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Simple Summary: This study examined whether the DNA methylation state of peripheral blood
mononuclear cells (PBMCs) could predict cardiotoxicity caused by doxorubicin (DOX)-based chemother-
apy in breast cancer patients. The results showed a significant difference in the pattern of DNA
methylation of PBMCs associated with a risk of cardiotoxicity. These preliminary findings have the
potential to further the goal of personalized medicine and tailor the treatment of breast cancer with
DOX-based chemotherapy to reduce the toxicity to the heart.

Abstract: Chemotherapy with doxorubicin (DOX) may cause unpredictable cardiotoxicity. This
study aimed to determine whether the methylation signature of peripheral blood mononuclear cells
(PBMCs) prior to and after the first cycle of DOX-based chemotherapy could predict the risk of
cardiotoxicity in breast cancer patients. Cardiotoxicity was defined as a decrease in left ventricular
ejection fraction (LVEF) by >10%. DNA methylation of PBMCs from 9 patients with abnormal LVEF
and 10 patients with normal LVEF were examined using Infinium HumanMethylation450 BeadChip.
We have identified 14,883 differentially methylated CpGs at baseline and 18,718 CpGs after the first
cycle of chemotherapy, which significantly correlated with LVEF status. Significant differentially
methylated regions (DMRs) were found in the promoter and the gene body of SLFN12, IRF6 and
RNF39 in patients with abnormal LVEF. The pathway analysis found enrichment for regulation of
transcription, mRNA splicing, pathways in cancer and ErbB2/4 signaling. The preliminary results
from this study showed that the DNA methylation profile of PBMCs may predict the risk of DOX-
induced cardiotoxicity prior to chemotherapy. Further studies with larger cohorts of patients are
needed to confirm these findings.

Keywords: cardiotoxicity; methylation; breast cancer; doxorubicin; cardiomyopathy

1. Introduction

Doxorubicin (DOX) is an anthracycline antibiotic commonly used for treatment of
breast and other malignancies [1]. A major and yet unpredictable side effect of DOX is the
development of cardiomyopathy that may lead to irreversible congestive heart failure [2].
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DOX-induced cardiotoxicity is exponentially dose-dependent beginning with the first dose
with asymptomatic myocardial injury and may progress to irreversible symptomatic heart
failure (HF) years after treatment [3,4]. Incidence of heart failure in cancer patients treated
with various DOX-containing regimens has been estimated at 3–45% [5,6]. In total, 10% of
patients treated with DOX develop cardiac complications up to 10 years after cessation of
chemotherapy [7]. The damaging effects of DOX on the heart often are not detected until
years after cessation of the chemotherapy, therefore it is important to identify patients at
risk before or at the early doses of chemotherapy [8–10].

Because the mechanism of DOX-induced cardiotoxicity is not completely understood,
there are no tools to predict or prevent it. The formation of free radicals with oxidative stress
is considered a primary mechanism of DOX-associated cardiotoxicity [11], but other mecha-
nisms such as binding to topoisomerases, dysregulation of Ca2+ homeostasis, activation of
the ubiquitin-proteasome system, release of vasoactive amines, and impaired cardiac repair
have also been suggested [12]. Recent studies have focused on DOX-induced systemic
inflammation and endothelial injury, which can potentially trigger the development and
progression of cardiomyopathy [13–15]. We have previously demonstrated that subclinical
DOX-induced cardiotoxicity in breast cancer patients was associated with upregulation
of transcripts [16] and proteins [17] implicated in immune trafficking and inflammatory
response. Further, elevated plasma markers of inflammation, hypercoagulability and
endothelial function at baseline and after the first dose of DOX chemotherapy were able
seen to be associated with early subclinical DOX-induced cardiotoxicity in patients with
breast cancer [18].

Gene expression analysis gives a snapshot at the current state of state of a cell or
sets of cells and provide clues to DOX-induced cardiotoxicity. DNA methylation, a major
mechanism of gene expression regulation, is a pre-transcriptional heritable modification
characterized by the addition of a methyl group to the C5 position of cytosine to form
5-methylcytosine (5 mC) [19]. In somatic cells, DNA methylation occurs predominantly
on cytosine residues of the dinucleotide CpG sequences [20]. CpG dinucleotides are
distributed unevenly throughout the genome, and in normal, healthy cells 60–80% of CpGs
are methylated [21]. Such methylation regulates the stability of the gene expression states
and maintains genome integrity by collaborating with proteins involved in gene repression
or by inhibiting the binding of transcription factor(s) to DNA [22]. In mammalian cells
cytosine is modified to 5 mC by DNA methyltransferases (DNMTs) and TET dioxygenases
are responsible for demethylation of 5 mC [23]. A number of studies have shown that
changes in the DNA methylation status contributes to biological processes associated
with various diseases, such as cardiovascular diseases and cancer [24]. The relationship
between DNA methylation and various cardiovascular diseases, including myocardial
infarction, acute coronary syndrome, and atherosclerosis has been demonstrated in a series
of epigenome-wide association studies [23,25,26].

DNA methylation can affect the pharmacodynamics of various drugs by modulating
the expression of specific drug metabolizing enzymes [27]. It has been suggested that DOX
might affect the global DNA methylation via dysregulation of mitochondrial function,
which is considered a major mechanism of DOX-induced cardiotoxicity [28]. For example,
Ferreira et al. [29] showed that treatment of rat H9c2 cardio-myoblast cell line with low sub-
therapeutic doses of DOX (10 and 25 nM) caused downregulation of DNMT1 and global
methylation levels, and was associated with cell cycle arrest in G2/M and upregulation of
several mitochondrial DNA transcripts. Chronic DOX treatment of rats induced a decrease
in the global DNA methylation in the hearts and altered transcript levels of multiple
mitochondrial genes, along with increased activity of histone deacetylases [30]. Nordgren
et al. [31] showed that chronic DOX exposure of rats altered DNA methylation of 14 genes
in the heart tissue, of which 5 genes (RBM20, NMNAT2, KLHL29, CACNA1C, SCN5A) were
significantly altered in the gene expression level, including down-regulation of KLHL29,
NMNAT2, and SCN5A, and up-regulation of RAB20 and CACNA1C. Hoefer et al. [25]
found that DNA methylation of DOX-metabolizing enzyme AKR7A2 in hearts of patients
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treated with DOX, impacted the expression of AKR7A2 and the synthesis of cardiotoxic
DOX metabolite daunorubicinol [25]. DNA methylation may play a key role in cardiac
function impacted by DOX-based chemotherapy.

This preliminary study aimed to examine whether DNA methylation of PBMCs could
predict cardiotoxicity of DOX-based chemotherapy in breast cancer patients.

2. Materials and Methods
2.1. Study Subjects and Blood Samples

Patients with early breast cancer eligible for DOX-based chemotherapy were enrolled
at the Winthrop Rockefeller Cancer Institute, UAMS. This study was approved by the
Institutional Review Board (IRB) of UAMS (Protocol #130212) and from IRB of the Central
Veterans Healthcare system (CAVHS) (Protocol #1423976-2), where the samples were pro-
cessed and stored. The study was performed on a total of 19 subjects enrolled in the study
between 2012 and 2014. All participants signed an IRB approved informed consent where
they were informed for the use of their blood samples and medical records for research
purposes. The inclusion criteria included early ER+/PR+/Her2−, ER+/PR−/Her2− or
triple negative, stage I to III breast cancers within 18–99 years of age. Participants were
ineligible if they were pregnant or breast feeding and had prior history of chemotherapy
or radiotherapy. All patients were treated with a predefined protocol which included a
combination of DOX (60 mg/m2) with cyclophosphamide (600 mg/m2) in each cycle for
4 cycles every 2 weeks. Patients with hypertension who were taking antihypertensive
medications (β-blockers and ACE inhibitors) prior to chemotherapy were prescribed to
continue with this treatment concomitant with the DOX-based chemotherapy. Patients
with diabetes also continued to be treated with insulin or metformin concomitant with the
chemotherapy.

Blood samples were collected prior to chemotherapy and after the first cycle of
chemotherapy. PBMCs were isolated from EDTA anti-coagulated blood using standard
Ficoll-Paque Plus gradient centrifugation (density 1.073 g/mL) according to the instructions
of the manufacturer (GE Healthcare, USA), and as described in the application note [32].
Briefly, EDTA anti-coagulated blood, diluted with an equal volume of phosphate-buffered
saline (PBS) was layered over the Ficoll-Paque Plus and was centrifuged at 400 g for 30 min
at 18 ◦C–20 ◦C with the brake off. After removing the upper layer containing plasma and
platelets, the layer of PBMCs was isolated and stored at −80 ◦C until further use.

2.2. Assessment of Left Ventrical Ejection Fraction as a Measure of Cardiac Function

Cardiac toxicity was evaluated by clinical assessment of LVEF with MUGA scan
before and after the fourth cycle of DOX-based chemotherapy. A decline of LVEF by >10%
or below 50% in comparison with the baseline (before the start of chemotherapy) was
considered abnormal [33,34].

2.3. DNA Extraction and Methylation Measurements

DNA was extracted from PBMCs using the QIAamp DNA Blood Mini Kit (Qiagen,
Valencia, CA, USA), following manufacturer’s instructions. Samples were quality assessed
and quantified by ultraviolet (UV) absorbance measured via Nanodrop Technologies,
NanoDrop® ND-2000 Spectrophotometer (Wilmington, DE, USA) and the software. The in-
tegrity and quantity of the DNA samples were determined by TaqMan® RNase P Detection
assay (Applied Biosystems Assay, Life Technologies, Carlsbad, CA, USA) with fluorescence
detection on a 7900 Fast Real Time PCR System (Applied Biosystems, Life Technologies,
Carlsbad, CA, USA) per the manufacturer’s protocol.

For genome-wide analysis of DNA methylation, samples were bisulfite-modified
using Zymo EZ-96 DNA Methylation Kits (D5004). The bisulfite-mediated conversion
efficiency was determined by PCR with DAPK1 primers (Zymo) and gel electrophoresis of
PCR-products [35]. The bisulfite-modified DNA samples were whole-genome amplified,
fragmented, precipitated, resuspended, and hybridized to Illumina Human Methylation
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450 beadchips, which simultaneously profiles the methylation status for >485,000 CpG sites
at single-nucleotide resolution and covers 96% of CpG islands with additional coverage of
island shores (<2 Kb from CpG Islands), island shelves (2–4 Kb from CpG islands), and
regions flanking them. The beadchips were scanned using the Illumina iScan System.

2.4. Data Quality Control and Normalization Pipeline

The resulting raw intensity data, as IDAT files (the Illumina proprietary file format
used to store data output directly from the scanner), were imported into the ChAMP R
package [36], which was used for the processing and analysis of the methylation arrays
using default values. The Beta-Mixture Quantile (BMIQ) [37] normalization method was
used to normalize the array data. This method is an intra-array normalization strategy.
Batch effects were identified and corrected using the COMBAT algorithm. Probes on a
blacklist of probes that are known to be cross-reactive were removed.

2.5. Methylation Data Analysis

Two different methylation analysis tools, CpGAssoc [38] and ChAMP were used to
identify significantly differentially methylated probes. We also used the ChAMP software
package functions for differential methylation probe (DMP) and differentially methylated
region (DMR) analysis. The DMP analysis algorithm internally uses linear models for
microarray data (LIMMA) [39]. The DMR analysis function uses the Bumphunter [40] R
package. The R package CpGAssoc [38] was used to identify probes significantly associated
with ejection fraction (LVEF) status. CpGAssoc uses a mixed or fixed effect model to
identify probes that are significantly associated with cardiotoxicity. Both analyses used
normalized and batch corrected beta values as input. Figure 1 shows an overview of the
analysis performed.

2.6. Gene Expression Validation by Real-Time Quantitative PCR (QPCR)

Real-time QPCR was performed as described by Plotkin et al. [41]. Total RNA was iso-
lated from PBMCs of 10 breast cancer patients, including 5 patients with normal LVEF and
5 patients with abnormal LVEF before, and after the first cycle of DOX-based chemotherapy
using RNeasy mini kit (Qiagen, Valencia, CA, USA), following manufacturer’s instruc-
tions. gDNA was removed with gDNA eliminator columns. Concentrations (ng/µL)
and OD ratios (260/280 nm) of total RNA were determined using the Nanodrop UV/VIS
spectrophotometer (Thermo Fisher). RNA integrity number scores, which are a ratio of
ribosomal RNAs 18S and 28S in total RNA samples, were obtained using the Agilent 2100
Bioanalyzer with the Agilent RNA 6000 Nano Kit (Santa Clara, CA, USA). All total RNA
specimens had OD ratios of 1.85 to 2.10 and RNA integrity number scores of >7.4. The
quantitative conversion of 250 ng of total RNA to single-stranded cDNA in a single 30-µL
reaction was performed with the High Capacity cDNA Reverse Transcription Kit (Applied
Biosystems, Foster City, CA, USA). Quantitative PCR was performed using QuantStudio
12K Flex real-time PCR system software version 1.3 (Applied Biosystems). TaqMan gene
expression assays were Hs01062178_m1 (IRF6); Hs00430118_m1 (SLFN12); Hs00961882_m1
(RNF39); Hs99999903_m1 (beta-actin) and Hs00976258_m1 [general transcription factor 2B
(GTF2B)]. All quantitative PCRs were performed in a final volume of 10 µL containing 1× of
TaqMan Gene Expression Master mix with UNG (Applied Biosystems), 1× of each TaqMan
Gene Expression Assay (FAM-MGB dyes), and 10 ng cDNA in sterile molecular-grade
water. The standard cycling conditions were 50 ◦C for 2 min, 95 ◦C for 10 min, followed
by 40 cycles of 95 ◦C for 15 s, and 60 ◦C for 1 min. Quantitative PCR was performed in
triplicate to ensure quantitative accuracy. The results were analyzed using Expression Suite
Software version 1.0 (Applied Biosystems). Relative expression levels were calculated for
each sample after normalization against the housekeeping genes beta-actin and GTF2B,
using the ∆∆Ct method for comparing relative fold expression differences. The data are
expressed as fold change (FC).



Cancers 2021, 13, 6291 5 of 20

Cancers 2021, 13, x FOR PEER REVIEW 5 of 21 
 

 

sterile molecular-grade water. The standard cycling conditions were 50 °C for 2 min, 95 
°C for 10 min, followed by 40 cycles of 95 °C for 15 s, and 60 °C for 1 min. Quantitative 
PCR was performed in triplicate to ensure quantitative accuracy. The results were ana-
lyzed using Expression Suite Software version 1.0 (Applied Biosystems). Relative expres-
sion levels were calculated for each sample after normalization against the housekeeping 
genes beta-actin and GTF2B, using the ΔΔCt method for comparing relative fold expres-
sion differences. The data are expressed as fold change (FC). 

 
Figure 1. Analysis flow diagram. DNA was extracted from PBMCs and prepared for hybridation to the methylation arrays. 
Differential methylation analysis was performed between the normal versus abnormal ejection fraction samples at baseline 
and after first cycle and the intersection of results are reported. Significantly differentially methylated probes (DMPs) and 
regions (DMRs) were identified. Functional analysis was performed on genes associated with significant differential meth-
ylation. * One sample did not have post 1st cycle methylation data. 

2.7. Pathway and Gene Ontology Analysis 

Figure 1. Analysis flow diagram. DNA was extracted from PBMCs and prepared for hybridation to the methylation arrays.
Differential methylation analysis was performed between the normal versus abnormal ejection fraction samples at baseline
and after first cycle and the intersection of results are reported. Significantly differentially methylated probes (DMPs)
and regions (DMRs) were identified. Functional analysis was performed on genes associated with significant differential
methylation. * One sample did not have post 1st cycle methylation data.

2.7. Pathway and Gene Ontology Analysis

Functional annotation and enrichment analyses were conducted using Ingenuity Path-
ways Analysis (IPA) software (Ingenuity Systems; www.ingenuity.com/ (accessed on 9
March 2021)). WEBGestalt [42] was used for gene set enrichment analysis (GSEA). Addition-
ally STRING [43] and NetworkAnalyst [44] were used to build protein-protein networks
and gene regulatory networks to explore the significant probes and associated genes.

www.ingenuity.com/
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2.8. Statistical Analysis

Fisher’s exact test was used to test for differences between the patient groups. A
t-test was performed to determine differences in LVEF change between the groups. In the
methylation analysis, we account for multiple testing using the Holm-Bonferroni method
or false discovery rate (FDR) and results were considered significant with adjusted p-values
or FDR ≤ 0.05. Beta values were used to describe the amount of methylation with a range
from 0 (no methylation) to 1 (complete methylation).

3. Results
3.1. Demographic Characteristics of the Study Participants

The characteristics of the patients are presented in Table 1. Of the 19 patients enrolled,
9 patients had asymptomatic LVEF > 10% decrease in comparison with the baseline (ab-
normal group) and 10 patients had LVEF ≤ 10% (normal group). The median change of
LVEF among the abnormal group was 14%, while in the normal group the median change
in LVEF was 0.6%. A two-tailed t-test of the delta in LVEF before and after treatment
between the two groups was significant with a p-value ≤ 0.05 (Supplemental Table S5). In
the abnormal group, 3 patients had hypertension, versus 4 with hypertension and 1 with
diabetes in the normal group.

Table 1. Patient Characteristics.

Patient Characteristics

Characteristics Normal * LVEF (n = 10) Abnormal * LVEF (n = 9) † Test

Age (average, range) 53.4 (35–73) 50.6 (43–66) NS (0.234)
Race

European American 7 8 NS (0.582)
African American 3 1

Breast Cancer
ER-/PR−/Her2− 3 1 NS (0.810)
ER+/PR−/Her2− 1 1
ER+/PR+/Her2− 6 6
ER+/PR+/Her2+ 1

LVEF Baseline (average %, Std. Dev) 62.8, 6.0 67.7, 7.2 NA
LVEF After 4 cycles (average %, Std.

Dev) 62.4, 8.0 53.8, 7.2 NA

* LVEF Left ventricular ejection fraction; † Fisher’s exact test.

No significant differences were detected between the two groups of patients (normal
and abnormal) with respect to the age, race, and type of breast cancer.

3.2. Differential Methylation Analysis Identified Probes Associated with Abnormal
Ejection Fraction

To initially investigate the quality of the batch correction and normalization and to
identify any confounding factors we performed principal component analysis (PCA). We
took the top 10,000 most variable methylation sites across all samples as determined by the
probes that showed the highest variance. There was no obvious batch effect or confounding
factors, such as race, but we did observe a clear separation between the normal and
abnormal LVEF samples, Figure 2A. There was no separation of sample at baseline and
after the first cycle of DOX. Taking the average beta values of probes that had a beta delta
of 20% or greater we see clear methylation differences between the two groups, Figure 2B.
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Figure 2. (A) Principal Component Analysis of the top 10,000 most variable probes across each sample. Over 50% of
variaion is explained by principal component 1 and 2. Samples cluster togther based on case (normal/abnormal ejection
fraction). (B) A heatmap of average beta values of probes with a difference in beta of greater than 20% between normal and
abnormal ejection fraction status. We observe a distinct pattern of methylation between the two groups.

We looked at baseline and after the 1st cycle of DOX samples separately comparing the
normal versus the abnormal LVEF samples. Using the ChAMPDMP R tool, we identified
15,483 significant probes from baseline (normal vs. abnormal), and 20,736 significant
probes from the comparison after the 1st cycle of DOX (normal vs. abnormal), both results
with an adjusted p-value ≤ 0.05. To verify these results, we used a second algorithm to
identify significant probes associated with LVEF status. We identified 14,883 differentially
methylated CpGs at baseline (Figure 3A) and 18,718 CpGs after the first cycle (Figure 3B)
which were significantly correlated with LVEF status (adjusted p-value ≤ 0.05).
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Downstream analysis involved these significantly differentially methylated probes
found between the normal and abnormal LVEF groups. The significant probes were
uniformly distributed across all autosomal chromosomes (sex chromosomes were ex-
cluded). Intersecting the 4 results resulted in 5139 differentially methylated probes,
(Supplementary Tables S1–S4). The 5139 probes were annotated close to 3905 genes (2978
unique genes). Figure 4A shows the genomic feature distribution of the significant DMPs
with 33% of the probes associated with the gene body feature. The top 5 significantly
differentially methylated probes annotated with genes included RGS14 (3 probes), KLH31,
and ANO4 (Figure 4B).
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Using the online tool WEBGestalt, we performed GSEA using the 2978 significant
genes and the beta change between the normal and abnormal LVEF as input and identified
several enriched pathways. The two most significantly enriched pathways, after multiple
testing correction with positive enrichment score involved mRNA splicing, which included
the following genes: CACS3, DHX15, DHX9, EIF4A3, HNRNPH1; HNRNPR; HNRNPU;
RBM17; SF1; SNRPN, and YBX1, and the most significant negatively enrichment score was
Interferon gamma signaling (IFN-γ), which included HLA-DRB1, TRIM14, HLA-A, HLA-F,
IRF6 (Figure 5).
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identify enriched pathways.

3.3. Top 100 Significant Probes Cluster Samples Based on Ejection Fraction

Unsupervised hierarchical clustering of the top 100 significant differentially methy-
lated probes with a delta beta of at least 10% shows a clustering of the samples into two
groups based on LVEF status (Figure 6A). Using the online tool NetworkAnalyst, the genes
associated with the 100 probes were input as seed genes and mapped to protein–protein
interaction networks. The largest subnetwork contained 23 of these top genes highly con-
nected with only 1 degree (one non-seed gene) of separation from each other (Figure 6B).
Enrichment analysis was performed on this subnetwork looking at the Gene Ontology,
Reactome and KEGG Pathways databases. Among the identified significant enriched
pathways, we found regulation of transcription, mRNA splicing, pathways in cancer and
signaling by ErbB2/4 (Figure 6C).

3.4. Significant Region of Differential Methylation

We next looked for regions of consistent differential methylation between abnormal
and normal LVEF. We identified 185 DMRs including highly significant differences where
82 (44%) overlapped the 5′ region of the gene and 36 (19%) where found in the promotor
region. Significant DMRs included regions near SLFN12, IRF6, and RNF39. IRF6 and
SNFN12, which encodes interferon regulatory factor 6 and SNFN12 (Schlafen Family
Member 12), were identified as significantly increased in methylation of the abnormal
LVEF group (Figure 7A,B). Whereas the protein coding RNF39 (Ring Finger Protein 39)
was significantly less methylated in the abnormal LVEF group (Figure 7C).
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Figure 6. Functional analysis of the top significantly differentially methylated probes. (A) Heatmap of the results of
unsupervised hierachial clustering using the top 100 probes found by all 4 analyses with at least a 10% beta delta. The
clustering reveals differentially methylated probes that distinguish between samples based on ejection fraction status.
(B) NetworkAnalysis was used on the genes associated with the top probes and mapped to protein–protein interaction
(PPI) networks. In total, 23 genes created a network with PPI network 1 degree connection (addition of 1 gene to
make the connection). (C) Gene Set Enrichment Analysis on the genes in the network was conducted using Reactome
pathway database.
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3.5. Gene Expression of IRF6, SLFN12 and RNF39

We used Taqman qPCR to investigate the correlation between the differential methyla-
tion of IRF6, SLFN12, and RNF39 with their gene expression at baseline and after the first cy-
cle of DOX chemotherapy in PBMCs of breast cancer patients (Supplementary Tables S6–S8).
The hypermethylation of IRF6 and SLFN12 in patients with abnormal LVEF was associated
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with downregulation of both IRF6 and SLFN12 after the first chemotherapy cycle versus
the baseline in all of the examined samples. The mean values of FC with standard error
(SE) are shown on Figure 8.
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Figure 8. Real-time QPCR of IRF6 and SLFN12 in PBMCs of breast cancer patients with normal and abnormal LVEF
following DOX-based chemotherapy. The transcripts of both IRF6 and SLNF12 genes were decreased after the first
chemotherapy cycle when compared to before the start of chemotherapy in both groups of patients (p-value > 0.05). Relative
expression levels were calculated for each sample after normalization against the housekeeping genes beta-actin and GTF28.
Experiments have been conducted in triplicates. Similar results were obtained using the housekeeping genes beta-actin
and GTF2B.

3.6. IPA Pathway Analysis

In order to define the potential relationships between the differentially methylated
genes between patients with a risk for cardiotoxicity and patients without, we used the
IPA platform. The input for IPA was the 73 genes associated with the top 100 significant
DMP with the delta beta value used in place of expression value. IPA analysis found
67 network-eligible genes in 6 networks, related to: cell morphology and organization,
post-translational modification, connective tissue disorders, endocrine system disorders.
Figure 9A shows the three most significant networks of the differentially methylated genes,
“Cell Morphology, Cellular assembly and organization, post-translational modification”;
“Connective tissue disorders, developmental disorder, hereditary disorder” and “Endocrine
system disorders, organ morphology, organismal functions”. IPA identified 10 overlapping
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canonical pathways (Figure 9B) which share 2 differentially methylated genes, coding
for calcium–activated serine/threonine protein kinases C alpha (PKC-alpha) and PKC-
eta. The most significant canonical signaling is the Vitamin D Receptor (VDR)/Retinoid
X Receptor (RXR) activation pathway. Three of the top canonical pathways were pre-
dicted to be upregulated, including ErbB signaling, Estrogen receptor (ER) signaling, and
Thrombin signaling.
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4. Discussion

In this study, we investigated the potential of methylation state to shed light on
predicting cardiotoxicity of DOX-based chemotherapy in breast cancer. The preliminary
results showed, for the first time, to our knowledge, that PBMCs’ DNA methylation prior
to the start of the treatment could predict the risk of DOX-induced cardiotoxicity in breast
cancer patients.

In our analysis significant methylation differences were identified between patients
that later developed abnormal LVEF and those that did not, both at baseline and after
the first DOX treatment cycle, suggesting that patients with those epigenetic signatures
could be predisposed to cardiotoxic side effects. The differences in the methylation profiles
were seen across the genome and affected several genes and pathways. Many of the most
significantly differentially methylated genes are the ones that have been shown to be
involved in heart and cardiovascular diseases. Regulator of G Protein Signaling 14 (RGS14)
is a protein coding gene that plays a role in the signaling by GPCR and Ras signaling
pathway, as well as serving as an inhibitor of platelet-derived growth factor (PDGF)-
stimulated ERK1/ERK2 phosphorylation. This gene has been implicated in cardiovascular
disease and has been shown to play a role in cardiac remodeling [45,46]. The protein
coding gene, Kelch Like Family Member 31 (KLHL31) inhibits the transcriptional activities
of TPA-response element (TRE) and serum response element (SRE). TRE has been shown
to be a transcriptional repressor in mouse cardiomyocytes [47], making it an interesting
gene to further investigate for its potential role in DOX induced cardiotoxicity. Anoctamin
4 (ANO4) is a protein coding gene involved in ion channel transport. In a study that looked
at chronic DOX exposure in rats, it was found to be significantly differentially methylated
between the treated versus untreated group [31].

The results of GSEA have shown a strong enrichment in transcription regulation and
in particular mRNA splicing. Importantly, we observed that the alternative splicing may
already be different even before DOX treatment and may thus be a potential reason for the
differences in response. Growing evidence has demonstrated that the response differences
in several treatments for cancer can be traced back to differences in the alternative splic-
ing, which can result in completely different proteins with opposing functions [48]. The
two most significantly affected pathways, after multiple testing corrections, were mRNA
splicing and IFN-γ signaling. Alternative splicing, an important mechanism to generate
transcriptomic and proteomic diversity from the genome, has emerged as a crucial process
governing biological processes during cardiac development and disease progression [49].
Overexpression of DHX15 [50], EIF4A3 [50], and RBM17 [51] splicing factors have been
demonstrated in cancer. EIF4A3 [52] and DHX15 [53] have been implicated in the contrac-
tile function of cardiomyocytes. HNRNPu [54] has been found to be required for normal
pre-mRNA splicing and postnatal heart development, and function. IFN-γ signaling is
primarily associated with inflammation and cell-mediated immune response, but also in
the promotion of tumor progression [55]. IRF6, a member of the IFN family of transcription
factors is one of the significantly hypomethylated genes prior to the start of chemotherapy
that predicted the risk of DOX-induced cardiotoxicity in our study. This finding correlate
with previous reports showing that IRF6 has a protective role in the response to endotoxic
shock [56], which is one of the suggested mechanisms of DOX-induced inflammation and
multiorgan toxicity [57]. Downregulation of IRF6 has been demonstrated in several cancers,
suggesting tumor-suppressor functions. Downregulation of IRF6 was demonstrated in
highly invasive breast cancer cell lines and when elevated, it suppressed cell proliferation,
and enhanced sensitivity to chemotherapy [58], but the impacts of IRF6 on cardiovas-
cular diseases remain largely unknown [59]. This study showed that IRF6 and SLNF12
hypermethylation correlated with increased risk of DOX-induced cardiotoxicity. We also
found that the DNA hypermethylation of IRF6 and SLFN12 in patients with abnormal
LVEF was associated with reduced gene expression, a finding which correlate with the
generally accepted effect of hypermethylation [60]. The expression of RNF39, which is
hypomethylated in patients with abnormal LVEF was not detected in any of the samples by
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qPCR. A possible explanation could be the low expression of RNF39, due to DOX-induced
reduction of B-lymphocytes [61], which are the main leukocytes expressing RNF39 [62].

Pathway analysis showed that differentially methylated CpGs of the group of patients
with DOX-induced cardiotoxicity were associated overlapping pathways, which included
hypermethylated PKC-alpha (PRKCA) and PKC-eta (PRKCH). Several studies have demon-
strated the role of PKC isoforms in cardiovascular diseases [63,64]. Activation of PKC-alpha
and several other PKC isoforms is regulated during heart hypertrophy and heart failure,
making them therapeutic targets for treatment of cardiovascular diseases [65,66]. It has
been demonstrated that PKC-alpha physically interacts with and phosphorylates DNMT1,
suggesting its possible roles in the control of DNA methylation patterns of the genome,
and possibly in the control of gene expression [67]. DNMT1 activity could be regulated
at post-translational level through phosphorylation by a serine/threonine kinase, leading
to a global hypomethylation in cancer [68]. Both PKC-alpha and PKC-eta have also been
associated with poor prognosis and resistance to chemotherapy in breast cancer [69–71].
The VDR/RXR pathway has been implicated both in cancer and cardiovascular diseases.
The transcriptional factor VDR in a complex with 1,25(OH)2D3 and RXR regulates the
expression of genes involved in cell proliferation and differentiation, oxidative stress, and
apoptosis [72], and is expressed in cardiomyocytes [73] and various other cell types [74,75].
Vitamin D deficiency has been associated with a number of cancers, hypertension, coronary
artery diseases, diabetes, and autoimmune disorders [76]. ErbB receptor tyrosine kinases
epidermal growth factor receptor (EGFR) and ErbB2 (neu, HER2) are often overexpressed,
amplified, or mutated in many forms of cancer, including breast cancer, making them
important therapeutic targets [77,78]. Overexpression of the erbB-2 in breast tumors has
been suggested to be a predictor of the therapeutic response to DOX [79–81]. At the same
time, erbB2 overexpression in the heart leads to hypertrophy [82]. Treatment of rats with
DOX resulted in a dose-dependent increase in ErbB2 in the hearts before the evidence
of functional systolic deficit, and was associated with activation of Akt signaling [81].
The crosstalk between ER signaling and other signaling pathways is believed to affect
the development of mammary gland and breast tumor initiation and invasion [83,84].
It is well known that ER signaling plays an important role in breast cancer progression
and the majority of the human breast cancers start out as estrogen dependent [85]. The
mechanism of ER action involves estrogen binding to receptors in the cytoplasm, followed
by dimerization of the receptor and translocation to the nucleus, where it binds to estrogen
response element (EREs) near the promoters of the target genes, such as GATA3, ATF2,
AREG, GREB1, ESRRB, FOXA1 [86,87]. The analysis of the significantly methylated genes
showed upregulation of thrombin signaling. The activation of the coagulation cascade
in which thrombin plays a key role is closely related to inflammation, development of
cardiovascular diseases and heart failure prognosis [88]. Cancer patients are at increased
risk of thrombosis [89,90], including patients with breast cancer. Furthermore, cancer
chemotherapy increases the risk of cancer-related thrombosis, which is a major risk factor
for cardiovascular diseases [91,92]. DOX induces severe inflammatory responses in various
organs including liver, kidney, intestine, and blood vessels, in addition to its major adverse
effect of cardiotoxicity [57]. Accordingly, our previous study demonstrated that elevated
markers of inflammation, hypercoagulability and endothelial function (i.e., thrombomod-
ulin, myeloperoxidase, thrombin–anti-thrombin complex) prior to and after the first dose of
DOX chemotherapy were able to predict the early subclinical DOX-induced cardiotoxicity
in patients with breast cancer [18].

The limitations of this preliminary study include the small number of patients ex-
amined, which resulted in great variation in the resulting data and a weaker correlation
with cardiotoxicity Therefore, indicating the need for further studies with a larger group of
patients. In addition, studies that investigate the dynamic profile of the suggested markers
of hypercoagulability and endothelial dysfunction during the course of DOX chemotherapy
in correlation with the risk of cardiotoxicity are needed.
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5. Conclusions

Breast cancer is the most common neoplasm in women and the second leading cause
of cancer-related mortality in females worldwide [93]. At present, breast cancer detection
relies mostly on mammography, which has been associated with decreased breast cancer
mortality; however, mammography screening has generated controversy due to the risks
of false-positive results and over-diagnosis of indolent disease [94,95]. A population-based
study of breast cancer survivors showed that women who received anthracyclines and
had more than 10 years of follow-up experienced higher rates of heart failure than did
women who received non-anthracycline or no chemotherapy [96]. These observations raise
concerns that adult-onset cancer survivors might be plagued by increased cardiovascular
morbidity similar to that of long-term survivors of childhood cancer [4]. The need for the
means to detect early signs of cardiac deterioration that are related to subsequent clinically
significant cardiovascular events is urgent.

The preliminary results from this study provide evidence that the DNA methylation
profile of PBMC has the potential to predict the risk of DOX-induced cardiotoxicity. The im-
portant finding was that the extent of methylation at baseline correlated with the post-DOX
LVEF reduction, indicating that such methylation profiles may have the potential to predict
the subsequent development of cardiotoxicity. The number of significant differentially
methylated results provides a number of interesting potential markers. Further studies
with a larger cohort of patients are needed to confirm these findings, as well as narrowing
down candidate methylation markers that can be implemented in a blood test. These
finding may help guide treatment or identify patients that need to be followed closely to
mitigate heart damage after DOX treatment.
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