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Abstract: Nowadays, smart mobile devices include more and more sensors on board, such
as motion sensors (accelerometer, gyroscope, magnetometer), wireless signal strength indicators
(WiFi, Bluetooth, Zigbee), and visual sensors (LiDAR, camera). People have developed various
indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of
multiple sensors is investigated in a hidden Markov model (HMM) framework for mobile-device
user-positioning. We propose a graph structure to store the model constructed by multiple sensors
during the offline training phase, and a multimodal particle filter to seamlessly fuse the information
during the online tracking phase. Based on our algorithm, we develop an indoor positioning system
on the iOS platform. The experiments carried out in a typical indoor environment have shown
promising results for our proposed algorithm and system design.

Keywords: indoor positioning; HMM framework; graph structure; multimodal particle filter; sensor
fusion; iOS platform

1. Introduction

In recent years, researchers have developed various approaches for mobile-device (smartphone,
tablet) user-positioning in GPS-denied indoor environment. To name a few, radio frequency (RF)
fingerprinting techniques, motion-sensor-based pedestrian dead reckoning (PDR) techniques, and
visual-sensor-based feature matching techniques, are some of the most popular approaches in
indoor positioning. However, all of them have their own limitations. RF fingerprinting techniques
(Bluetooth [1], RFID [2], Zigbee [3] and WiFi [4–6],) have the problem of signal fluctuation due to
the multipath fading effect in indoor environment. The motion-sensor-based PDR approach [7,8]
suffers from the fact that the motion sensors equipped in the mobile device are low cost Micro
Electromechanical System (MEMS) sensors, which have relatively low accuracy. Thus, the integration
drift will cause the positioning error to accumulate over time. The visual-sensor-based positioning
techniques [9–13] extract features (SIFT [14], SURF [15]) from captured images and compare them
with an image database. These techniques are limited by their costly feature-matching algorithm
and restricted computation resources on a mobile platform. In ASSIST [16], acoustic signals emitted
from smartphone speakers are adopted to locate the user using the time difference of arrival
(TDoA) multilateration method. ASSIST can locate the user within 30 cm. However, this method
requires sound receivers to be preinstalled in ceilings or walls, which adds extra infrastructure to the
indoor environment.

To overcome the drawback of each sensor, people have come up with fusion approaches to
combine different sensors to achieve a better positioning result. However, since the sensors are
measuring different physical phenomena, it is not an easy task to effectively fuse the information
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from multiple sensors. The existing sensor fusion approaches for positioning involve decision-level
fusion and feature-level fusion. Decision-level fusion usually contains multiple local detectors and
a fusion center. The local decisions are transmitted to the fusion center where the global decision is
derived. The optimum decision rule under the Neyman-Pearson sense can be expressed as a function
of the correlation coefficients of the local detectors. It has been shown that the performance of such
distributed detection systems degrade as the degree of correlation increases [17]. This approach is
easy to implement and computationally efficient. It has been widely used in wireless sensor networks
(WSN) and some other research fields [18]. However, it is not practical in an indoor positioning
system with multiple sensors due to the difficulty of determining the correlation coefficients between
different sensors. On the other hand, feature-level fusion [19] is a more delicate fusion approach that
extracts features from multiple sensor observations, and uses these features to represent the real world
and help positioning. The problem with feature-level sensor fusion is the highly redundant sensor
data in feature extraction. As there are multiple sensors, each sensor delivers different data about
the surrounding environment; we have to determine an effective approach to extract the information
and store it in an efficient way so that we can easily access them for the purpose of positioning.
Existing fusion algorithms include Bayesian filtering techniques, such as the Kalman filter [20,21] and
particle filter [22,23], and non-Bayesian filtering technique, like conditional random fields [24,25] and
Dempster-Shafer theory [26,27]. Originally, the Kalman filter and particle filter are designed for state
estimation in single-sensor measurements. However, information fusion, based on Bayesian filtering
theory, has been studied and widely applied to multi-sensor systems. Generally, there are two types
of methods used to process the measured sensor data. The first one is the centralized filter, where
all sensor data are transferred to a fusion center for processing. The second one is the decentralized
filter, where the information from local estimators can achieve the global optimal or suboptimal state
estimate according to certain information fusion criterion.

In previous work [28], we adapted Gaussian process modeling of WiFi RF fingerprinting and a
particle filter based localizer to a mobile device. Later on, we introduce motion sensors on board to
inprove the positioning accuracy [29]. The algorithm is implemented on the iOS platform and tested
in an indoor environment. In this paper, to further improve the positioning accuracy, we introduce
visual sensors into our system. The probabilistic model for multi-sensor fusion is investigated in a
hidden Markov model (HMM) framework, where the state transition model is defined as the user
motion model, and the observation model includes a WiFi sensor model, camera sensor model, and
motion sensor model. Researchers have applied HMM successfully in a WSN area. Huang et al.
modeled the dynamic quantization and rate allocation in a sensor network with a fusion center as
a finite state Markov chain, and designed an optimal quantizer using a stochastic control approach
for state estimation in a hidden Markov model [30]. Rossi et al. developed a HMM framework that
exploits time-correlation of the unknown binary source under observation through a WSN-reporting
local sensor detection to a fusion center over Rayleigh fading channel interference [31]. To solve the
HMM state estimation problem with multiple sensors, Blom et al. proposed the interacting multiple
model (IMM) algorithm, which combines state hypotheses from multiple filter models to get a better
state estimate of targets with changing dynamics [32]. The filter models used to form each state
hypothesis can be derived to match the targets of interest’s behavior. In this paper, we propose a
multimodal particle filter to seamlessly fuse the data from multiple sensors for HMM state estimation.

A graph structure G “ pV, Eq is developed to store the information effectively. The key idea
is to represent the indoor environment using graph of which vertices correspond to segments of the
indoor environment. The segments are predefined in an offline built 3D model. The vertices play
an important role in the motion model, since they relate to movement choices, which are positions
where the user has a limited amount of choices as to where to move next. The edges correspond to
connections between different segments, which act as constraints of the user movement to reduce
computation during the online tracking phase.
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Specifically, we make the following contributions: Under the HMM framework, we propose a
graph structure to store the model constructed by multiple sensors in the offline training phase, and
a multimodal particle filter to efficiently fuse the information during the online tracking phase. The
particle filter is able to handle the motion sensor drift problem during the resampling step. The WiFi
signal strength fluctuation problem is mitigated using the motion sensor information to guide the
particle propagation towards the higher likelihood field. Based on our algorithm, we develop an
indoor positioning system on the iOS platform. To the best of our knowledge, our iOS application
is the first one to achieve accurate, robust, and highly integrated indoor positioning by seamlessly
fusing the information from the multiple sensors on board.

This paper is organized as follows: In the next section, we describe, in detail, the offline training
phase. Then, in Section 3, a HMM framework is introduced to describe the probabilistic multi-sensor
fusion. In Section 4, we talk about particle filter steps for HMM state estimation. The implementation
on the iOS platform, and experimental results, are presented in Section 5. Finally, we conclude our
research in Section 6 with a discussion of future work.

2. Offline Training Phase

In this section, we will discuss every detail of our preparation for online tracking.

2.1. 3D Modeling of Indoor Environments

A detailed 3D model of the indoor environment is constructed by fusing the data from a camera
and a 2D line-scan LiDAR. Both devices are mounted rigidly on a robotic servo, which sweeps
vertically to cover the third dimension (Figure 1). Fiducial target-based extrinsic calibration [33–35]
is applied to acquire transformation matrices between LiDAR and the camera. Based on the
transformation matrix, we perform registration to fuse the color images from the camera with the
3D point cloud from the LiDAR.
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Figure 1. Snapshot of the LiDAR-camera scanning system.

As shown in Figure 2, a 3D point in the LiDAR calibration plane is represented as Pl “ rx, y, zsT

and its related pixel in the camera image plane is described as Pc “ rX, Y, 1sT . The 3D point Pl
with intensity information is projected to a calibration plane under a pinhole camera model. The
calibration plane is defined at z “ f and the projected point in the calibration plane is shown as
P “ ru, v, 1sT . Based on similar triangle rules, we have the following relationship:

u “ f
x
z

; v “ f
y
z

(1)

where f is the focal length of the camera. In order to fuse the information from LiDAR and the camera,
we need to look for the relationship to match P and Pc.
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Figure 2. Pinhole camera model. 

Figure 3 gives a workflow of the extrinsic calibration procedure. After projecting the 3D points 
to the calibration plane, we get a 2D point cloud. These 2D points are interpolated to generate a 
LiDAR intensity image. The problem of extrinsic calibration has become how to find the geometric 
constraints between a LiDAR intensity image and a camera image using the checkerboard pattern. 
The transformation of the checkerboard pattern from the LiDAR calibration coordinate frame to the 
camera coordinate frame is represented by a rigid 3 x 3 transformation matrix T . 
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As shown in Figure 4, to obtain the features of a checkerboard accurately, we select a Region of 
Interest (ROI) from the LiDAR intensity image and the camera panorama for the checkerboard 
pattern. Next, we take advantage of Random Sample Consensus (RANSAC) algorithm to find the 
correspondences between the LiDAR intensity images and the camera panorama images. In 
RANSAC, a pair of points is selected as an inlier only when the distance between them falls within 
the specified threshold. The distance metric used in RANSAC is as follows: 
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( )T P  is the projection of a point on the intensity image based on the transformation matrix T , d  
is the distance between a pair of points, ξ  is the threshold, and N  is the number of points. 

Figure 2. Pinhole camera model.

Figure 3 gives a workflow of the extrinsic calibration procedure. After projecting the 3D points
to the calibration plane, we get a 2D point cloud. These 2D points are interpolated to generate a
LiDAR intensity image. The problem of extrinsic calibration has become how to find the geometric
constraints between a LiDAR intensity image and a camera image using the checkerboard pattern.
The transformation of the checkerboard pattern from the LiDAR calibration coordinate frame to the
camera coordinate frame is represented by a rigid 3 x 3 transformation matrix T.

Pc “ TP (2)
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Figure 3. Extrinsic calibration procedure.

As shown in Figure 4, to obtain the features of a checkerboard accurately, we select a Region
of Interest (ROI) from the LiDAR intensity image and the camera panorama for the checkerboard
pattern. Next, we take advantage of Random Sample Consensus (RANSAC) algorithm to find
the correspondences between the LiDAR intensity images and the camera panorama images. In
RANSAC, a pair of points is selected as an inlier only when the distance between them falls within
the specified threshold. The distance metric used in RANSAC is as follows:

D “

N
ÿ

i“1

minpdpPc, TpPqq, ξq (3)

where P is a point in the LiDAR intensity image, Pc is a point in the camera panorama image, TpPq is
the projection of a point on the intensity image based on the transformation matrix T, d is the distance
between a pair of points, ξ is the threshold, and N is the number of points.

The algorithm for generating the transformation matrix is summarized below:
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(1) Find the inliers for the corners of checkerboard based on RANSAC algorithm.The RANSAC
algorithm follows these steps:

(a) Randomly select three pairs of points from the LiDAR intensity image and camera image
to estimate a fitting model.

(b) Calculate the transformation matrix T from the selected points.
(c) Change the T value, if the distance matrix of a new T is less than the original one.

(2) Choose the transformation matrix T, which has the maximum inliers.
(3) Use all inlier point pairs to compute a refined transformation matrix T.

After generating the transformation matrices, we are able to stitch the camera panoramas
together and fuse them with one LiDAR intensity image by applying the transformation matrices.
Then, we back project the textured 2D points to a 3D color point cloud.
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accuracy of the laser beam, this model is much more accurate than the 3D model generated from a 
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The extrinsic calibration result is applied to a large indoor environment. The LiDAR-camera
scan system is mounted on a pushcart in order to record the data in stop-and-go mode. By manually
aligning the data in each survey point, we can get a detailed 3D model of the indoor environment.
At the same time, the 3D model is partitioned, based on the survey point locations. Figure 5 shows a
2D map of a large corridor area and survey point locations. The corresponding 3D model is shown
in Figure 6. In order to construct a 3D model of the corridor, with an area of 630,000 square feet,
we have collected 1,029,974 data points; each point with an XYZ and RGB value. Based on the high
accuracy of the laser beam, this model is much more accurate than the 3D model generated from a
RGB-D sensor. Admittedly, it is computational heavy to process the data in the offline training phase
to build a detailed 3D color point cloud. However, during the online tracking phase, we only need
to match the captured image with a local model instead of the entire one, which significantly reduces
the cost.
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and rotating the scanning system 360°. Thus, the room will be represented by a single vertex in the 
graph structure. For a large open space, the graph structure is shown in Figure 7 on the right. 
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By introducing a graph as the data structure, we are able to restrict the user movement and 
predict the user location at the next moment. Since the user can only move around connected 
vertices, we will only have limited amount of candidate vertices for the next move. If the space 
involved in a vertex is small enough, finding the user’s location is approximated as locating the 
vertex. This is similar to grid-based localization. However, the smaller the grid is, the higher the 
computational cost will be. In practice, we choose the grid size as the survey area covered during 
each 3D scan. Thus, locating the vertex gives a coarse estimation of the user’s location. A finer 
positioning within the vertex is achieved using particle filtering. The use of the graph structure also 
increases the system’s robustness. In the case of crowded environments, where the sensor signal 
fidelity may not be reliable, the constraints in the graph can help detect a sensor failure if the 
prediction based on the sensor’s measurement violates the constraints. 

2.3. Gaussian Process Modeling of WiFi Received Signal Strength 

Figure 6. 3D model of a corridor.

2.2. Graph Structure Construction

The key idea of constructing a graph structure is to represent the indoor environment using a
graph tG “ pV, Equ, where V are vertices defined at each survey point during 3D modeling of the
indoor environment, and E are edges that connect different segments of the 3D model if there is a
direct access from one segment to another. The corresponded graph structure for a corridor area is
shown in Figure 7 on the left. For a small room, we scan the entire room by standing in the middle
and rotating the scanning system 360˝. Thus, the room will be represented by a single vertex in the
graph structure. For a large open space, the graph structure is shown in Figure 7 on the right.
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A vertex Vi encodes the 3D color point cloud PTVi , WiFi received signal strength RSSVi , and
position POSVi . These attributes are stored in an object array, Ai “ rPTVi , RSSVi , POSVi s. An
edge Eij “ tVi, Vju connects two vertices, Vi and Vj. The edges act as constraints for the motion
choices, since the user in vertex Vi can only directly access vertex Vj if there is an edge Eij “ tVi, Vju

between them.
By introducing a graph as the data structure, we are able to restrict the user movement and

predict the user location at the next moment. Since the user can only move around connected vertices,
we will only have limited amount of candidate vertices for the next move. If the space involved in
a vertex is small enough, finding the user’s location is approximated as locating the vertex. This is
similar to grid-based localization. However, the smaller the grid is, the higher the computational cost
will be. In practice, we choose the grid size as the survey area covered during each 3D scan. Thus,
locating the vertex gives a coarse estimation of the user’s location. A finer positioning within the
vertex is achieved using particle filtering. The use of the graph structure also increases the system’s
robustness. In the case of crowded environments, where the sensor signal fidelity may not be reliable,
the constraints in the graph can help detect a sensor failure if the prediction based on the sensor’s
measurement violates the constraints.
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2.3. Gaussian Process Modeling of WiFi Received Signal Strength

A Gaussian process (GP) essentially estimates a posterior probability distribution over functions
from training data (details can be found in [36]). We will give a brief introduction here.

Let us first define a function, f px˚q, be the posterior distribution that makes predictions for all
possible inputs x˚. Additionally, we have D “ tpxi, yiq|i “ 1, ..., nu, which is a set of training samples
consisting of n observations drawing from a noisy process, yi “ f pxi ` εq, where each xi is an input
sample in <d, and each yi is a target value in <. ε is additive Gaussian noise with zero mean and
variance σ2

n . For notational convenience, the inputs of the training set are grouped into a d ˆ matrix
X, and the observations yi are grouped into a vector y.

To estimate the posterior distribution over function f px˚q from training dataset D, GP depends
on a covariance function kernel kpxp, xqq, which specifies how the values at different points are
correlated to each other. This kernel can be specified as any arbitrary covariance function, and we
have chosen the widely-used squared exponential kernel

kpxp, xqq “ σ2
f expp´

1
2l2 |xp ´ xq|

2q (4)

Here, the parameters σ2
f and l are the signal variance and the length scale, which determine the

strength of the correlation between different points.
Since we only have access to the noisy observations y instead of the true function value f pxq, we

must add a term to account for observation noise in the covariance function:

covpyp, yqq “ kpxp, xqq ` σ2
nδpq (5)

Here, σ2
n is the Gaussian observation noise and δpq is one if p “ q or zero otherwise. For an entire

set of input values X, the covariance over the corresponding observations y can be written as:

covpyq “ K` σ2
n I (6)

where K is the n ˆ n covariance matrix of the input values, defined as Krp, qs “ kpxp, xqq.
Note that the covariance between the observations is written as a function of the inputs,

emphasizing the non-parametric nature of Gaussian process regression.
Now we can generate the posterior distribution over functions pp f px˚q|x˚, X, yq „ Npµx˚ , σ2

x˚
q

to predict the function value for any arbitrary points x˚, given the training data X and y:
The predicted mean and variance are:

µx˚ “ kT
˚pK` σ2

n Iq
´1

y (7)

σ2
x˚
“ kpx˚, x˚q ´ kT

˚pK` σ2
n Iq

´1
k˚ (8)

The parameters σ2
f , σ2

n and l control the smoothness of the functions, estimated by a GP, and can
be learned from training data, by maximizing the log marginal likelihood of the observations. This
learning process is completed offline, immediately after the training dataset is built.

To apply GP in WiFi signal strength modeling, the input values X correspond to positions, and
the observations y correspond to signal strength measurements gathered at these positions. The
GP posterior is estimated from a collection of signal strength measurements corresponding to their
positions. Assuming independence between different access points, we estimate a GP for each access
point separately.

2.4. Motion Dynamic Model

The motion dynamic model is defined as the user’s position changes over time, which are
represented by the distance traveled and the heading movement. The built-in motion sensors in the

31470



Sensors 2015, 15, 31464–31481

mobile device, including an accelerometer, gyroscope and magnetometer, are used to track the user’s
movement. We first take a look at the accelerometer measurement. If the user is standing still, it is
expected that their mobile device will register little acceleration. Therefore, the standard deviation
in the magnitude of acceleration is selected to detect the walking/stopped transition. If σ|a| ă 0.01,
it is very likely that the user is stopped. If σ|a| ě 0.01, however, it is not sufficient to ascertain that
the user is walking. For example, the sudden movement of the user’s hands could result in a larger
acceleration. Thus, we exploit the repetitive nature of walking [37].

Figure 8 shows the acceleration data recorded by a walking user. We can see that the acceleration
data exhibits a highly repetitive pattern. This pattern arises due to the rhythmic nature of walking.
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where ( , )kμ τ  and ( , )kσ τ  are the mean and standard deviation of the sequence of samples from 
( )a k  to ( 1)a k τ+ − . 
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In order to determine whether the user actually enters the walking mode, we calculate the
auto-correlation of the acceleration signal apnq for lag τ at the mth, as follow:

χpm, τq “

k“τ´1
ř

k“0
rapm` kq ´ µpm, τq ˚ papm` k` τq ´ µpm` τ, τqqs

τ ˚ σpm, τq ˚ σpm` τ, τq
(9)

where µpk, τq and σpk, τq are the mean and standard deviation of the sequence of samples from apkq
to apk` τ´ 1q.

If the user is walking, then the auto-correlation will spike the periodicity of the walker. We
define ψpmq as the maximum of the auto-correlation. If σ|a| ě 0.01, and ψpmq ě 0.8, then the user is
very likely to be walking. Otherwise, there is no change in the motion transition state. This double
threshold is able to prevent some irregular movements, for example, the movement of the user’s
hand, to change the motion state.

Once we have determined that the state is walking, step counting and stride estimation are
performed to calculate the walking distance of the user. As shown in Figure 9, step counting is
realized by dividing the duration of a sample when the maximum auto-correlation is ψpmq ě 0.8 by
τopt, and round up to an integer value. The τopt is determined by simply finding the most frequently
occurring τ in the duration when ψpmq ě 0.8.
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Figure 9. Maximum autocorrelation for step counting. 
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where ka  represents the measured acceleration and N  represents the number of samples in one 
period of walking. The relationship between stride, period of one step, and acceleration is 
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Because the human stride is not constant during walking, the stride size is determined by
dynamically checking the acceleration sequence. We apply an empirical equation, based on [38],
to estimate the stride size.

Stride “ 0.98ˆ

3

g

f

f

f

e

N
ř

k“1
|ak|

N
(10)

where ak represents the measured acceleration and N represents the number of samples in one period
of walking. The relationship between stride, period of one step, and acceleration is established
through a walking test, where the tester walks with a fixed stride using ground marks.

In order to detect the user’s orientation, we apply a gyroscope and magnetometer sensor to
detect angle change. According to reference [39], the rapid fluctuation in the sensor signals is modeled
heuristically with a zero mean, white Gaussian noise. The initial orientation of the user is provided by
the magnetometer sensor θinit “ θmagn ` nmagn, then the orientation is updated using the gyroscope
θt “ θt´1` θgyro`ngyro. Here, nmagn and ngyro are Gaussian noise of the magnetometer and gyroscope
measurements. Figure 10 shows the device yaw attitude changing while a user, holding the mobile
device horizontally, is walking in a corridor.
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To determine the new position, we first need to calculate the step number and stride length, and
then estimate the movement as follows:

xpt` 1q “ xptq ` pplptq ` δlptqq ˚ cospθptq ` δθptqq (11)

ypt` 1q “ yptq ` pplptq ` δlptqq ˚ sinpθptq ` δθptqq (12)

where lptq and θptq are the estimated step length and heading direction, while δlptq and δθptq are the
zero mean Gaussian noises on the length and direction, respectively.

The motion dynamic model fuses the information provided by different motion sensors, and
indicates a higher likelihood field in particle filtering. There are four scenarios depending on the
access of different kinds of motion sensors. When an accelerometer is available, the distance traveled
can be estimated, based on step counting and stride length estimation. Otherwise, the distance is
estimated with an empirical maximum speed, for example, 1 m/s. If a gyroscope and a magnetometer
are available, the user heading is detected, if not, the heading remains unknown. Assuming an
open space, the calculation of the likelihood field is shown in Figure 11. The grid points denote
all possible state candidates for the next epoch, and the black dot is a state candidate of the current
epoch. When only the distance traveled is measured, the likelihood field (shaded area) is located
within a ring zone around the triangle, as shown in Figure 11a. The radius and width of the ring
are determined, based on the measured distance and its uncertainty, respectively. If only the user’s
heading is detected, and an empirical maximum speed is used to calculate a maximum walking range
within a time interval, the likelihood field is shown in Figure 11b. The angle of the shaded zone is
determined based on the heading and its uncertainty. If both the distance and heading are measured,
the likelihood field is shown in Figure 11c. This is the case for our system, which greatly reduces the
amount of particles needed for precise positioning, thus decreasing the computational complexity in
particle filtering. Finally, if we have no access to any motion sensors, assuming a maximum walking
range, the likelihood field is located within a whole circular area, as shown in Figure 11d.
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3. HMM Model

A general HMM characterizes a physical system with a state space model. In the problem
of position tracking, the HMM model represents the temporal correlation of a user’s position and
orientation. Figure 12 shows a HMM factor graph, the state Xptq “ txptq, yptq, θptq, mptq, Vptqu, where
xptq, yptq, θptq represents the user’s position and orientation, mptq P pwalk, stopq, Vptq indicates the
current vertex where the user is located in the graph structure. The state transition model ppXt|Xt´1q

constructed of ppxt, yt|xt´1, yt´1q, ppθt|θt´1q, ppmt|mt´1q and ppVt|Vt´1q serve as the motion model
in our algorithm. The observation model is based on the WiFi signal strength measurement, motion
sensor readings, and the captured image during online tracking.
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ppmt|mt´1q represents the probability of the motion state being walking or stopped given the
previous motion state. It is defined as a 2 by 2 matrix, which models the preference of staying in the
previous state, avoiding too-rapid changes in motion states. Moreover, we apply different matrices
for different environments. This enables the system to model the fact that the user is more likely to
stop in a room than in a corridor.

ppθt|θt´1q represents the probability of the current orientation θt given the previous orientation
θt´ 1. It depends on whether the user is walking or stopped, and whether he is in a hallway or an
open space. As the choice is limited to two, we use binary code to represent the situation. We define
Walking = 1, Stopped = 0 for the leftmost binary digit, and Hallway = 1, Open space = 0 for the
rightmost binary digit in the binary representation of the situation. In total we have four situations
(00, 01, 10, 11). For example, if the user is walking in a hallway, his situation code is 11. If the next
motion state has been determined to be stop, the difference ∆θt is sampled uniformly with a constant
probability α „ r0, 2πs. Otherwise, if the next motion state is to be walking, we make a simple
assumption that the user prefers to walk in a straight line, so that ∆θt is sampled from a zero mean
Gaussian distribution. If the user is in an open space, ∆θt follows a unimodal Gaussian distribution.
On the other hand, if the user is in a hallway, ∆θt follows a bimodal Gaussian distribution, since the
user has a higher chance of choosing from two opposite orientations.

ppxt, yt|xt´1, yt´1q represents the probability of the current position pxt, ytq given the previous
position pxt´1, yt´1q. If the previous motion state mt has been determined as stopped, the current
position is equal to the previous one. Otherwise, the current position is updated by sampling the
moving distance dt from a Gaussian Npµ, σ2q. Based on a simple straight motion assumption, the
new position is calculated as follows:

xt “ xt´1 ` dt ˚ cospθtq (13)

yt “ yt´1 ` dt ˚ sinpθtq (14)

ppVt|Vt´1q represents the probability of the current vertex Vt given the previous vertex Vt´ 1. If
Vt is in a corridor, we first calculate the walking/stopped probability. If mt “ stopped, then Vt “ Vt´1.
Otherwise, we calculate the distance that the user has travelled. For this distance, we determine
whether the movement along the corridor results in a transition to another vertex, or remains within
the same vertex area. The vertex transition is constrained to only two adjacent vertices. If Vt is in an
open space, it may have up to nine candidate vertices. We first sample the walking/stopped motion
transition state and corresponding motion distance. Then, the vertex Vt is determined based on a
simple straight line movement.

The observation model describes the measurement likelihood of making an observation at
different positions in the indoor environment. Our observation includes WiFi received signal
strength, motion sensor readings, and captured image.
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The WiFi signal strength measurement likelihood model uses the mean and variance of the signal
at each position, calculated by Gaussian process regression.

ppzWiFi
t |x˚q “

1
b

2πσ2
x˚

expp´
pzWiFi

t ´ µx˚q
2

2σ2
x˚

q (15)

where zWiFi
t is the received signal strength at time t, µx˚ and σ2

x˚
are the mean and variance at position

x˚, predicted using Equations (7) and (8).
The camera measurement likelihood model is computed by pairwise pixel comparison between

the current view and the view of a particle [11]. In the particle filter, a given particle’s view of the
environment can be projected from the 3D textured model

ppzCamera
t |x˚q “

#pixels in similar color
#total pixels

(16)

A predefined threshold determines the maximal color difference for two pixels, and a normalized
color space is adopted to alleviate the effect of illumination.

The motion sensor measurement likelihood model compares the motion model ppXt|Xt´1q with
the motion dynamic model derived from motion sensor readings.

ppzMotion
t |x˚q “

1
?

2π
expp´

|zMotion
t ´ x˚|2

2
q (17)

where zMotion
t is the pose calculated from the motion-sensor-based motion dynamic model, x˚ is the

pose estimated from the motion model defined in HMM.

4. Online Tracking with Particle Filter

Bayesian filtering is used to estimate the posterior state Xt given all sensor measurements
Z0:t. Under the Markov assumption, we have the following recursive equation, which is updated
whenever new sensor data become available:

ppXt|Z0:tq9ppZt|Xtq

ż

ppXt|Xt´1qppXt´1|Z0:t´1qdXt´1

where ppXt|Xt´1q represents the motion model, and ppZt|Xtq is the observation model.
We implement Bayesian filtering using a particle filter, which represents posterior over the state

Xt by sets St of M weighted samples: St “ tă Xrmst , wrmst ą |m “ 1, ..., Mu. Here, each Xrmst is a sample

state, and wrmst is an importance weight of the state. The particle filter applies the recursive Bayesian
filter update to estimate posteriors over the state space. An online tracking algorithm using a particle
filter is performed according to the following steps:

(1) Particle Initialization

The initial position is calculated through the weighted K nearest neighbor (W-KNN) method.
It searches for K closest matches of known positions in the WiFi received signal space from the
offline-built dataset. By averaging these K position candidates with adopting the distances in signal
space as weights, the initial estimated position is acquired. This initial position estimation is used as
the starting point for particles.

(2) Particle propagation

Next, we apply the state transition model to guide particle propagation. During the state
transition process, we observe that the particle propagation plays an important role, which represents
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the state transition probability. The more accurate the particles propagate towards the right position,
the better the positioning performance will be. We generate new particles by sampling Xrmst from the
distribution ppXt|Xt´1q.

(3) Particle weight update

After particle propagation in each epoch, we weight the sample Xrmst by the probability

ppZt|X
rms
t q. The weight is calculated as the product of different sensor measurement likelihood

function. Then the weights wrmst of the samples are normalized so that they sum up to 1.

(4) Particle resampling

Once the particle weights are updated, we perform importance resampling to update the
particles’ state by pickinga random sample Xrmst`1 from the sample set St according to the importance

weight wrmst . In resampling, the weight of each particle is treated as a probability, where this particular
particle is chosen to be at the estimated position. Particles with higher weights will be picked more
frequently than others. This is how the resampling is able to eliminate wrongly moved particles and
correctly track the user’s position.

(5) Position estimation

After the resampling process, the estimated position is calculated as the mean of all the
resampled particles’ positions. To further increase the positioning accuracy, we perform Direct
Linear Transformation (DLT) [40] between the camera captured image in its current position with
a projected image of the 3D model at the estimated position. The DLT parameters can be obtained
using least square method. To solve for DLT parameters, we need at least six correspondences. The
correspondences can easily be obtained using the SIFT or SURF feature matching technique. The
matching process frequently contains “outliers”, therefore, we apply the well-known RANSAC [41]
algorithm to filter out the “outliers”. After getting the DLT parameters, the camera position can be
calculated by solving for the projection matrix. This process is able to refine the position estimation,
but due to its high computational cost, we only invoke it in certain key vertices that are predefined in
the graph structure, for example, at the corridor corner. The user can also invoke the process at their
wish when they require better positioning performance. The process will also wake up after a time
period T to correct the estimation error. Table 1 gives a pseudo code of the particle filter algorithm.

Table 1. Pseudocode of particle filter.
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ˇ

ˇ
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5. Implementation on iOS Platform and Experimental Analysis

We realize the indoor positioning algorithm on the iOS platform and build an app to test the
system performance. The system workflow is shown in Figure 13. During the offline training
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phase, WiFi received signal strength, color images, point cloud, and motion signals, including user
acceleration, device attitude, and rotation rate, are recorded along the entire scenario. A detailed 3D
model of the indoor environment is generated by fusing color images from the camera and point
cloud from LiDAR. Then, we apply Gaussian process modeling to generate a signal strength map
of the WiFi RF fingerprints. The WiFi signal strength map is overlapped with the 3D model and
we divide the 3D model into different segments according to our survey points. Each segment is
encoded in the vertices of a graph structure. We store the graph structure in the mobile device for
the online tracking phase. Once we press the “Locate” button, the mobile device starts scanning the
WiFi received signal strength from all the access points it can detect. Particles are initialized through
weighted the K nearest neighbor method. After the initial distribution, particles start to propagate
under the guidance of the HMM motion model. Every 5 s, the particles are resampled using the
HMM observation model. Through particle filtering, we are able to locate the user and track the
user’s movement in real time.

The training and testing are conducted in an office building corridor area and a library’s open
space. In total, we have 24 survey points in the corridor and 21 survey points in the library.
Positioning tests are conducted on a predefined path. The average length of the path is about 90
m in the library’s open space and 100 m in the corridor area. The position update is performed every
5 s, which means the particle filtering step can be completed in 5 s. The memory usage is under 40 MB
RAMsince the iOS app will be forced to shut down if it exceeds this limit. During the traverse on the
path, we measured the error distance between the estimated position and the ground truth position.
The ground truth position is based on manual annotation of waypoints. Whenever the tester reaches
a waypoint, the timestamp is recorded and the estimated position with the actual one are compared.
Figure 14 shows screenshots of the real time test results in the corridor and the library.
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Figure 16: Cumulative distribution function (CDF) of error. 

Table 2 compares the error mean, root mean square (RMS) error, and maximum error in 
different scenarios. 

Table 2. Location accuracy comparison. 

Error Error Mean RMS Maximum 

WiFi RSSI 1.85 m 2.10 m 4.78 m 

WiFi + Motion sensors 0.42 m 0.51 m 1.41 m 

As we can see from Table 2, the incorporation of motion sensors with WiFi RSSI has greatly 
reduced the positioning error. Due to the implementation issue on the iOS device, we have not 
included the visual sensors in the real time test. The visual sensors are applied separately. After the 
real time test is done, we capture the images at all the waypoints and correct the estimated position. 
Table 3 shows the correction results. 
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Table 2 compares the error mean, root mean square (RMS) error, and maximum error in
different scenarios.

Table 2. Location accuracy comparison.

Error Error Mean RMS Maximum

WiFi RSSI 1.85 m 2.10 m 4.78 m
WiFi + Motion sensors 0.42 m 0.51 m 1.41 m

As we can see from Table 2, the incorporation of motion sensors with WiFi RSSI has greatly
reduced the positioning error. Due to the implementation issue on the iOS device, we have not
included the visual sensors in the real time test. The visual sensors are applied separately. After the
real time test is done, we capture the images at all the waypoints and correct the estimated position.
Table 3 shows the correction results.

Table 3. Visual sensor correction on localization results.

Error Error Mean RMS Maximum

WiFi + Motion sensors 0.42 m 0.51 m 1.41 m
Visual sensor correction 0.10 m 0.23 m 0.66 m

Table 3 shows that the visual sensors could further improve the positioning accuracy. Overall, the
positioning performance has proved that our iOS application is a robust, accurate, highly-integrated
indoor positioning system. However, we have not implemented various state-of-the-art indoor
positioning methods in the literature, due to the difficulty in realizing them on a mobile platform. The
state-of-the-art method of a WiFi signal strength based method using Gaussian process is discussed
in [4,5], we implemented this on the iOS platform. Moreover, we introduce a framework based on
HMM to effectively fuse the WiFi information with motion sensor and visual sensor information on
the mobile platform in order to improve system performance.

6. Conclusions

In this paper, we have demonstrated an indoor localization system based on a graph structure
and multimodal particle filtering technique. The implementation on the iOS platform, and the test in a
real world situation proved that our application is a reliable indoor localization system. To the best of
our knowledge, this is the first iOS app delivering such accurate, highly integrated indoor localization
system on a small mobile device. Based on our system, many position-aware applications will be able
to function properly indoors, providing more convenient service to people’s daily lives.

In the future, we will focus on fusing the visual sensors on board into our real time localization
system. We believe the key technology for future localization systems lies in how to efficiently fuse
the information provided by various sensors. We are also looking to integrate our system into other
platforms, for example, a vehicular infotainment platform, so that we have access to more sensor
information and can function both indoors and outdoors.
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