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Abstract: Type 2 diabetes (T2D) is associated with diabetic nephropathy as well as nonalcoholic
steatohepatitis (NASH), which can be called “diabetic hepatopathy or diabetic liver disease”. NASH, a
severe form of nonalcoholic fatty disease (NAFLD), can sometimes progress to cirrhosis, hepatocellular
carcinoma and hepatic failure. T2D patients are at higher risk for liver-related mortality compared
with the nondiabetic population. NAFLD is closely associated with chronic kidney disease (CKD) or
diabetic nephropathy according to cross-sectional and longitudinal studies. Simultaneous kidney
liver transplantation (SKLT) is dramatically increasing in the United States, because NASH-related
cirrhosis often complicates end-stage renal disease. Growing evidence suggests that NAFLD and CKD
share common pathogenetic mechanisms and potential therapeutic targets. Glucagon-like peptide 1
(GLP-1) receptor agonists and sodium–glucose cotransporter 2 (SGLT2) inhibitors are expected to
ameliorate NASH and diabetic nephropathy/CKD. There are no approved therapies for NASH, but a
variety of drug pipelines are now under development. Several agents of them can also ameliorate
diabetic nephropathy/CKD, including peroxisome proliferator-activated receptors agonists, apoptosis
signaling kinase 1 inhibitor, nuclear factor-erythroid-2-related factor 2 activator, C-C chemokine
receptor types 2/5 antagonist and nonsteroidal mineral corticoid receptor antagonist. This review
focuses on common drug pipelines in the treatment of diabetic nephropathy and hepatopathy.

Keywords: diabetic nephropathy; diabetic hepatopathy; chronic kidney disease; glucagon-like
peptide 1; peroxisome proliferator-activated receptor; sodium–glucose cotransporter 2

1. Introduction

Nonalcoholic fatty liver disease (NAFLD), which is a hepatic manifestation of metabolic syndrome,
is the most common chronic liver disease. Worldwide, 25% of the adult population is now suffering
from NAFLD [1,2]. Nonalcoholic steatohepatitis (NASH), which is defined by hepatic steatosis with
inflammation and ballooning, can progress to cirrhosis, liver failure and hepatocellular carcinoma
(HCC). The incidence of NASH has risen due to the increased prevalence of obesity, metabolic syndrome
and type 2 diabetes (T2D). In the United States (US), NASH has become the leading cause of liver
transplantation [3]. T2D is closely associated with NASH incidence and fibrosis progression. In Japan,
liver-related disease is the third leading cause of mortality (9.3%) in T2D according to a nationwide
survey (2001–2010) [4]. T2D patients are at higher risk for the development of or mortality from
HCC [5,6]. Thus, NASH can be called “diabetic hepatopathy or diabetic liver disease (DLD)” [7].
Hepatic fibrosis is the most significant determinant of overall mortality and liver-related mortality
in NAFLD [8]. The estimated prevalence of advanced fibrosis (stages 3 and 4) in T2D patients
is 17% by liver biopsy, 7.3–25.0% by FibroScan and 4.3–7.1% by magnetic resonance elastography
(MRE) [9]. NAFLD is closely associated with diabetic nephropathy, chronic kidney disease (CKD)
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and end-stage renal disease (ESRD). Because NASH-associated cirrhosis often complicates CKD or
ESRD, simultaneous kidney liver transplantation (SKLT) is dramatically increasing in the US [10].
According to the National Health and Nutrition Examination Survey (NHANES) 1999–2016, NAFLD
with renal insufficiency shows significantly higher mortality than only NAFLD [11]. NASH is the most
rapidly growing indication for SKLT [12]. Recipients with NASH or cryptogenic cirrhosis with a body
mass index (BMI) greater than 30 showed a lower estimated glomerular filtration rate (eGFR) and
higher graft loss after SKLT compared with those with other chronic liver disease [10]. The belief that
NAFLD and CKD share common pathogenetic mechanisms for progression leads to the hypothesis
that they can also share potential therapeutic targets. We here review common drug pipelines for
diabetic nephropathy and hepatopathy.

2. The Association of NASH/NAFLD with Diabetic Nephropathy/CKD

NAFLD and CKD are global public health problems, affecting up to 25–30% and up to 10–15%
of the general population for NAFLD and CKD, respectively. Diabetic nephropathy is the leading
cause of CKD and ESRD. Recently, it has also been established that there is a strong association
between NAFLD and CKD, regardless of the presence of potential confounding diseases such as obesity,
hypertension and T2D. Since NAFLD and CKD are both common diseases that often occur alongside
other metabolic conditions, such as T2D or metabolic syndrome, elucidating the relative impact of
NAFLD on the risk of incident CKD presents a substantial challenge for investigators working in this
research field. A growing body of epidemiological evidence suggests that NAFLD is an independent
risk factor for CKD, and recent evidence also suggests that associated factors such as metabolic
syndrome, dysbiosis, unhealthy diets, platelet activation and processes associated with aging could
also contribute mechanisms linking NAFLD and CKD [13] (Figure 1). Accumulating evidence has
proved that NAFLD is associated with diabetic nephropathy, independent of confounding factors [14].
Liver fibrosis—but not steatosis—was found to be independently associated with albuminuria in 1763
Chinese patients with T2D [15]. We previously reported that patients with biopsy-proven NASH were
more likely to have CKD than patients without NASH [16]. The presence and severity of NAFLD
has been related to the incidence and stage of CKD [17] independent of traditional CKD risk factors;
conversely, the presence of CKD increases overall mortality in NAFLD patients [18]. In accordance
with the pathogenic link between NAFLD and CKD, NASH-related cirrhosis carries a higher risk of
ESRD than other etiologies of cirrhosis; furthermore, it is an increasing indication for SKLT and an
independent risk factor for kidney graft loss and cardiovascular disease (CVD) [12,19]. NAFLD was
accompanied by a higher risk of incident CKD (hazard ratio (HR): 1.22, 95% confidence interval (CI)
1.04–1.43) in a retrospective cohort study of 41,430 adult men and women without CKD at baseline.
The risk of CKD increased progressively with increased NAFLD severity, which was evaluated by the
NAFLD fibrosis score (NFS) [20]. In a Japanese retrospective study, the fibrosis-4 (FIB-4) index and the
presence of T2D were significant risk factors for CKD development [21]. In that study, the patatin-like
phospholipase domain-containing protein-3 (PNPLA3) genotype was not related to CKD. In contrast,
a recent study from Italy found a relationship between the PNPLA3 genotype and incident CKD [22].
A meta-analysis showed that NAFLD was associated with a nearly 40% increase in the long-term risk
of incident CKD [23]. Based on a cohort study of 1525 CKD patients, the annual change in decline in
eGFRs in CKD patients with NAFLD was larger than those without NAFLD. The decline in eGFRs
associated with NAFLD was greater in patients with a higher NFS, in those with proteinuria or with a
low eGFR at baseline (<45 mL/min/1.73 m2) and in those who were smokers and hypertensive [24].
Collectively, these data suggest that common pathogenic mechanisms underlie both liver and kidney
injury and could be targeted to retard the progression of both NAFLD and CKD (Figure 1).

An accumulation of visceral fat, which is closely associated with NAFLD and CKD, causes
chronic inflammation. Visceral adipose tissue increases in plasma concentrations of nonesterified
fatty acids (NEFAs). With the increase in the supply of NEFA to the liver, hepatic macrophages are
activated. The activation of hepatic macrophages and hepatic inflammation is associated with an
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increase in proinflammatory cytokines and hepatic/systemic insulin resistance, increased activity of
the renin–angiotensin–aldosterone system (RAAS) and oxidative stress mediated by proinflammatory
and profibrotic mediators. In turn, the kidney reacts, promoting further RAAS activation, increased
angiotensin II and uric acid production in a vicious cycle leading to hepatic fibrosis progression.
Excessive dietary fructose intake also affects renal injury through altered lipogenesis and inflammatory
response. Experimental evidence also supports a role of the inflammasome and innate immune system
in NAFLD and CKD [25–28]. In this way, NAFLD and CKD share common proinflammatory and
profibrotic mechanisms of disease progression (Figure 1). Therefore, all of these pathways indicate a
causal link between NAFLD and CKD, whereby NAFLD increases the risk of incident CKD.

Although there are no established pharmacotherapies for advanced stages of NAFLD and CKD, a
variety of drug pipelines for liver and renal injury exist [29]. The modulation of nuclear transcription
factors regulating key pathways of lipid metabolism, including peroxisome proliferator-activated
receptors (PPARs) and farnesoid X receptor (FXR), is now under stage 3 clinical development [30].
Other therapeutic approaches target key mediators of inflammation, fibrogenesis, gut dysfunction
through gut microbiota manipulation and antidiabetic therapies. Furthermore, NAFLD affects CKD
per se through lipoprotein metabolism and hepatokine secretion, and conversely, targeting the renal
tubule by sodium–glucose cotransporter 2 (SGLT2) inhibitors can improve both CKD and NAFLD.
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Figure 1. Potential mechanisms linking nonalcoholic steatohepatitis (NASH)/nonalcoholic fatty liver
disease (NAFLD) and chronic kidney disease (CKD)/diabetic nephropathy. NEFA: nonesterified fatty
acid, ROS: reactive oxygen species, RAAS: renin–angiotensin–aldosterone, CRP: C-reactive protein,
TNFα: tumor necrosis factorα, TGFβ: transforming growth factorβ, FGF-21: fibroblast growth factor-21,
PAI-1: plasminogen activator inhibitor-1, T2D: type 2 diabetes, PNPLA3: patatin-like phospholipase
domain-containing protein-3, SNP: single nucleoside polymorphism. * NASH Clinical Research
Network. # National Kidney Foundation.

3. Common Drug Pipelines for NAFLD/NASH and Diabetic Nephropathy/CKD

3.1. Metabolic Modifiers

3.1.1. Peroxisome Proliferator-Activated Receptors (PPARs)

PPARs are nuclear receptors that are involved in the transcriptional regulation of lipid metabolism,
energy balance, insulin metabolism, inflammation and atherosclerosis. Three isotypes of PPARs exist:
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PPAR-α, PPAR-δ and PPAR-γ [31]. PPAR-α is expressed ubiquitously, but is most highly expressed in
the liver. It plays a critical role in the regulation of fatty acid uptake, beta oxidation, ketogenesis, bile
acid synthesis and triglyceride turnover. PPAR-α is also thought to have anti-inflammatory effects
through the complex regulation of nuclear factor kappa B (NF-κB). PPAR-δ is expressed in skeletal
muscle, adipose tissue and skin, but it is most highly expressed in muscle, where it is involved in
regulating mitochondrial metabolism and fatty acid beta oxidation [32]. PPAR-δ is well expressed
in hepatocytes but is also expressed in Kupffer cells and hepatic stellate cells (HSCs), suggesting a
potential role in inflammation and fibrosis [32]. PPAR-γ is most highly expressed in adipose tissue,
where it serves an essential role in the regulation of adipocyte differentiation, adipogenesis and lipid
metabolism. PPAR-γ activation results in the increased production of various adipokines, including
adiponectin, which enhances hepatic fatty acid oxidation. In addition to its metabolic effects, PPAR-γ
agonists are also thought to decrease inflammation and cytokine production in patients with metabolic
syndrome [32].

Pioglitazone (a PPAR-γ agonist) showed a proven histological improvement in NASH compared to
a placebo [33–36]. The PPAR-γ agonist also has a protective effect against various types of injury of the
kidney including diabetic and nondiabetic kidney disease [37]. However, this agent has several safety
concerns, including edema, heart failure, cancer incidence and osteoporosis in women. The India-based
Zydus Cadila is evaluating the once-daily oral experimental therapy saroglitazar magnesium for
NASH patients in a phase 2 trial. Saroglitazar is a dual PPARα/γ agonist that is approved in India for
the treatment of dyslipidemia in diabetic patients [38]. In real-world clinical studies with a duration of
up to 58 weeks, saroglitazar effectively improved lipid and glycemic parameters without significant
adverse effects (AEs) in 5824 patients with diabetic dyslipidemia [39]. In mice with choline-deficient
high-fat-diet-induced NASH, saroglitazar reduced hepatic steatosis, inflammation and ballooning
and prevented fibrosis development. It also reduced serum alanine aminotransferase (ALT), aspartate
aminotransferase (AST) and inflammatory and fibrosis biomarker expressions [40]. In this model, the
reduction in the overall NAFLD activity score (NAS) due to saroglitazar (3 mg/kg) treatment was
significantly more prominent than that due to pioglitazone (25 mg/kg) or fenofibrate (100 mg/kg) [41].
A phase 2, randomized double-blind placebo-controlled trial (RDBPCT) comparing three doses of
saroglitazar (1, 2 and 4 mg) with a placebo in NAFLD is ongoing (EVIDENCES IV, Table 1). This
study enrolled 104 patients with NAFLD/NASH. The primary endpoint is the percentage change from
baseline in serum ALT levels at week 16 in the saroglitazar groups compared with the placebo group.
At the Liver Meeting 2019, Gawrieh and colleagues showed that patients in the saroglitazar groups
(n = 77) exhibited significantly reduced ALT levels compared to those in the placebo group (n = 27).
The absolute change in liver fat content by MRI-proton density fat fraction (MRI-PDFF) from the
baseline to week 16 was significantly greater (−4.21%) in the saroglitazar 4 mg group than in the other
groups [42]. Aleglitazar, a dual PPARα/γ agonist, slowed eGFR decline in stage 3 diabetic CKD (phase
2b, AleNephro) [43]. Patients were randomized for a 52 week double-blind treatment with aleglitazar
at 150 µg/d (n = 150) or pioglitazone at 45 mg/d (n = 152). The mean eGFR change from baseline to the
end of follow-up was −2.7% (95% CI: −7.7, 2.4) with aleglitazar versus −3.4% (95% CI: −8.5, 1.7) with
pioglitazone, establishing noninferiority (0.77%; 95%CI: −4.5, 6.0) [43].

Elafibranor, a PPAR α/δ dual agonist, inhibits CKD progression in NASH mice [44]. A multicenter
phase 3 RDBPCT is ongoing to evaluate the efficacy and safety of elafibranor (120 mg/d) in NASH
patients with stage 2/3 fibrosis and NAS ≥ 4 (RESOLVE-IT, Table 1). The primary outcomes of this
study are to evaluate the effect of elafibranor treatment compared with placebo on (1) histological
improvement (resolution of NASH without worsening of fibrosis at 72 weeks) and (2) composite
long-term outcomes, composed of all-cause mortality, cirrhosis and liver-related clinical outcomes.
After 72 weeks of treatment, the study missed its primary endpoint, with 19% of patients in the
treatment arm achieving NASH resolution without fibrosis getting worse, compared to 15% of patients
in the placebo group. Only 25% of elafibranor patients showed fibrosis improvement by at least one
stage, compared to 22% of placebo patients. A phase 1 study is being conducted in order to assess
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the need for dose adjustment for elafibranor in participants with renal impairment. Pharmacokinetic
parameters of elafibranor and its active metabolite (GFT1007) will be compared in severe renally
impaired participants (eGFR < 15 mL/min/1.73 m2) versus healthy participants after a single oral
administration of elafibranor at 120 mg (Table 1).

3.1.2. Farnesoid X Receptor Agonist

Obeticholic acid (OCA), a semisynthetic analog of chenodeoxycholic acid, is an FXR agonist. FXR
is a nuclear receptor that is highly expressed in the liver and small intestine. Bile acids are natural
ligands of FXR, and their binding with and activation of FXR is critical to the regulation of cellular
pathways that modulate BA synthesis, lipid metabolism, inflammation and fibrosis. OCA markedly
suppresses hepatocyte death and liver fibrosis with only marginal effects on body weight and hepatic
steatosis in a murine model of NASH [45]. An international phase 3 study (REGENERATE study) for
NASH patients is ongoing. Interim analyses showed that OCA at 25 mg/d for 72 weeks significantly
ameliorated hepatic fibrosis (≥1 stage fibrosis) compared with a placebo [46]. A phase 3 trial of OCA
for cirrhotic patients due to NASH is ongoing (REVERSE trial) [30]. This trial enrolled 540 NASH
cirrhotic patients and is being conducted at sites in North America, Europe, Australia and New Zealand.
The primary endpoint is the percentage of patients with fibrosis improvement (more than one stage)
after one year of treatment. Patients were randomized in a 1:1:1 ratio to one of the three treatment
arms: OCA 10 mg/d, OCA 10 mg/d with titration to 25 mg/d at three months, or placebo. Patients
who complete the double-blind phase of the REVERSE trial will be eligible to enroll in an open-label
extension study for up to 12 additional months (Table 1).

OCA has been shown to reverse renal lipid accumulation, proteinuria and tubulo-interstitial
inflammation and fibrosis in diet-induced experimental CKD [47–51]. Clinical studies of OCA for
diabetic nephropathy/CKD have not yet been planned.

3.2. Antioxidative Agents

Oxidative stress is considered to be a key mechanism of hepatocellular injury and disease
progression in patients with NASH [52] and CKD [53]. The transcription factor Nrf2 (nuclear
factor-erythroid-2-related factor 2) plays a central role in stimulating the expression of various
antioxidant-associated genes in the cellular defense against oxidative stress [54].

3.2.1. Oltipraz

Oltipraz, 5-(2-pyrazynyl)-4-methyl-1,2-dithiole-3-thione, is a synthetic dithiolethione that targets
Nrf2, an agent that plays a pivotal role in the cellular defense against oxidative stress by promoting
the transcription of various antioxidant genes [55]. A phase 2a study showed that 24-week oltipraz
treatment significantly reduced the liver fat content in patients with NAFLD (PMK-N01GI1) [56]
(Table 1). Oltipraz ameliorated renal fibrosis in a unilateral ureteral obstruction rat model [57]. However,
human studies for diabetic nephropathy or CKD are not planned.

3.2.2. Bardoxolone Methyl

Bardoxolone methyl is a semisynthetic triterpenoid that is derived from the natural product
oleanolic acid and is known to be one of the most potent inducers of Nrf2 [58–61]. Bardoxolone methyl
was associated with an improvement in the eGFR in patients with advanced CKD (defined as an eGFR
of 20–45 mL per minute per 1.73 m2 of body surface area) and T2D at 24 weeks (BEAM trial) [62].
Among patients with T2D and stage 4 CKD, however, bardoxolone methyl did not reduce the risk of
ESRD or death from cardiovascular causes. A higher rate of cardiovascular events with bardoxolone
methyl than with placebo prompted the termination of a trial (BEACON study) [63,64]; however, a
multicenter phase 2 RDBPCT in Japan enrolled 124 patients with CKD (stage G3 and G4) and T2D
without identified risk factors for fluid overload, such as a baseline brain natriuretic peptide (BNP)
count >200 pg/mL and prior history of heart failure (TSUBAKI study) [65]. The interim analysis of this
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trial demonstrated a significant improvement in the eGFR in the bardoxolone methyl group compared
with the eGFR in the placebo group without safety concerns. A phase 3 study of bardoxolone methyl
in patients with DKD (stage G3 and G4) is ongoing (AYAME study, Table 1). This trial will enroll 700
patients. Bardoxolone methyl prevented the development of insulin resistance and hepatic steatosis in
mice fed a high-fat diet [66]; however, the use of this agent is not planned for NASH/NAFLD.

3.3. Anti-Inflammatory and Antiapoptosis

3.3.1. C-C Motif Chemokine Receptor-2/5 Inhibitor

Cenicriviroc is an oral inhibitor of C-C chemokine receptor types 2 (CCR2) and 5 (CCR5) which
plays an important role in the hepatic recruitment of macrophages [67,68]. Macrophage recruitment
through CCR2 into adipose tissue is believed to play a role in the development of insulin resistance and
T2DM. The administration of CCR2 antagonist modestly improved glycemic parameters compared
with a placebo [69]. CCR5 antagonist is expected to impair the migration, activation and proliferation
of collagen-producing HSCs [70]. In animal models, cenicriviroc showed antifibrotic effects, with
significant reductions in collagen deposition (p < 0.05) and collagen type 1 protein and mRNA
expression in liver and kidney [71].

According to a phase 2b trial (CENTAUR study), fibrosis improved significantly without NASH
worsening after one year of cenicriviroc treatment (20%) compared with a placebo (10%) [72]. Although
asymptomatic amylase elevation (grade 3) was more frequent in the cenicriviroc group than in the
placebo group, this agent was well-tolerated. No significant improvement of fibrosis without worsening
NASH after two years of cenicriviroc treatment was found (35%) compared with a placebo (20%) [73].
A phase 3 study is ongoing to evaluate the effects of cenicriviroc on hepatic fibrosis in 2000 patients
with NASH (AURORA study) [74] (Table 1). A phase 2a, multicenter RDBPCT of cenicriviroc is being
conducted with approximately 50 adult obese subjects (BMI ≥ 30 kg/m2) with prediabetes or T2D and
suspected NAFLD (ORION study).

The small-molecule CCR2 antagonist CCX140-B was shown to reduce albuminuria and slow
eGFR decline in diabetic nephropathy [75]. The dual chemokine receptor CCR2/CCR5 antagonists
(BMS-813160 and PF-04634817) were evaluated in diabetic nephropathy. However, clinical development
for this indication was discontinued in light of the modest efficacy observed, although PF-04634817
appeared to be safe and well-tolerated [76].

3.3.2. Apoptosis Signaling Kinase-1 Inhibitor

Apoptosis signal-regulating kinase 1 (ASK1) is activated by extracellular tumor necrosis factor
alpha (TNFα), intracellular oxidative or ER stress and initiates the p38/JNK pathway, resulting in
apoptosis and fibrosis [77]. The inhibition of ASK1 has, therefore, been proposed as a target for the
treatment of NASH [78]. Thus, international phase 3 trials evaluating a selective ASK1 inhibitor
(selonsertib) among NASH patients with stage 3 (STELLAR3) or cirrhosis (STELLAR4) were initiated
(Table 1). Unfortunately, the STELLAR trial was discontinued because selonsertib did not meet the
primary endpoint [79]. STELLAR4 found that 14.4% of patients treated with selonsertib at 18 mg (p =

0.56 versus placebo) and 12.5% treated at the lower 6 mg dose (p = 1.00) achieved at least a ≥1-stage
improvement in fibrosis, compared with 12.8% of placebo recipients. In the STELLAR3 trial of 802
enrolled patients, 9.3% of patients treated with selonsertib 18 mg (p = 0.42 vs. placebo) and 12.1% of
patients treated with selonsertib 6 mg (p = 0.93) achieved a ≥1-stage improvement in fibrosis without
worsening of NASH after 48 weeks of treatment, versus 13.2% with a placebo.

ASK1 activation in glomerular and tubular cells resulting from oxidative stress may drive kidney
disease progression [80]. Findings in animal models identified selonsertib as a potential therapeutic
agent [81]. The primary objective of a phase 2 study was to determine the effect of selonsertib on
eGFR decline in 334 participants with T2D and treatment-refractory moderate-to-advanced DKD.
Participants were randomized with a 1:1:1:1 allocation to receive one of three doses of selonsertib
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(2 mg, 6 mg, or 18 mg) or a matching placebo. The primary outcome was the change from baseline
eGFR at 48 weeks [82]. Although the trial did not meet its primary endpoint, post hoc analyses found
that between 4 and 48 weeks, the rate of eGFR decline was reduced 71% for the 18 mg group relative
to a placebo. A phase 3, RDBPCT evaluating the efficacy and safety of selonsertib in subjects with
moderate-to-advanced DKD is ongoing (MOSAIC study, Table 1). The primary objective of this study
is to evaluate whether selonsertib can slow the decline in kidney function, reduce the risk of kidney
failure or reduce the risk of death due to kidney disease in 3300 participants with DKD.

3.4. Antifibrotic Agent

Galectin-3 (Gal-3) is a β-galactoside-binding lectin secreted in the disease state, mainly secreted
by macrophages [83]. It binds to the cell surface and extracellular matrix glycans and affects a
variety of physiologic processes, including cell apoptosis, adhesion, migration, angiogenesis and
inflammatory responses [84]. Gal-3 protein expression, which is required for the development of
hepatic fibrosis, was increased in NASH, with the highest expression in macrophages surrounding
lipid-laden hepatocytes [85]. Elevated plasma levels of Gal-3 were also associated with increased risks
of rapid renal function decline, incident CKD and progressive renal impairment, as well as with CVD
events, infection and all-cause mortality in patients with renal function impairment [86].

3.4.1. Belapectin

Belapectin (GR-MD-02, Galectin Therapeutics Inc. Norcross, GA, USA), a Gal-3 antagonist,
markedly improved liver histology with significant reductions in NAS and fibrosis in mice models [87].
Although there were no safety concerns in a phase 2a trial of NASH patients with stage 3 fibrosis [88],
there was no apparent improvement in the three noninvasive tests for the assessment of liver fibrosis.
A phase 2b clinical trial to evaluate the safety and efficacy of belapectin for the treatment of liver
fibrosis and resultant portal hypertension in 162 patients with NASH cirrhosis (NASH-CX trial) was
completed [89] (Table 1). In the phase 2b trial, dubbed NASH-CX, belapectin was administered as
an infusion every other week for 52 weeks, for a total of 26 doses. Approximately half of the NASH
cirrhosis patients in the trial had esophageal varices, and the other half of the subjects were without
esophageal varices. The NASH-CX trial missed the primary endpoint of reaching statistical significance
in reducing the hepatic venous pressure gradient (HVPG), when the total group of patients was
considered. However, a statistically significant and clinically meaningful effect of belapectin was
observed for the primary endpoint measurement of HVPG in the subgroup of NASH cirrhosis patients
without esophageal varices. The company plans to advance belapectin to phase 3 testing for NASH
cirrhosis patients without esophageal varices.

3.4.2. GCS-100

On the other hand, serum levels of Gal-3 levels were associated with an increased risk of
all-cause mortality and cardiovascular events in patients with CKD [90]. In patients with T2D,
the mean levels of Gal-3 were significantly higher in patients with macroalbuminuria (urinary
albumin/creatinine ratio (ACR) = >300 mg/g) than in those with microalbuminuria (30–300 mg/g) and
normoalbuminuria (ACR = <30 mg/g) [91]. Gal-3 inhibition attenuates renal injury progression in
cisplatin-induced nephrotoxicity [92]. Thus, Gal-3 antagonist will become a therapeutic option for
diabetic nephropathy/CKD. A phase 2b RDPBCT of GCS-100 in patients with CKD caused by diabetes
will enroll approximately 375 patients at multiple centers located in the US (Table 1); the study duration
is six months. Patients will be randomly assigned 1:1:1:1 to a treatment with placebo or 1 mg, 3 mg or
9 mg GCS-100. All doses of the study drug will be administered via intravenous push injection once
weekly for two months (eight weeks), then every other week for an additional four months (16 weeks).
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3.5. Antihypertensive Agents

3.5.1. Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers

The use of these medications in CKD has been extensively evaluated, and based on the collaborative
study group trial and several others, the use of angiotensin-converting enzyme inhibitors (ACE-I)
and angiotensin receptor blockers (ARBs) in patients with CKD with proteinuria is now a level-one
recommendation by the Kidney Disease Outcomes Quality Initiative (KDOQI) [93]. ARBs, a class of
antihypertensive drugs, are potential therapeutic agents for NAFLD because of their anti-inflammatory
or antifibrotic actions [94]. Telmisartan, which is an ARB with PPAR-regulating activity, was compared
to the use of valsartan in the fatty liver protection by telmisartan (FANTASY) trial and found to cause a
reduction in necroinflammation, NAFLD activity score (NAS) and fibrosis stage in NASH, as well as
microalbuminuria [95]. However, current evidence is insufficient to support the efficacy of ARBs in
managing fibrosis in NAFLD patients [96].

3.5.2. Nonsteroidal Mineral Corticoid Receptor Antagonist

Aldosterone is a mineralocorticoid hormone with a well-known effect on the renal tubule leading
to water retention and potassium reabsorption [97]. Other major effects of the hormone include
the induction of proinflammatory activity, which leads to the progressive fibrotic damage of the
target organs, heart and kidney. Blocking the aldosterone receptor, therefore, represents an important
pharmacological strategy to avoid the clinical conditions arising from NASH [98,99] and CKD [100–102].
Apararenone (MT-3995) [103] is a nonsteroidal antimineralocorticoid which is under development for
the treatment of diabetic nephropathies and NASH (Table 1). An exploratory phase study of aparerenone
in 48 Japanese patients with biopsy-proven NASH (which was a placebo-controlled double-blind
study) was completed [103]. The primary endpoint was the percentage change from baseline in ALT. A
phase 2 RDBPCT of aparerenone (low dose) in subjects with diabetic nephropathy was completed [103]
(Table 1). Another phase 2 RDBPCT evaluated the effect on ACR, the pharmacodynamics, safety,
tolerability and pharmacokinetics of multiple oral doses of aparerenone as an add-on therapy to ACE-I
or ARB in T2D nephropathy subjects with albuminuria and an eGFR of ≥30 to <60 mL/min/1.73 m2.
A long-term study of aparerenone has also been completed to evaluate drug safety; however, these
results have never been published.

3.6. Anti-Diabetic Agents

3.6.1. Glucagon-Like Peptide Receptor Agonist

Glucagon-like peptide (GLP-1) is a gut-derived incretin hormone that induces insulin secretion
and reduces glucagon secretion in a glucose-dependent manner, suppresses appetite and delays gastric
emptying [104,105]. GLP-1 receptor agonists (GLP-1 RAs) are expected to be an attractive therapeutic
option for T2D patients with NASH. GLP-1 RAs have been shown to reduce liver enzymes and
oxidative stress and improve liver histology in murine NASH models [106,107].

A phase 2 study showed that liraglutide showed histological improvement in NASH patients
(LEAN study). The mechanisms of a GLP-1 RA for NASH can be explained not only by weight loss
and diabetic control but also by potent anti-inflammatory activity [108]. A phase 3 open-label study is
ongoing to compare the effects of liraglutide and bariatric surgery on weight loss, liver function, body
composition, insulin resistance, endothelial function and biomarkers of NASH in obese Asian adults
(CGH-LiNASH). Dulaglutide has some advantages, such as weekly injection, disposable and prefilled
devices and safety profiles similar to those of other GLP-1 RAs. The D-LIFT (effect of dulaglutide on
liver fat) trial is a prospective open-label randomized controlled trial (RCT) to examine the effect of
dulaglutide 0.75 mg subcutaneously weekly for four weeks, followed by 1.5 mg weekly for 20 weeks
when included in the standard treatment for T2D vs. standard treatment for T2D (minus dulaglutide) in
T2D patients with NAFLD. Hepatic steatosis will be measured by magnetic resonance imaging-proton
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density fat fraction (MRI-PDFF). Semaglutide, a novel GLP-1 RA, is now approved for diabetic patients
in the US, EU, Canada and Japan. A phase 2 RDBPCT to compare the efficacy and safety of three
different doses of semaglutide (once-daily subcutaneous injection) versus placebo in 288 participants
with NASH (stage 1–3 fibrosis) is ongoing (SEMA-NASH study, Table 1).

GLP-1RAs may exert beneficial actions on the kidneys by lowering glucose and blood pressure,
decreasing insulin levels and causing weight loss. Emerging evidence suggests potential protective
actions of GLP-1RAs on the kidneys, independently of their glucose-lowering effects, some of which
may play a role in the inhibition of development and progression of DKD [109,110]. In humans, GLP-1R
has been identified in the kidney, localized in proximal tubular cells and preglomerular vascular smooth
muscle cells [111]. However, the precise mechanisms of the renoprotective effects of GLP-1RA remain
unknown. A recent meta-analysis of seven trials consisting of ELIXA (lixisenatide) [112], LEADER
(liraglutide) [113], SUSTAIN-6 (semaglutide) [114], EXSCEL (exenatide) [115], Harmony outcomes
(albiglutide) [116], REWIND (dulaglutide) [117] and PIONEER 6 (oral semaglutide) [118] showed
that GLP-1RA treatment has beneficial effects on cardiovascular, mortality and kidney outcomes in
T2DM [119]. According to a post hoc analysis that evaluated the safety of liraglutide treatment in
patients with CKD in LEADER, the use of liraglutide in patients with CKD was safe, with no difference
between patients with and without CKD [119]. As a result, GLP-1 RAs are most promising for the
treatment of NASH with CKD.

3.6.2. Sodium–Glucose Cotransporter Inhibitor 2

SGLT2 inhibits glucose reabsorption in the proximal tubule, leading to glucouria and plasma
glucose reduction. Therefore, SGLT2 inhibitors have become promising therapeutic agents in NASH
and NAFLD patients [120]. Several pilot studies or open randomized controlled trials (RCTs) have
found a significant reduction in transaminase activity, body weight, hepatic steatosis, fatty liver
index and liver histology (steatosis and fibrosis) in NAFLD patients [121–128]. Not only HbA1c and
transaminase activities but also the hepatic fat content evaluated by MRIhepatic fat fraction were
significantly decreased after 24 weeks of therapy with luseogliflozin (LEAD trial) [129]. In the E-LIFT
trial, 50 T2D patients with NAFLD (≥40 years old) were randomized to empagliflozin (10 mg/d) plus
their standard medical treatment for T2D, such as metformin and/or insulin, or to the receipt of only
their standard treatment without empagliflozin (control group). After 20 weeks of treatment, the liver
fat content measured by using MRI-PDFF of the group receiving empagliflozin decreased from an
average of 16.2% to 11.3% (p < 0.0001), whereas the control group had only a decrease from 16.4% to
15.6% (p = 0.057) [130]. To evaluate the histological efficacy and safety of dapagliflozin in NASH, a
phase 3 RDBRCT (dapagliflozin efficacy and action in NASH (DEAN) study) is now recruiting and will
enroll 100 participants (Table 1). In the CREDENCE trial [131], patients with T2D and albuminuric CKD
were randomly assigned to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily, or a
placebo. All the patients had an eGFR of 30 to <90 mL per minute per 1.73 m2 of body surface area and
albuminuria (ACR, >300 to 5000 mg/g) and were treated with a renin–angiotensin system blockade. The
primary outcome was a composite of ESRD (dialysis, transplantation, or a sustained eGFR of <15 mL
per minute per 1.73 m2), a doubling of the serum creatinine level or death from renal or cardiovascular
causes. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in
the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio
(HR), 0.70; 95% CI, 0.59 to 0.82; p = 0.00001) [95]. Thus, SGLT2 inhibitor showed renoprotective
efficacy. Recent Western guidelines recommended the use of SGLT2 inhibitor in T2D patients with
CKD (eGFR 30 to ≤60 mL min−1 [1.73 m]−2 or ACR >30 mg/g, particularly >300 mg/g) [132]. Two
trials (DAPA-CKD [133], EMPA-KIDNEY are ongoing to explore the renoprotective efficacy of SGLT2
inhibitors for CKD patients without T2D (Table 1).
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3.7. Gut Microbiome (Gut–Liver–Kidney Axis)

The ability of the gut to modulate the host metabolism and inflammatory response and its
contribution to obesity-related complications, including NAFLD and CKD, has been increasingly
recognized [134,135], and various gut-oriented approaches to treat NASH and CKD are under
evaluation, including the modulation of gut microbiota and of gut-derived peptide incretins and
fibroblast growth factor 19. Two main strategies are being evaluated to counteract host adverse effects
of dysregulated gut microflora: the first involves the modulation of gut microbiota composition, and
the second is the direct antagonization of microbial proinflammatory mediators. In a randomized trial
of 104 patients with NAFLD, one year of administration of a synbiotic combination (probiotic and
prebiotic) altered fecal microbiomes but did not reduce liver fat content or markers of liver fibrosis
(INSYTE) [136,137] (Table 1). A meta-analysis evaluating 28 clinical trials showed that probiotics are
superior to placebos in NAFLD patients and could be utilized as a common complementary therapeutic
approach [138]. A pilot study suggested probiotic dietary supplements are more effective than a
placebo in reducing blood urea nitrogen (BUN) and improving the quality of life of patients with stage
3 or 4 CKD [139]. The impact of gut microbiota manipulation with probiotics, prebiotics or synbiotics
on renal function in CKD was investigated in the synbiotics easing renal failure by improving gut
microbiology (SYNERGY) study [140] (Table 1). This trial found that synbiotics decreased serum
p-cresyl sulfate without reducing serum indoxyl sulfate in nondialysis CKD. Another systematic
review found that prebiotic and probiotic therapies reduced indoxyl sulfate and p-cresyl sulfate in
patients with ESRD on hemodialysis [141]. However, it is unclear whether the results hold true for
other patients with CKD.

Table 1. Common drug pipelines for NASH/NAFLD and CKD/diabetic nephropathy.

Action Drug NASH/NAFLD CKD/Diabetic Nephropathy

(1) Metabolic modifiers

PPARα/γ
agonist

Saroglitazar � Phase 2 * EVIDENCES IV [42] (NCT03061721) —

Aleglitazar —
� Phase 2b * AleNephro [43]
(NCT01043029)

PPARα/δ
agonist Elafibranor � Phase 3 # RESOLVE-IT (NCT02704403) � Phase 1 # (NCT03844555)

FXR agonist Obeticholic
acid

� Phase 3 # REGENERATE [46] (NCT02548351)
� Phase 3 # REVERSE (NCT03439254)

� Preclinical [50,51]

(2) Antioxidants

Nrf2 activator
Oltipraz � Phase 2a * PMK-N01GI1 [56] (NCT01373554) —

Bardoxolone
methyl —

� Phase 2 * BEAM [62] (NCT00811889)
� Phase 2 $ BEACON [63] (NCT01351675)
� Phase 2a # TSUBAKI [65] (NCT02316821)
� Phase 3 # AYAME (NCT03550443)
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Table 1. Cont.

Action Drug NASH/NAFLD CKD/Diabetic Nephropathy

(3) Anti-inflammatory and antiapoptosis

CCR2/5
antagonist

Cenicriviroc

� Phase 2b * CENTAUR [72,73] (NCT02217475)
� Phase 2a # ORION (NCT02330549)
� Phase 3 # AURORA [74] (NCT03028740)

—

BMS-813160 — � Phase 2a $ (NCT01752985)

PF-04634817 — � Phase 2 $ (NCT01712061)

ASK1 inhibitor Selonsertib
� Phase 3 $ STELLAR 3/4 [79] (NCT03053050)
(NCT03053063)

� Phase 2 * [82] (NCT02177786)
� Phase 3 # MOSAIC (NCT04026165)

(4) Antifibrotic agent

Galectin-3
antagonist

Belapectin � Phase 2b * NASH-CX [89] (NCT02462967) —

GCS-100 — � Phase 2b # (NCT02312050)

(5) Antihypertensive drugs

Nonsteroidal
MRAs

Aparerenone
(MT-3995)

� Phase 2 * (NCT02923154) � Phase 2 * (NCT02205372) (NCT01756716)
(NCT02676401)

(6) Antidiabetic agents

GLP-1RA

Liraglutide
� Phase 2 * LEAN [107] (NCT02654665)
� Phase 3 # CGH-LiNASH (NCT02654665)

� LEADER trial * [113] (NCT01179048)

Exenatide — � Phase 2a * [142,143]

Dulaglutide � D-LIFT # (NCT 03590626)
� REWIND * [117] (NCT01394952)
� AWARD7 * [144] (NCT 01621178)

Semaglutide � Phase 2 # SEMA-NASH (NCT02970942) —

SGLT2 inhibitor
Dapagliflozin � Phase 3 # DEAN (NCT03723252) � DAPA-CKD * [133] (NCT03036150)

Canagliflozin — � CREDENCE * [131] (NCT02065791)

Empagliflozin � E-LIFT [130] * (NCT02686476)
� A Slope Analysis from the EMPA-REG
OUTCOME * [145]
� EMPA-KIDNEY # (NCT03594119)

(7) Gut microbiota manipulation

Prebiotics
Probiotics
Synbiotics

� INSYTE [136,137] * (NCT01680640) � Phase 2a * SYNERGY [140]
(ACTRN1261300049)

NASH: nonalcoholic steatohepatitis, NAFLD: nonalcoholic fatty liver disease, SGLT2: sodium–glucose cotransporter
2, GLP-1RA: glucagon-like peptide receptor agonist, PPAR: peroxisome proliferator-activated receptor, FXR:
farnesoid X receptor, ASK1: apoptosis signaling kinase 1, Nrf2: nuclear factor-erythroid-2-related factor 2, CCR2/5:
C-C chemokine receptor types 2 and 5, MRA: mineral corticoid receptor. Current status: * completed study,
# ongoing study, $ discontinued study.
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4. Conclusions

NASH/NAFLD is closely associated with diabetic nephropathy/CKD. To prevent morbidity and
mortality in T2D patients, they should be considered for pharmacotherapies in addition to conventional
dietary interventions. Because SLKT, which is now increasing in the US, will result in unacceptably
high morbidity and public healthcare costs, a variety of drug pipelines exist for simultaneously
treating NASH/NAFLD and diabetic nephropathy/CKD, such as PPAR agonists, FXR agonists, CCR2/5
antagonists, Nrf2 activators, ASK-1 inhibitors, Gal-3 inhibitors and gut microbiome manipulation.
Unfortunately, several clinical studies have been discontinued due to insufficient evidence or adverse
effects. Since NASH/NAFLD is considered to be a multifactorial disease, the importance of combining
therapies that engage with different targets and which have synergistic benefits for individual therapies
has been highlighted. NASH/NAFLD patients with T2D should be preferentially treated with novel
drugs licensed for diabetes treatment such as GLP-1RA and SGLT2 inhibitors [120], because these agents
also have hepatoprotective [146] and nephroprotective efficacy [119,131]. Among a variety of SGLT2
inhibitors, dapagliflozin has entered phase 3 trials for patients with biopsy-proven NASH (DEAN
study) or nondiabetic CKD (DAPA-CKD study) [133]. Cost-effectiveness data and patient-reported
outcome benefits are also required for companies to position their medications within practical NASH
or CKD guidelines. It is expected that one approach will solve both problems (diabetic hepatopathy
and nephropathy) in the near future.
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Abbreviation

ACE-I Angiotensin-converting enzyme inhibitors
ACR Urinary albumin/creatinine ratio
ALT Alanine aminotransferase
AMPK Activated protein kinase
ARB Angiotensin receptor blocker
ASK1 Apoptosis signaling kinase 1
AST Aspartate aminotransferase
BMI Body mass index
BNP Brain natriuretic peptide
CCR2/5 C-C chemokine receptor types 2 and 5
CI Confidence interval
CKD Chronic kidney disease
DLD Diabetic liver disease
eGFR Estimated glomerular filtration rate
ESRD End-stage renal disease
FIB-4 Fibrosis-4
FXR Farnesoid X receptor
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GLP-1 RA Glucagon-like peptide receptor agonist
HCC Hepatocellular carcinoma
HR Hazard ratio
HVPG Hepatic venous pressure gradient
KDOQI Kidney Disease Outcomes Quality Initiative
LDL-C Low density lipoprotein-cholesterol
MRI-PDFF Magnetic resonance imaging -proton density fat fraction
MRE Magnetic resonance elastography
NAFLD Nonalcoholic fatty liver disease
NAS NAFLD activity score
NASH Nonalcoholic steatohepatitis
NEFA Nonesterified fatty acid
NFS NAFLD fibrosis score
NHANES National Health and Nutrition Examination Survey
Nrf2 Nuclear factor-erythroid-2-related factor
OCA Obeticholic acid
PPAR Peroxisome proliferator-activated receptor
RAS Renin–angiotensin system
RCT Randomized controlled trial
RDBPCT Randomized double-blind placebo-controlled trial
ROS Reactive oxygen species
SGLT2 Sodium–glucose cotransporter 2
SKLT Simultaneous kidney liver transplantation
T2D Type 2 diabetes
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