of DNA methylation marks at a specific site, offering a ratio-

nal epigenome-editing strategy for correction of aberrant imprinting in human disorders [100,

101].

Perspective: The combined application of haESCs and

CRISPR-Cas9 may dramatically enhance functional analyses of

imprinted genes in vivo

HaESCs have been successfully derived from different species, including rat [102], monkey

[103], and human [104, 105]. HaESCs facilitate genetic analyses of mammals at the cellular

level because they contain only one set of chromosomes. Importantly, mouse AG-haESCs with

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008151 June 20, 2019 8 / 15

https://doi.org/10.1371/journal.pgen.1008151


H19-DMR and IG-DMR deletions can be used for efficient and stable generation of SC mice

through ICAHCI. These “artificial spermatids” can be used to make multiple genetic modifica-

tions in vitro using CRISPR-Cas9 technology and generate mouse models with new genetic

characteristics in a single step [20, 21, 106–108]. This combined application provides a novel

genetic tool for functional analysis of the imprinted gene in vivo (Fig 2). One of the potential

applications is to quickly validate candidate maternally imprinted genes through high-

throughput analyses by mutating the candidate gene in “artificial spermatids.” We postulate

that if the maternally imprinted gene is essential for embryonic development, deletion of the

Fig 2. Combined applications of haESCs and CRISPR-Cas9 in functional studies of imprinted genes in vivo. The sperm-originated AG-haESCs

carrying deletions in both H19-DMR and IG-DMR combined with CRISPR-Cas9 editing technology can be used to study the function of paternally

expressed genes and imprinting mechanisms and to trace the expression of imprinted genes. If AG-haESCs and PG-haESCs can be used to substitute

for maternal and paternal genomes, respectively, and support normal embryonic development, it may be possible to simultaneously edit maternal and

paternal alleles of the imprinted gene in the future (labeled by dashed box). AG, androgenetic; DKO, double knockout; DMR, differentially DNA-

methylated region; H19, a long noncoding RNA; haESC, haploid embryonic stem cell; IG, intergenic germline-derived; PG, parthenogenetic, SC,

semicloned.

https://doi.org/10.1371/journal.pgen.1008151.g002
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gene in “artificial spermatids” would result in SC embryos without its expression during the

entire process of embryonic development and would most likely lead to developmental abnor-

malities. Control elements for a specific imprinted gene could be easily removed or modified

in “artificial spermatids” to produce mouse models to investigate the mechanism of imprint-

ing. For example, deletion of different regions across X-inactive specific transcript (Xist) locus

[109, 110] in “artificial spermatids” may facilitate the identification of the functional elements

of Xist that regulate X chromosome inactivation during mouse embryo development. In addi-

tion, genetically labeling an imprinted gene with a fluorescent or affinity tag in “artificial sper-

matids” would result in the ability to visualize, localize, and identify protein interactions in

tagged mice in vivo [111]. Moreover, haESCs with mutations in imprinted genes could be used

to replace maternal genomes to support the full-term embryonic development; however,

because the current efficiency of the technique is extremely low, future work is required to

determine whether other maternal methylation imprints need to be genetically manipulated in

haESCs to improve their oocyte-like features. Finally, it is still unclear whether haESCs could

be used to replace the genomes of both oocytes and sperm for efficient full-term embryonic

development (Fig 2). We propose that if both paternal and maternal genomes could be

replaced by haESCs, it would be very convenient to simultaneously edit maternal and paternal

genomes and facilitate the study of imprinted gene function and regulatory mechanisms in

vivo.
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