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Abstract
Joint analysis of microbiome and metabolomic data represents an imperative objec-
tive as the field moves beyond basic microbiome association studies and turns 
towards mechanistic and translational investigations. We present a censored Gauss-
ian graphical model framework, where the metabolomic data are treated as contin-
uous and the microbiome data as censored at zero, to identify direct interactions 
(defined as conditional dependence relationships) between microbial species and 
metabolites. Simulated examples show that our method metaMint performs favora-
bly compared to the existing ones. metaMint also provides interpretable microbe-
metabolite interactions when applied to a bacterial vaginosis data set. R implemen-
tation of metaMint is available on GitHub.

Keywords Data integration · Microbiome · Metabolomics · Censored Gaussian 
graphical models · Conditional dependence

1 Introduction

The field of microbiome research is shifting rapidly from cataloging the taxonomic 
compositions of microbial communities [1] to refined technologies that capture strain-
level variations or amplicon sequence variants [2–4] and to multi-omics studies that 
better capture community functional activity [5]. In particular, metabolomics has been 
extremely useful in explaining microbial functional potential because of its capabil-
ity in tracking microbially derived metabolites [6–8]. Associations between specific 
microbes and metabolites provide key insights and improved mechanistic models of 
host-microbe interactions [9–12]. In practice, the non-parametric Spearman’s rank 
correlation is often used to quantify the pairwise correlation between microbes and 
metabolites. However, Spearman’s rank correlation only captures marginal monotonic 
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association and does not distinguish direct and indirect interactions. In contrast, par-
tial correlations measure conditional dependencies and allow the identification of direct 
interactions between microbes and metabolites [13].

One analytical challenge specific to the microbiome data are the uneven sequenc-
ing depths that arise due to differential efficiency of the sequencing process. The total 
number of reads in a sample is also constrained by the biological specimen at hand and 
does not reflect the absolute abundance present in the ecosystem. A common practice 
to address this issue is to transform the raw counts into relative abundances by nor-
malizing over the total sequencing reads in each sample. In other words, raw sequenc-
ing counts are transformed into proportions of different microbes whose sum has to be 
one, also known as compositional data. Several lines of work have been proposed to 
model marginal and/or conditional microbial interactions from compositional data. For 
example, SparCC [14] and CCLasso [15] both estimate the linear Pearson correlations 
between log-transformed counts. A major limitation of marginal association measures 
such as the Pearson correlation is that they cannot distinguish between direct and indi-
rect relationships [16]. To address this issue, SPIEC-EASI [17] learns the conditional 
dependencies between pairs of microbes while adjusting for effects from other species 
in the analysis. This is achieved by estimating the inverse covariance of the centered 
log-ratio (clr) transformed data using e.g., the graphical lasso algorithm [18]. Fang 
et al. [19] assume that the observed relative abundances follow the logistic normal dis-
tribution and proposed a Majorization-Minimization algorithm for learning the condi-
tional dependence relationships among microbes.

Many of the aforementioned methods are specific to microbiome data and are not 
directly applicable for joint analysis of microbiome and other omics data types. One 
naive approach for joint estimation is to apply the graphical lasso algorithm directly to 
clr transformed microbiome and metabolomic data. However, as illustrated in Fig. 1, 
the Gaussian graphical model may be a poor fit for microbiome data because the mar-
ginal distributions of transformed raw counts are in fact highly skewed and often zero 
inflated.

This motivates the need for new statistical methodology that can accommodate both 
microbiome and metabolomic data while accounting for the zero inflation in microbial 
abundance. Some zero values are sampling zeros that arise due to limited sequencing 
depths, whereas others are biological zeros that indicate complete absence of a spe-
cies [20]. Silverman et al. [21] in an unpublished manuscript illustrated that biologi-
cal zeros in many applications can be approximated as sampling zeros because they 
both represent a truly low abundance. In this paper, we treat the observed zeros as 
due to undersampling, and propose a censored Gaussian graphical model (cGGM) to 
infer the conditional dependencies among microbes and metabolites. Specifically, let 
W = (W1,… ,Wq)

⊺ with Wj > 0 for all j be the latent variables, called the basis, that 
represent the true absolute abundance for each species. Due to undersampling and une-
ven sequencing depths, the observed abundance R is related to W via

where N > 0 is a scaling factor that may depend on W , uj is a constant which indi-
cates the limit of detection for the j-th variable, and I(⋅) is the indicator function. 

(1)Rj = NWjI(logWj > uj),
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The censoring value uj may be known from the experiment or estimated from data. 
To adjust for the uneven sequencing depths, we apply the modified clr (mclr) trans-
formation to R , which transforms all non-zero counts using the usual clr and shifts 
all transformed values to be strictly positive [22]. The diagonal panels in Fig. 1 show 
the histograms of mclr transformed abundances. Compared to the usual clr trans-
formation that requires a pseudo count when dealing with zeros, mclr preserves the 
ranking of observed counts across multiple samples and is less biased towards rare 
species [22]. Denote X1 = mclr�(R) the resulting vector after mclr transformation 
with parameter � , which we elaborate in Sect. 2.3. Let X2 = (Xq+1,… ,Xp)

⊺ denote 
the log transformed concentration measures from p − q (p > q) metabolites. A natu-
ral model for integrating microbiome and metabolomic data is to assume that X1 and 
X2 follow a censored multivariate normal distribution with mean � and covariance 

Fig. 1  Scatter plots of the modified centered log-ratio (mclr) transformed abundances of 3 bacterial spe-
cies in the vaginal microbiome data from McMillan et al. [9]. Marginal distribution of each species is 
illustrated along the diagonal. The upper panels show the Pearson correlations between pairs of species
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� . Zero entries in the inverse covariance matrix � = �−1 capture the conditional 
independence relationships among the microbes and metabolites.

The problem of inferring the joint microbe-metabolite network thus reduces 
to estimating � from n independent and identically distributed observations on 
(X1,X2) . We provide metaMint which is based on estimating each pair of mar-
ginal correlations with maximum likelihood. Given the estimated correlation 
matrix, metaMint uses the graphical lasso to recover the conditional depend-
encies between microbes and metabolites (direct interactions). We compare our 
method with several existing approaches in simulations, and show that metaMint 
outperforms the others in network structural recovery and accuracy of estimat-
ing the inverse covariance matrix. When applied to a real data on bacterial vagi-
nosis [9], the integrated network reveals biologically relevant microbe-metabo-
lite interactions and also identifies novel interactions that may serve as potential 
biomarkers for diagnosis and treatment of bacterial vaginosis.

The censored multivariate normal distribution has been commonly used to 
analyze environmental data that are often subject to pre-specified detection 
limits. For example, Hoffman and Johnson [23], Pesonen et  al. [24] and Jones 
et  al. [25] studied covariance estimation for left censored multivariate normal 
distribution in the classic low-dimensional setting. Recently, Augugliaro et  al. 
[26] proposed an approximated EM algorithm for inverse covariance estima-
tion in the high-dimensional setting and applied the method to single-cell data. 
The work by McDavid et al. [27] was also motivated by single-cell data, but the 
authors proposed the zero-inflated Gaussian graphical model, which treats zeros 
as coming from a degenerate point mass at zero instead of being censored. Com-
pared to existing literature, our contribution is a unified model for joint estima-
tion of the integrated microbe and metabolite network in the high-dimensional 
setting. Our algorithm works well in a variety of scenarios.

The rest of the paper is organized as follows. In Sect. 2, we describe the cen-
sored Gaussian graphical model framework and the proposed algorithm. We pre-
sent extensive numerical studies in Sect. 3 and a real data example on bacterial 
vaginosis in Sect. 4. We conclude our paper with discussions in Sect. 5.

2  The Censored Gaussian Graphical Model

The censored Gaussian graphical model is suitable for zero-inflated data, which 
is often the case with microbiome data as shown in Fig. 1. In practice, it is rea-
sonable to assume that the observed zeros are due to undersampling or censoring 
from below.

Definition 1 A random vector X is said to follow a censored multivariate normal 
distribution with mean � and covariance � if there exists constants u1,… , up such 
that Xj = YjI(Yj > uj) + ujI(Yj ≤ uj) where

Y ∼ N(�,�).
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The censoring values u = (u1,… , up)
⊺ are experiment specific and can be 

inferred from data. For example, one can use the smallest value that occurs more 
than a pre-specified threshold (e.g. 10%) as an estimate. A pre-specified threshold 
is necessary to ensure that the smallest value occurs more often than by chance. 
For zero-inflated microbiome data, the censoring values are set to be 0. When 
there is no censoring in the j-th variable, we set uj = −∞.

The density of the multivariate normal distribution with mean � and inverse 
covariance � = �−1 is

Without loss of generality, let X = (Xo,Xc) where Xo denotes the uncensored 
components and Xc denotes the censored components. Given censoring values 
u = (−∞,… ,−∞,uc) , the density function of X is

Let {x(1),… , x(n)} denote a set of n independent and identically distributed observa-
tions on X . In high-dimensional settings, a natural strategy to estimate the inverse 
covariance matrix is to maximize the �1 penalized loss function

where �n is a regularization parameter that controls the sparsity of � . However, 
direct optimization of (3) is challenging due to the integral in (2) over a poten-
tially high-dimensional space. Augugliaro et  al. [26] studied a general version of 
(3) where variables can be left and right censored. They proposed to use the EM 
algorithm to optimize the expectation of the full log-likelihood with respect to the 
conditional distribution Xc ∣ Xo . However, exact optimization of the EM algorithm 
is computationally challenging as it requires the second moment of Xc ∣ Xo , which 
is a multivariate truncated Gaussian. The approximation in Augugliaro et  al. [26] 
is adapted from Guo et  al. [28] and only works well when the inverse covariance 
matrix is very sparse or the regularization parameter �n is large.

2.1  A Direct Estimator Via Marginal Correlations

Our proposal metaMint is based on estimating the marginal correlations directly. A 
similar idea was used to estimate the correlation matrix of ordinal graphical models 
[29], where the authors showed that the direct estimator achieves more accurate estima-
tion of the inverse covariance matrix compared to the approximated EM approach in 
Guo et al. [28].

The first step in metaMint is to estimate the marginal distribution for each variable, 
which can be done by fitting a univariate Tobit model [30] and has been implemented 
in the R package censReg [31]. Let �̂�j and �̂�2

j
 be, respectively, the estimate of the 

�(y;�,�) = (2�)−p∕2|�|1∕2 exp {(y − �)⊺�(y − �)}.

(2)

�(xo, u;�,�) = ∫
∞

uc

�(xo, xc;�,�)dxc = �(xo;�,�)∫
∞

uc

�(xc ∣ xo;�,�)dxc.

(3)
1

n

n∑
i=1

log𝜓(x(i), u;�,𝛺) − 𝜆n
∑

1≤j<k≤p
|𝛺jk|,



356 Statistics in Biosciences (2021) 13:351–372

1 3

mean and variance for the j-th variable. It can be shown that �̂�j is a consistent estimate 
of �j , and �̂�2

j
 is consistent for �2

j
= �jj . To find the empirical covariance matrix �̂� , it 

suffices to estimate each pairwise correlation.
Suppose we have two variables Xj and Xk (j < k) . If no observation is censored, it is 

straightforward to estimate their correlation using the Pearson’s correlation coefficient. 
In the following, we provide details on correlation estimation when at least one variable 
is censored.

Consider first the case where both variables Xj and Xk are censored from below with 
uj and uk , respectively. For the i-th observation, let 𝜂ij = I(x

(i)

j
> uj) be the indicator 

function of whether the j-th variable is censored. The pairwise joint log-likelihood can 
be written as a function of the correlation �jk,

where Yj and Yk are bivariate normal with mean (�j,�k)
⊺ and covariance

Let �(⋅) and �(⋅) denote, respectively, the density and the cumulative distribution 
function (c.d.f.) of a standard normal variable. Let the c.d.f. of a bivariate standard 
normal variable with correlation � be �2(u, v, �) . The conditional distribution 
Yk ∣ Yj = x(i) is again a normal distribution with mean �̃�k = 𝜇k +

𝜎k

𝜎j
𝜌jk(x

(i)

j
− 𝜇j) and 

standard deviation �̃�k = 𝜎k

√
1 − 𝜌2

jk
 . The pairwise joint log-likelihood thus becomes

where

�
(i)

1
(𝜌jk;𝜇j,𝜇k, 𝜎

2
j
, 𝜎2

k
) = 𝜂ij𝜂ik log P(Yj = x

(i)

j
, Yk = x

(i)

k
)

+ 𝜂ij(1 − 𝜂ik) log P(Yj = x
(i)

j
, Yk < uk)

+ (1 − 𝜂ij)𝜂ik log P(Yj < uj, Yk = x
(i)

k
)

+ (1 − 𝜂ij)(1 − 𝜂ik) log P(Yj < uj, Yk < uk),

(
�2
j

�jk�j�k
�jk�j�k �2

k

)
.

�
(i)

1
(𝜌jk;𝜇j,𝜇k, 𝜎

2
j
, 𝜎2

k
) =𝜂ij𝜂ik log

⎧
⎪⎨⎪⎩
1

�̃�k
𝜙

�
x
(i)

k
− �̃�k

�̃�k

�
1

𝜎j
𝜙

⎛⎜⎜⎝
x
(i)

j
− 𝜇j

𝜎j

⎞⎟⎟⎠

⎫
⎪⎬⎪⎭

+ 𝜂ij(1 − 𝜂ik) log

⎧⎪⎨⎪⎩
𝛷

�
uk − �̃�k

�̃�k

�
1

𝜎j
𝜙

⎛⎜⎜⎝
x
(i)

j
− 𝜇j

𝜎j

⎞⎟⎟⎠

⎫⎪⎬⎪⎭

+ (1 − 𝜂ij)𝜂ik log

�
𝛷

�
uj − �̃�j

�̃�j

�
1

𝜎k
𝜙

�
x
(i)

k
− 𝜇k

𝜎k

��

+ (1 − 𝜂ij)(1 − 𝜂ik) log𝛷2

�
uj − 𝜇j

𝜎j
,
uk − 𝜇k

𝜎k
, 𝜌jk

�
,
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If uj = −∞ , this yields a bivariate random vector with only the first variable being 
censored. Then the joint log-likelihood becomes

We can solve for �jk as

Because entries in �̂� are estimated separately, �̂� is not guaranteed to be positive 
semi-definite, which is unsatisfactory because ideally we expect the empirical covar-
iance matrix to be positive semi-definite. One way of bypassing this issue is to use 
the projection of �̂� onto a positive semi-definite cone, as done in Fan et al. [32]. In 
practice, one can calculate the eigen-decomposition of �̂� and threshold the negative 
ones to zero, which yields a new estimator �̃.

Given �̃ , one can apply the graphical lasso algorithm [18]

to solve for the inverse covariance matrix �.

Remark 1 The graphical lasso in (5) can be replaced with other algorithms for 
inverse covariance matrix estimation such as the method by Cai et  al. [33] or its 
adaptive version [34].

metaMint has been implemented in R. In particular, the optimization in (4) is 
solved using the optim function in R, and (5) is solved by the graphical lasso algo-
rithm in the glasso package.

�̃�j =𝜇j +
𝜎j

𝜎k
𝜌jk(x

(i)

k
− 𝜇k), �̃�j = 𝜎j

√
1 − 𝜌2

jk
.

�
(i)

2
(𝜌jk;𝜇j,𝜇k, 𝜎

2
j
, 𝜎2

k
) =𝜂ik log P(Yj = x

(i)

j
, Yk = x

(i)

k
)

+ (1 − 𝜂ik) log P(Yj = x
(i)

j
, Yk < uk)

=𝜂ik log

⎧
⎪⎨⎪⎩
1

�̃�k
𝜙

�
x
(i)

k
− �̃�k

�̃�k

�
1

𝜎j
𝜙

⎛
⎜⎜⎝
x
(i)

j
− 𝜇j

𝜎j

⎞
⎟⎟⎠

⎫
⎪⎬⎪⎭

+ (1 − 𝜂ik) log

⎧
⎪⎨⎪⎩
𝛷

�
uk − �̃�k

�̃�k

�
1

𝜎j
𝜙

⎛⎜⎜⎝
x
(i)

j
− 𝜇j

𝜎j

⎞⎟⎟⎠

⎫
⎪⎬⎪⎭
.

(4)�̂�jk = arg max
𝜌∈(−1,1)

1

n

n∑
i=1

�
(i)

h
(𝜌;�̂�j, �̂�k, �̂�

2
j
, �̂�2

k
), h = 1, 2.

(5)�𝛺 = arg max
𝛺

{
log det(𝛺) − tr( �𝛴𝛺) − 𝜆n

∑
1≤j<k≤p

|𝛺jk|
}

,
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2.2  Tuning Parameter Selection

As with other penalization-based methods, the proposed algorithm requires the 
specification of a tuning parameter �n that controls the sparsity of the inverse covari-
ance matrix. One can use the cross validation procedure in Guo et  al. [28] or the 
stability approach in Liu et al. [35] to select the optimal parameter. In simulations 
where the ground truth is known, model selection can also be done by maximizing 
the accuracy in network structural recovery. In Sect. 4 on real data analysis, we used 
the stability approach in Liu et al. [35].

2.3  The Modified Centered Log‑Ratio

The centered log-ratio transformation is often used to transform observed microbial 
counts to values that are comparable across samples before downstream analysis 
[36–38]. Let g(r) = (Π

p

j=1
rj)

1∕p denote the geometric mean of r = (r1,… , rp) . The clr 
of r is defined as

In practice, each sample may consist of many rare species that have zero counts. 
Thus a pseudo count of 0.5 or 1 is often added to all counts before clr is applied. 
However, this practice may unfairly bias rare species and impact the accuracy in cor-
relation estimation. The modified centered log-ratio (mclr) [22] attempts to address 
this limitation by transforming the non-zero counts with the usual clr and shifting all 
transformed values to be strictly positive.

Without loss of generality, let r(i) = (r
(i)

1
, �)⊺ = (Niw

(i)

1
, �)⊺ where only components 

in r(i)
1

 (and w(i)

1
 ) are positive. Although the sample-specific scaling factor Ni does not 

affect the relative abundances in sample i, it captures the variation among total 
sequencing reads. For example, Vandeputte et al. [39] observed up to tenfold differ-
ences in the total microbial loads after correcting for microbial cell counts. We 
define mclr�(r

(i)) as (clr(r
(i)

1
) + �, �)⊺ , where the constant � is set to be 

|mini,j log{r
(i)

j
∕g(r

(i)

1
}| + c and c > 0 is a small constant used to differentiate small 

positive counts from observed zeros. The resulting mclr�(r
(i)) is independent of the 

scaling factor Ni , because clr(r(i)
1
) = clr(w

(i)

1
) . However, adding a pseudo count to 

zeros and applying clr may introduce unnecessary bias towards zero counts. Figure 2 
illustrates the marginal distributions of the genus Fusobacterium after the two trans-
formations. Compared to clr, the mclr preserves the relative ranking of all counts 
while adjusting for the total sequencing depths.

Lastly, it is worth mentioning that mclr defined above is equivalent to transform-
ing the relative abundances as done in Yoon et al. [22]. To see this, let the relative 
abundance z(i) be defined such that z(i)

j
= r

(i)

j
∕S , where S =

∑p

j=1
r
(i)

j
 . Moreover, we 

can write z(i) = (z
(i)

1
, �)⊺ such that only components in z(i)

1
 are positive. For any 

z
(i)

j
> 0,

clr(r) =

(
log

r1

g(r)
,… , log

rp

g(r)

)⊺

.



359

1 3

Statistics in Biosciences (2021) 13:351–372 

In other words, mclr is scale invariant.

3  Simulation Studies

3.1  Model Setup

We first generated y(i) (i = 1,… , n) from a multivariate normal distribution with 
mean �0 and inverse covariance �0 . The mean parameter �0 was generated uni-
formly from [−0.5, 2] to reflect the heterogeneity in abundances of microbial 
sequences and metabolites. To generate the inverse covariance matrix �0 , we con-
sidered the following network models, each with p nodes: 

(1) Scale-free network. This network was generated using the Barabasi-Albert algo-
rithm [40] and has (p − 1) edges. The left panel of Fig. 3 illustrates a scale-free 
network.

(2) Erdős-Rényi random graph [41]. This network has p edges, as illustrated in the 
middle panel of Fig. 3.

(3) Nearest-neighbor network. We constructed this network using the same proce-
dure described in Guo et al. [28], where we uniformly sampled p points on a unit 
square and linked any two points that are 5 nearest neighbors of each other in 
terms of their Euclidean distances. This network has about 2.5p edges. The right 
panel of Fig. 3 illustrates one realization of a sparse network generated with 2 
nearest neighbors.

Given the network topology, the off-diagonal entries in �0 were generated uni-
formly from [−1,−0.5] ∪ [0.5, 1] , with diagonal entries being |�min(�

−
0
)| + 0.1 . 

Here �−
0
 represents the matrix �0 with zeros in the diagonal and �min(A) denotes the 

smallest eigenvalue of A. The covariance matrix �0 is then determined by

By construction, the diagonal entries of �0 are all 1.
Given the latent y(i) , the basis vector w(i) = (w

(i)

1
,… ,w(i)

p
)⊺ was obtained through 

the transformation w(i)

j
= e

y
(i)

j  . Censored abundances r(i) = (r
(i)

1
,… , r(i)

p
)⊺ were gener-

ated such that

log
z
(i)

j

g(z
(i)

1
)
= log

r
(i)

j

S
− {log g(r

(i)

1
) − log S} = log

r
(i)

j

g(r
(i)

1
)
.

�0,jk = (�0)
−1
jk
∕
√

(�0)
−1
jj
(�0)

−1
kk
.

r
(i)

j
=

{
Niw

(i)

j
I(y

(i)

j
> 0) j = 1,… , q,

w
(i)

j
j = q + 1,… , p,
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where Ni is generated uniformly between 1 and 10. Here q indicates the number of 
microbes. Only microbiome data are assumed to be censored and compositional in 
this article, but this assumption can be relaxed in general. In all simulations, we set 
the constant c = 0.1 in the modified clr transformation. Denote x(i)

1
= mclr�(r

(i)

1∶q
) and 

the observed abundances x(i) = (x
(i)

1
, log r

(i)

q+1
,… , log r(i)

p
)⊺.

3.2  Results

We compared metaMint with SPIEC-EASI [17] and gCoda [19]. The oracle estima-
tor obtained from the latent basis {w(i)}n

i=1
 is used as a benchmark, though in practice 

the oracle is generally unknown. To evaluate the performance of network recovery, 
we used the receiver operating characteristic (ROC) curve to plot the false positive 
rate (FPR) against the true positive rate (TPR) defined, respectively, as,

where �̂� denotes the estimated network. The F1 score [42], which is between 0 and 
1, measures the accuracy of an estimator by summarizing both false positives and 
false negatives. Larger F1 scores indicate better structural recovery. For �̂�𝜆∗ esti-
mated at the optimal penalty parameter �∗ selected by maximizing the F1 score, we 
also compared the entropy loss (EL) and Frobenius norm loss (FL) for estimation 
accuracy:

Our first comparison is based on only microbiome data where p = q = 60 and 
n = 100 . In this example, the percentage of zeros per species ranges from 0% to 70%. 
Input for gCoda is the censored abundance matrix D = (r(1) + 0.5,… , r(n) + 0.5)⊺ . 
The clr transformation is then applied to each row in D and the resulting matrix is 
used as input for SPIEC-EASI. Figure 4 shows the ROC curves obtained from dif-
ferent methods across different network models. One can see that SPIEC-EASI and 
gCoda perform similarly, and both underperform compared to metaMint. Because 
the nearest-neighbor network is denser, the ROC curves in the right panel of Fig. 4 
are generally lower compared to their counterparts in other network models.

In our second study, we look at larger datasets where the number of metabolites 
is q = 100 and the number of microbes is p − q = 100 . The sample size is n = 300 . 
The method gCoda is thus not applicable because it was proposed specifically for 
microbiome data. Because we only censor microbiome data, the proportion of cen-
sored variables in this example is smaller. We first compare different methods in 
terms of network structural recovery. Figure 5 shows the average F1 score of each 
method across a range of penalty parameters. It can be seen that metaMint has over-
all higher F1 scores than SPIEC-EASI, and closely resembles the oracle estimator.

FPR =

∑
1≤j<k≤p I(𝛺0,jk = 0, �̂�jk ≠ 0)
∑

1≤j<k≤p I(𝛺0,jk = 0)
, TPR =

∑
1≤j<k≤p I(𝛺0,jk ≠ 0, �̂�jk ≠ 0)
∑

1≤j<k≤p I(𝛺0,jk ≠ 0)
,

EL = tr(𝛴0�̂�𝜆∗ ) − log det(𝛴0�̂�𝜆∗ ) − p, FL =

∑
1≤j<k≤p(𝛺0,jk − �̂�jk,𝜆∗ )

2

∑
1≤j<k≤p(𝛺0,jk)

2
.
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Since we know the true network structure, we also look at comparisons in terms 
of inverse covariance estimation accuracy at the optimal penalty parameter selected 
by maximizing the F1 score. As shown in Fig. 6, SPIEC-EASI performs the worst 
in all cases because its entropy and Frobenius norm loss are the largest. It is worth 
pointing out that there still exists substantial gap in both EL and FL between meta-
Mint and the oracle estimator as a result of censoring. We anticipate that this issue 
can be partly addressed with increased sequencing depths.

4  Analysis of Bacterial Vaginosis Data

4.1  Data Description and Processing

Bacterial vaginosis (BV) is a common vaginal condition characterized by deple-
tion of specific Lactobacillus species and increased abundance of diverse anaero-
bic bacteria such as genus Gardnerella, Prevotella and others [43, 44]. This condi-
tion affects an estimated 30% of women at any given time [45], and is associated 
with increased transmission of HIV and increased risk of preterm labor [46, 47]. 
Improved diagnosis and treatment of BV require not only a clearer understanding of 
the roles of BV associated bacterial species and their interactions, but also a detailed 
catalog of the interactions between these bacteria and relevant metabolites. We 
applied the proposed multi-omic approach to a cohort of 131 Rwandan women from 
McMillan et al. [9]. The microbiome data from sequencing the 16S rRNA gene con-
sist of 51 bacterial species after initial filtering, and the vaginal metabolome deter-
mined by GC-MS contains 128 metabolites [see the Methods section in 9]. One bac-
terial species is present in only 13 individuals, so we removed this rare species and 
used 50 taxa in all analysis. Of the 131 women, 79 were normal, 23 were diagnosed 
with BV, 22 as being intermediate between BV and the normal state, and 7 did not 
have diagnosis. To account for the different sequencing depths, we applied the clr 
and modified clr to the microbiome data. Metabolomic data available from McMil-
lan et  al. [9] have already been log transformed. After the mclr transformation, a 
species is treated as censored at zero if it has at least one zero count. Based on this 
criterion, 27 of the 50 species are left censored.

We compare metaMint with SPIEC-EASI by applying the former to mclr trans-
formed data and the latter to clr transformed data. At the optimal tuning parameter, 
which was selected using the stability approach in Liu et  al. [35] with pre-speci-
fied stability threshold � , we randomly subsampled 80% of all samples to estimate 
the network using each method. This procedure was repeated 50 times and an edge 
selection frequency matrix was constructed such that each entry represents the pro-
portion of times the corresponding edge was present. Only edges with at least 95% 
selection frequency were kept.
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4.2  Results

We first compare metaMint and SPIEC-EASI by estimating a single integrated 
microbe and metabolite network for all subjects at stability threshold � = 0.01 . Fig-
ure 7 presents the joint microbe-metabolite network estimated by the two methods, 
where the thick black edges are shared between the two methods, blue edges are 
unique to metaMint, and red edges are unique to SPIEC-EASI. We can see that a 
majority of edges are shared between the two methods. In particular, both methods 
reported the conditional association between the genus Gardnerella and metabo-
lite GHB (6–82), and between Lactobacillus and unknown sugar 1 (3–165). These 
two edges are relatively stable and show up in the network for any stability thresh-
old � ≥ 0.004 . Importantly, the interaction between Gardnerella and GHB was 
also observed and reproduced experimentally in McMillan et al. [9]. Other notable 
microbe-metabolite interactions that are unique to each method include Prevotella—
unknown sugar 2 (7–166) estimated only by metaMint, and Dialister—n-acetyl-
putrescine (10–106), Dialister—phenylethylamine (10–111) estimated only by 
SPIEC-EASI. These microbe-metabolite interactions are unique to each method 
until the stability threshold increases to � = 0.02 . The differences reported by the 
two methods are manifestations of the different transformations and whether the 
model directly accounts for zero inflation.

To gain further insights into the roles of these microbe-metabolite interactions, 
we partitioned all subjects into two groups: the normal group ( n1 = 79 ) and every-
one else ( the BV group, n2 = 52 ). metaMint and SPIEC-EASI were applied to esti-
mate a network for each group using the same model selection procedure as before. 
In general, we observe more interactions in the group-specific network estimated 
by SPIEC-EASI compared to the corresponding network estimated by metaMint. 
At stability threshold 0.01, no interaction between microbes and metabolites was 
recovered due to the reduced sample size in each group. As we gradually increase 
the stability threshold, the first pair of microbe-metabolite interaction unique to the 
BV group is between Gardnerella and GHB, and was identified by both metaMint 
and SPIEC-EASI. Table  1 provides a list of microbe-metabolite interactions that 
are unique to each group of patients identified by both methods at stability thresh-
old 0.02. It is worth noting that Gardnerella—GHB, Prevotella—unknown sugar 2, 
and Dialister—cadaverine only show up for the BV group, whereas the interactions 
between Lactobacillus species and several metabolites appear only for the normal 
group. Abundance of Lactobacillus and Prevotella has long been used as a diagnos-
tic signature for bacterial vaginosis [43, 44]. In addition, McMillan et al. [9] hypoth-
esized that Dialister is responsible for malodor in the vagina. Our analysis may shed 
light on the mechanistic link between metabolic end products and microbes in vagi-
nal bacterial communities, and provide key guidance regarding the diagnosis and 
treatment of BV.
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5  Discussion

The uneven sequencing depths and sparsity in microbiome data present significant 
challenges in inferring interactions between microbial species and their products. 
The different sequencing depths imply different levels of uncertainty, but how to 
handle varying sequencing depths in multivariate statistical analysis remains an 
unsolved problem [48, 49]. This paper proposes the censored Gaussian graphical 
model for joint estimation of microbiome and metabolomic network, which can be 
used to identify conditional dependencies (direct interactions) between microbial 
species and metabolites. Key to our proposal is the use of the modified centered log-
ratio for transforming the observed microbial counts, which is scale invariant and 
preserves the ranking of positive counts relative to zeros. Observed zeros are attrib-
uted to undersampling and modeled as due to left censoring. Our method metaMint 
can be generalized to study other omics data types that fit in the censored Gaussian 
graphical model framework. Analysis of the bacterial vaginosis data demonstrates 
that metaMint facilitates the discovery of important microbe-metabolite interactions 
for diagnosis and treatment of this condition. The data example in Sect. 4 has about 
50% censored variables, although 11 of them have less than 10% zero counts. As 
we move into high-resolution studies which collect microbiome data at the strain 
or amplicon sequence variant level, our model that explicitly accounts for observed 
zeros may exhibit more advantage over existing methods.

From a methodological perspective, metaMint estimates the correlations in a 
marginal manner, which may not be optimal because marginal approaches ignore the 
fact that the correlation matrix is positive semi-definite. Augugliaro et al. [26] pro-
posed an approximated EM algorithm that jointly estimates all entries in the correla-
tion matrix; however, their method only works well under specific settings and there 
is a lack of theoretical understanding about the resulting estimator. Obvious but non-
trivial extension is to explore computationally and statistically efficient alternatives 
that jointly estimate all entries in the correlation matrix.

Our model is related to but substantially different from the zero-inflated Gauss-
ian graphical model in McDavid et al. [27]. While our model assumes the observed 

Table 1  Microbe-metabolite interactions estimated by metaMint and SPIEC-EASI that are unique to 
each group

Microbe id Metabolite id Microbe name Metabolite name Group

1 62 Lactobacillus_iners 2-O-Glycerol-d-ga-
lactopyranoside 3

Normal

2 88 Lactobacillus_crispatus Glyceric_acid Normal
2 125 Lactobacillus_crispatus Succinate Normal
3 96 Lactobacillus Malate Normal
3 125 Lactobacillus Succinate Normal
6 82 Gardnerella GHB BV
7 166 Prevotella Unknown sugar 2 BV
10 72 Dialister Cadaverine BV
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zeros are due to undersampling, McDavid et al. [27] uses a two-part Hurdle model 
that treats all zeros as structural. The multivariate Hurdle model consists of an Ising 
model that captures the discrete part and a Gaussian graphical model that describes 
the continuous part if the hurdle is passed. When the study design favors the two-
part process, as is the case in single-cell RNA-seq analysis, the multivariate Hurdle 
model should be considered. On the other hand, the censored Gaussian graphical 
model is simpler and works well if the study design favors sampling zeros and/or 
structural zeros can be reasonably approximated as sampling zeros [21].

It is worth pointing out that the observed data defined in (1) are continuous-
valued. In this paper, we have made the simplifying assumption that the observed 
counts can be approximated by a log-normal distribution with left censoring. An 
alternative approach is to analyze observed counts directly while still treating zeros 
as due to left censoring. In the regression setting, Clark et al. [50] provided a general 
framework that uses a latent continuous variable to model observed species abun-
dance, which can be presence/absence, continuous abundance, ordinal counts, or 
counts that are subject to a total sum constraint. It would be interesting to see if 
similar ideas can be used to model interactions between microbial species and other 
molecules.
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