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Drug repurposing: a better appr
oach for infectious disease drug
discovery?
G Lynn Law1, Jennifer Tisoncik-Go1, Marcus J Korth1 and
Michael G Katze1,2
The advent of publicly available databases containing system-

wide phenotypic data of the host response to both drugs and

pathogens, in conjunction with bioinformatics and

computational methods now allows for in silico predictions of

FDA-approved drugs as treatments against infection diseases.

This systems biology approach captures the complexity of both

the pathogen and drug host response in the form of expression

patterns or molecular interaction networks without having to

understand the underlying mechanisms of action. These drug

repurposing techniques have been successful in identifying

new drug candidates for several types of cancers and were

recently used to identify potential therapeutics against

influenza, the newly discovered Middle Eastern Respiratory

Syndrome coronavirus and several parasitic diseases. These

new approaches have the potential to significantly reduce both

the time and cost for infectious diseases drug discovery.

Addresses
1 Department of Microbiology, University of Washington, Seattle, WA

98195, USA
2 Washington National Primate Research Center, University of

Washington, Seattle, WA 98195, USA

Corresponding author: Katze,

Michael G (honey@uw.edu)

Current Opinion in Immunology 2013, 25:588–592

This review comes from a themed issue on Systems biology and

bioinformatics

Edited by Anna Karolina Palucka and Bali Pulendran

For a complete overview see the Issue and the Editorial

Available online 5th September 2013

0952-7915/$ – see front matter, Published by Elsevier Ltd.

http://dx.doi.org/10.1016/j.coi.2013.08.004

Introduction
Drug development research for infectious diseases has

led to a number of effective therapies in the 20th century;

however, there are still many diseases for which no drugs

or vaccines are available. For other diseases, such as those

caused by influenza virus or hepatitis C virus, treatments

are suboptimal and effective for only a subset of the

population. Reductionist or structure-based drug design

efforts rely on de novo predictions of how a select set of

small molecules or compounds will interact with targeted

pathogen or host proteins. Such predictions are typically

difficult, time consuming, and costly. Additional

approaches are needed to discover new treatments and
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to improve on existing ones. One promising approach is

drug repurposing or repositioning; that is, applying known

drugs or compounds to new indications [1,2]. Although

this idea is not new, past techniques have relied on

hypothesis-driven approaches that usually involve com-

putational matching of compounds to specific viral or

human proteins, requiring a large amount of expert

knowledge on the chemical compound and drug target

under study.

Recent developments have opened the door to using drug

repurposing approaches that do not rely on generating

empirical data related to binding characteristics or mech-

anism of action. Instead, these approaches use the

methods of systems biology and bioinformatics to directly

compare the host response to pathogen and drug. The

computational methods used in this paradigm vary in

complexity from genomic signature comparisons to com-

plicated interaction networks. In combination with sys-

tematic databases of drug-induced gene expression

profiles, these methods utilize data from a variety of

high-throughput techniques (e.g., transcriptomics, pro-

teomics, or metabolomics), thus allowing for the identi-

fication of potential host drug targets on a global-scale

(Figure 1). Because of the significantly reduced time-

frame for predicting host molecules for effective thera-

peutic intervention, and because these compounds are

typically previously FDA-approved drugs or small mol-

ecules, these approaches have the potential to greatly

reduce both the time and cost associated with drug de-

velopment. Importantly, there has already been success-

ful application of these approaches for several disease

indications [3].

The time is therefore at hand for the infectious disease

field to embrace a new paradigm in an effort to improve

effective drug discovery. To illustrate the immediate

accessibility and potential of this approach, we discuss

examples both in and outside of the infectious disease

field that have relied on systems-wide host response

datasets, publicly available datasets of known drugs or

small molecules, and computational approaches that are

used to predict potentially effective disease–drug com-

binations.

Inverse genomic signature approach
In the simplest of terms, the inverse genomic signature

approach is based on the premise that an effective drug

generates a gene expression profile that is inversely
www.sciencedirect.com
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Components of the drug repurposing paradigm. System-wide phenotypic datasets, such as mRNA expression, proteomics and metabolomics, are

collected for characterization of the host response to both drugs and pathogens and submitted to public repositories. This allows for data integration

and comparisons using a variety of bioinformatics and computational methods, including inverse genomic signature and network-based approaches.

These analyses result in drug repurposing predictions that identify potentially effective FDA-approved drugs as therapeutics for corresponding

infection diseases.
correlated to the host signature associated with the dis-

ease. This approach incorporates the complexity of the

genome-wide response of the host to both the disease and

the treatment and is rooted in scalar theory [4�,5,6]. That

is, the mRNA expression profiles contain information

associated with higher-level protein interactions concor-

dant with either the disease or drug treatment. Most

examples of this approach use Connectivity Map (cMap)

[7], a public database (http://www.broadinstitute.org/

cmap/; version 2) that holds over 6000 transcriptome

profiles established downstream of treatment of human

cell lines with over 1300 compounds, most of which are

FDA-approved drugs. In addition to the transcriptome

profiles, the cMap resource provides analytical tools,

which among other things can calculate a ‘connectivity

score.’ This score is a measure of the inverse similarity or

negative correlation between signatures.

As an example, Dudley et al. used this method to identify

new therapeutic agents against inflammatory bowel
www.sciencedirect.com
disease (IBD), a progressive inflammatory disorder

for which there is no known cure. Current treatments

have severe side effects, are expensive, and are inef-

fective for many individuals [8]. In this study, a modi-

fied version of the computational methodology

developed by Lamb et al. [7,9] was used to compare

a compendium of 164 known drug compounds in cMap

to an IBD-specific gene expression signature derived

from 176 datasets available in Gene Expression Omni-

bus (GEO). Two of the strongest anti-correlated treat-

ment signatures were from prednisolone, a well-known

treatment for Crohn’s disease (a major type of IBD),

and topiramate, an anticonvulsant drug used to treat

epilepsy. Using a rodent model of IBD, it was shown

that topiramate significantly reduced gross pathology

and microscopic damage in the affected colon com-

pared with that seen in control animals. Importantly,

topiramate’s side effects in treatment of neurological

symptoms in humans are not as severe as current IBD

treatments.
Current Opinion in Immunology 2013, 25:588–592
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In one of the first applications of this approach to an

infectious disease, Josset et al. used the host transcrip-

tional response to influenza virus to query the cMap

database [10]. The majority of current antiviral drugs

target specific viral proteins, making them narrow in

spectrum and vulnerable to the emergence of viral resist-

ance. Josset and co-workers reasoned that treating virus

infection by stimulating or manipulating the innate

immune response, or by targeting cellular factors required

for the viral life cycle, would prove advantageous over the

more traditional approach of targeting a viral protein. A

common gene expression signature consisting of 20 dys-

regulated genes was identified from human A549 lung

epithelial cells infected with human (H1N1 or H3N2) or

avian (H5N1, H5N2, or H7N1) influenza A virus. The

cMap database was then queried to identify candidate

compounds with genomic signatures that were inversely

correlated to the common influenza virus-induced host

transcriptome profile. Eight candidate drugs were ident-

ified, the majority of which are approved for other indica-

tions. Six of these drugs inhibited viral growth in in vitro
assays. Importantly, five out of the eight also inhibited the

growth of the pandemic 2009 H1N1 influenza virus,

which had not been used to define the common signature.

The approach therefore has the potential to identify drugs

effective against a spectrum of related viruses.

An additional exciting aspect of the inverse genomic

signature approach is its ability to rapidly identify poten-

tial drugs for emerging infectious diseases, as demon-

strated by a recent study from our laboratory in which we

determined the host response to the newly discovered

Middle Eastern Respiratory Syndrome coronavirus

(MERS-CoV) [11�]. MERS-CoV was first identified in

Saudi Arabia in September 2012 and has since caused at

least 77 confirmed infections resulting in 40 deaths. Using

human Calu-3 cells (a cell line derived from epithelial

cells lining the human conducting airway) and global

transcriptional profiling of the host response, a 207-gene

signature of the early host response was identified. Using

this signature and two independent bioinformatics tools,

the cMap connectivity score and IPA upstream regulator

analysis (Ingenuity Systems, www.ingenuity.com), two

kinase inhibitors (SB203580 and LY294002) were ident-

ified as potential anti-MERS-CoV treatments. To vali-

date the top predicted negative regulator, cells were

treated with SB203580 before MERS-CoV infection.

This resulted in a significant reduction in viral titers at

both 24 and 48 hours post infection. This study demon-

strates the potential of in silico approaches to predict drug

candidates and the in vitro efficacy of SB203580 against

MERS-CoV.

Network-based approaches
Whereas the studies just described focused on the use of

gene expression patterns, it is also possible to take

advantage of the deeper understanding of the host
Current Opinion in Immunology 2013, 25:588–592
response that comes from network modeling. Biomole-

cular networks connect molecular components, such as

genes, proteins, or metabolites by specific types of inter-

actions and are used to represent the functional relation-

ship among the various components of the network [12].

Functional relationships can be physical or chemical

interactions, genetic regulatory interactions, or other

associations. Networks may be constructed to capture

various scales, ranging from molecular and cellular levels

to tissue and organismal levels, and network dynamics can

be analyzed to provide information about complex dis-

eases, infer novel relationships, and reveal emergent

properties of the biological system.

The application of systems biology to infectious disease

research is increasingly being used to identify host targets

for antimicrobial therapeutics and for the prediction of

novel pathogen virulence factors [13–15]. With the wealth

of functional genomics data that are now publicly avail-

able, network pharmacology can begin to make inroads

into infectious disease research. Although an in-depth

review of network-based approaches for drug repurposing

is beyond the scope of this article, several recent reviews

have focused on the complexity of human disease net-

works [16], tools for analyzing network topology and

dynamics [4�], and network and drug combinations

[17]. Here, we discuss recent studies that have used

network-based approaches for target identification and

drug discovery.

To identify novel genes for drug targeting, Barrenas et al.
[18] built upon the knowledge that genes containing

disease-associated SNPs tend to form highly connected

clusters in protein–protein interaction networks, as do

genes that are differentially expressed in complex dis-

eases. This information was used to identify highly inter-

connected gene clusters or ‘core-susceptibility modules’

from 13 highly diverse complex diseases. This was done

by constructing individual disease-specific networks

using a global human protein–protein interaction network

and gene expression datasets for each disease [19]. Highly

interconnected clusters that overlapped between the

disease networks were then determined, and the use of

a permutation test revealed a significant level of SNP

enrichment (obtained from [20]) in each core-suscepti-

bility module compared with the whole protein–protein

interaction network.

To test if this correlation between core-susceptibility

modules and SNPs could identify novel host drug targets

or novel genes associated with disease susceptibility, the

network construction and analysis was repeated using

gene expression and SNP datasets from another complex

disease, seasonal allergic rhinitis (SAR, i.e., hay fever).

This analysis identified two novel SAR-associated genes,

fibroblast growth factor 2 (FGF2) and mitogen-activated

protein kinase 8 (MAPK8), the latter known to play a role
www.sciencedirect.com
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in type 1 allergic inflammation. The potential functional

relevance of FGF2 as a drug target was confirmed when it

was knocked down in polarized TH2 cells, which resulted

in the dysregulation of genes involved in type 1 allergic

inflammation.

Drug repurposing strategies may also be valuable for

finding therapeutics against rare diseases, where there

is little financial incentive for drug development. As an

example, Mei et al. [21] used a multiple-level network

modeling (MLNM) approach to identify drugs to treat

rare central nervous systems (CNS) diseases. Using pub-

licly available disease-gene expression profiles, pathophy-

siological pathway analysis, and information on FDA-

approved drugs and late-stage compounds, an integrated

CNS disease network was constructed in which diseases

were linked in relationship to the degree of commonly

shared pathways, expression patterns, or responses to

drugs or compounds. Using robust association statistical

cutoffs, hierarchical clustering, and the hypothesis that

similar diseases are caused by the dysregulation of related

pathways, several potential drugs were identified. For

example, these results predicted that Parkinson’s disease

drugs could be effectively repurposed as a therapy for

basal ganglia disease. Similarly, this approach showed that

multiple sclerosis (MS) and neuromyelitis optica (an

autoimmune disorder consisting of simultaneous inflam-

mation and demyelination of the optic nerve and the

spinal cord) share common mechanistic pathways,

suggesting that MS drugs could be effective against both

diseases.

In a novel approach, Daminelli et al. used off-target

effects of known promiscuous drugs to their advantage

in a network-based strategy that integrated publicly

available drug–target and drug–disease interactions

[22�]. Using the resulting integrated drug–target–disease

network, new links between drugs, targets, and diseases

were identified and evaluated. For example, quercetin, a

bioflavonoid with anti-inflammatory and antioxidant

properties [23], and resveratrol (a polyphenolic compound

found in red wine and once speculated to explain the

‘French Paradox’ [24]) were predicted to bind the same

two targets (PIK3GC and LTA4H, known binding part-

ners of quercetin and resveratrol, respectively) and poten-

tially be effective against neoplasms and cardiovascular

diseases. A literature search revealed that quercetin bind-

ing to LTA4H had recently been verified using an in vitro
pull-down assay. Although resveratrol does not appear to

bind directly to PIK3GC, it can inhibit PIK3GC phos-

phorylation and has been reported to have anti-tumor

activity [25–27].

Conclusions
Drug repurposing approaches therefore show promise for

identifying drugs to treat a variety of diseases, including

infectious disease. However, there are also caveats to be
www.sciencedirect.com
aware of and steps to be taken to ensure that these

approaches bear fruit. For instance, most if not all

publicly available drug profiles have been obtained

using cell lines as model systems, meaning that infor-

mation related to intercellular mechanisms is not cap-

tured. Additional public funding is needed for more

extensive databases that expand the number of drugs

profiled and the model systems used. Equally important

is the availability of datasets of the host response to

infectious diseases. To this end, the National Institute

of Allergy and Infectious Diseases (NIAID) has spon-

sored five systems biology centers for infectious disease

research [28]. These centers focus on modeling the host

response to pathogens such as influenza virus, SARS-

CoV, Mycobacterium tuberculosis, Salmonella typhimurium,

Yersinia pestis, and most recently malaria parasites. The

resulting host-response datasets, along with a significant

amount of metadata, are captured by the NIAID Bioin-

formatics Resource Centers, thereby allowing investi-

gators to use these extensive, systematically obtained

genomic, proteomic, and metabolomic datasets for com-

putational studies.

There are also currently limitations to the computational

tools used to integrate drug and host-response profiles.

Existing pattern-matching techniques use prior knowl-

edge in the form of gene ontology and functional annota-

tion databases such as GO/KEGG or Ingenuity Pathway

Analysis. This limits the searchable patterns to already

known pathways. Additionally, cMap can only be

searched with simple, short, differentially expressed gene

lists rather than complex datasets obtained using multiple

biological conditions and covering all human genes. This

results in greater bias and lower throughput. Additional

methods need to be developed to overcome these limita-

tions. Of course, once potential drugs are identified

through these approaches, steps must still be taken to

validate clinical efficacy [29].

In this review, we have highlighted the use of mRNA and

proteomic profiles; however, other system-wide metrics

could potentially be used, including profiles of micro-

RNAs, long noncoding RNAs, or epigenetic modifi-

cations. With the recent US Supreme Court decision to

ban patents on human genes, it is not hard to imagine that

soon an individual’s genetic makeup and personal geno-

mic disease signatures will be screened against drug

databases for a more tailored and personalized medical

treatment. Finally, by identifying compounds that have

already been evaluated in human subjects, drug repur-

posing approaches may be of particular benefit for iden-

tifying treatments that can be employed against rare or

emerging infectious diseases. As an adjunct to the more

common approaches of high-throughput screening and

structure-based drug design, computational drug repur-

posing has the potential to rapidly translate insights

gained through systems biology into a drug discovery
Current Opinion in Immunology 2013, 25:588–592
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strategy directly applicable to the treatment of infectious

disease.
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