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The increasing incidence of drug-resistant tuberculosis is still an emergency for global
public health and a major obstacle to tuberculosis treatment. Therefore, deciphering the
novel mechanisms of mycobacterial antibiotic resistance is crucial for combatting the
rapid emergence of drug-resistant strains. In this study, we identified an unexpected
role of Mycobacterium smegmatis GntR family transcriptional regulator MSMEG_5174
and its homologous gene Mycobacterium tuberculosis Rv1152 in aminoglycoside
antibiotic resistance. Deficiency of MSMEG_5174 rendered Mycobacterium smegmatis
highly resistant to aminoglycoside antibiotic treatment, and ectopic expression of
Rv1152 in MSMEG_5174 mutants restored antibiotic-induced bacterial killing. We
further demonstrated that MSMEG_5174 negatively regulates the expression of purine
metabolism-related genes and the accumulation of purine metabolites. Moreover,
overexpression of xanthine dehydrogenase MSMEG_0871 or xanthine treatment
elicited a significant decrease in aminoglycoside antibiotic lethality for Mycobacterium
smegmatis. Together, our findings revealed MSMEG_5174 as a metabolic regulator and
hint toward unexplored crosstalk between purine metabolism and antibiotic resistance.

Keywords: Mycobacterium smegmatis, GntR, MSMEG_5174, purine metabolism, aminoglycoside antibiotics
resistance

INTRODUCTION

Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), is
the leading cause of death worldwide. In 2020, an estimated 10 million people developed active TB
and approximately 1.5 million individuals died from TB (Jeremiah et al., 2022). The emergence
of multidrug-resistant and extensively drug-resistant strains highlights an urgency for novel
strategies to protect against TB (Nahid et al., 2016; Jeremiah et al., 2022). Generally, antibiotics
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inhibit bacterial growth mainly by targeting bacterial replication
and protein synthesis (Walsh, 2000). In turn, bacterial
physiological processes, including gene transcription and protein
translation, stress responses, and DNA repair, have been reported
to be associated with the lethality of antibiotics (Dwyer et al.,
2015; Gruber and Walker, 2018; Yang et al., 2018). Interestingly,
increasing evidence has proved that bacterial metabolism plays a
key role in antibiotic-mediated killing (Allison et al., 2011; Cho
et al., 2014; Peng et al., 2015; Meylan et al., 2017; Fan et al., 2018).
Therefore, it is crucial to understand how bacteria manipulate
metabolism to interfere with antibiotic-mediated lethality.

The GntR family transcriptional regulators, originally
identified in Bacillus subtilis (B. subtilis), are named after a
gluconate operon repressor (Fujita et al., 1986). These family
regulators are widespread in bacteria and possess a conserved
N-terminal DNA-binding domain and a C-terminal domain
with the variable in length and structure (Suvorova et al., 2015).
Based on the characteristics of the C-terminal domain, GntR
family regulators are further classified into six subfamilies,
including FadR, MocR, HutC, YtrA, AraA, and PlmA subfamily
(Rigali et al., 2002; Suvorova et al., 2015). The YtrA subfamily
is the least representative GntR-like transcription factor in the
bacterial genomes (Suvorova et al., 2015). MSMEG_5174 is
the only GntR regulator found in Mycobacterium smegmatis
(M. smegmatis) with the signatures of the YtrA subfamily (Rigali
et al., 2002). Our previous study revealed M. tuberculosis GntR
family regulator Rv1152, which is a homolog of M. smegmatis
MSMEG_5174, inhibits the expression of genes involved in
vancomycin resistance (Zeng et al., 2016). B. subtilis GntR
subfamily repressor YtrA regulates an operon associated with
acetoin utilization (Yoshida et al., 2000) and is responsive
to cell wall antibiotics (Salzberg et al., 2011). It would be
interesting to investigate whether MSMEG_5174 modulates such
an operon associated with bacterial metabolism and antibiotic
resistance. Herein, we demonstrate an unexpected and exciting
role of M. smegmatis MSMEG_5174 and its homologous gene
M. tuberculosis Rv1152 in modulating purine metabolism and
aminoglycoside antibiotic resistance.

MATERIALS AND METHODS

Reagents
Xanthine (X8030) was purchased from Solarbio Life Science,
Beijing, China. Middlebrook 7H9 Broth (271310) was purchased
from BD/Difco, Franklin Lakes, NJ, United States. Amikacin
(A602232), kanamycin (A100408), gentamicin (A100304),
streptomycin (A100382), chloramphenicol (A100230),
ciprofloxacin (A600310), rifampicin (A600812), and isoniazid
(A600544) were purchased from Sangon Biotech, Shanghai,
China. The Anti-His antibody (#9991) was purchased from Cell
Signaling Technology, Danvers, MA, United States.

Strains and Growth Conditions
Mycobacterium smegmatis mc2 155 WT, MSMEG_5174 gene
knock-out strain (1MSMEG_5174), and gene complementary
strain (1MSMEG_5174 + pRv1152) were kindly gifts provided

by Prof. Jianping Xie (Southwest University, Chongqing,
China). The full length of the xanthine dehydrogenase encoding
gene MSMEG_0871 was amplified from M. smegmatis mc2

155 genomic DNA using gene-specific primers pALACE-
MSMEG_0871 (F and R) listed in Table 1. The resulting PCR
products were digested and inserted into pALACE to generate
the pALACE-MSMEG_0871 plasmid. Then, pALACE and
pALACE-MSMEG_0871 were electroporated into M. smegmatis.
The resulting strains harboring pALACE and pALACE-
MSMEG_0871 were named MS_Vec and MS_MSMEG_0871,
respectively. The expression of MSMEG_0871 was detected by
Western blotting using an anti-His antibody. All the strains
were grown in 7H9 broth or 7H9 agar supplemented with 0.5%
glycerol, 0.05% Tween 80, and 0.2% glucose (Goude and Parish,
2008). Acetamide and hygromycin were added when needed.

Growth Curve Measurement
The overnight cultures of WT, 1MSMEG_5174, MS_Vec and
MS_MSMEG_0871 strains were reinoculated in a fresh 7H9
medium at the ratio of 1:1,000 dilution. Each strain was incubated
at 37◦C with shaking through the entire growth phase. Samples
were collected at the same growth stage, and the OD600 values
were measured every 3 h after growth initiation. Experiments
were performed in triplicates, and the average values were used
to generate growth curves.

Scanning Electron Microscopy Analysis
The WT and 1MSMEG_5174 were grown into a logarithmic
phase and subjected to scanning electron microscopy (SEM)
analysis according to the previously described method with
minor modification (Lv et al., 2014). Generally, bacterial pellets
were collected and fixed with 2.5% glutaraldehyde. Then, the
samples were dehydrated using a series of ethanol grades and
subjected to SEM (FEI Quanta 200, Hillsbor, OR, United States)
after lyophilization and gold coating. The morphology of each
strain was observed, and the length of the bacteria was measured.

TABLE 1 | Primers used in the study.

Primer Sequence (5′–3′)

MSMEG_1135 (F) GCTACCGCGTCATCCAGA

MSMEG_1135 (R) TCAGTCGCATTTGAGGTC

MSMEG_0869 (F) GGAGGTTGATGGCGAGTT

MSMEG_0869 (R) GAGAAATGTGGCGAAGCA

MSMEG_0870 (F) AGGTTCTCGATGCATTCTTT

MSMEG_0870 (R) AGGTAGTCGGACATGTTGG

MSMEG_0871 (F) GGTGGCGCTCGACATACA

MSMEG_0871 (R) GCGATGGTCTCGAGCTCA

MSMEG_0872 (F) ACACACGAAACGCACGACA

MSMEG_0872 (R) TTCACGCAGCATGTCCAGC

MSMEG_0873 (F) ATGTTGTTTTCACCCGGT

MSMEG_0873 (R) TTGTGATGCAGCGTGATT

pALACE-MSMEG_0871 (F) GGAATTCGTGCATCCGTTCGC

pALACE-MSMEG_0871 (R) CGGATCCACATTGCACACCCG
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Transmission Electron Microscopy
Analysis
Logarithmic phase bacterial samples were prepared according
to the previously described with minor modifications (Lv et al.,
2014; Chuang et al., 2015). Briefly, the samples were fixed with
2.5% glutaraldehyde and post-fixed with 1% osmium tetroxide,
followed by dehydration. At room temperature, the samples
were transferred to a 1:1 mixture of absolute acetone and epoxy
resin for 1 h after being placed in absolute acetone for 20 min.
Then the samples were transferred to a 1:3 mixture of absolute
acetone and epoxy resin for 3 h, followed by transferring to
pure epoxy resin overnight. Ultrathin sections, obtained by using
an ultramicrotome, were post-stained with uranyl acetate and
lead citrate. Specimens were observed by transmission electron
microscopy (TEM) (Hitachi H-7650, Japan).

Minimum Inhibitory Concentration
Determinations for Antibiotics
Aminoglycoside antibiotics including gentamicin, streptomycin,
kanamycin, and amikacin were used in this study. The minimum
inhibitory concentration (MIC) of these antibiotics for WT
and 1MSMEG_5174 were measured according to the method
described previously (Zeng et al., 2016). The dilution of
all antibiotics was performed in 96-well plates. A twofold
dilution of each antibiotic was prepared in the test wells. The
final concentration range of these antibiotics was as follows:
gentamicin (0.25–32 µg/ml), streptomycin (0.03125–4 µg/ml),
kanamycin (0.25–32 µg/ml), and amikacin (0.1–12.8 µg/ml). The
prepared strains were added and the plates were incubated at
37◦C for 3 days. Visual inspection of the size of the bacterial
pellets was used for the MIC determination. MIC was determined
as the lowest concentration of antibiotic when the bacterial
activity was killed at least 99% in liquid medium.

Antibiotic Lethality Assays
Antibiotic lethality assay was performed as previously
described (Zeng et al., 2016). M. smegmatis strains, including
MS_Vec, MS_MSMEG_0871, WT, 1MSMEG_5174, and
1MSMEG_5174 + pRv1152, were grown into logarithmic
phase. The bacterial cells were collected and diluted in a 7H9
medium to an OD600 of 0.1. The final concentrations of all
indicated antibiotics were as follows: gentamicin (1, 2, 4, 8, 16,
and 32 µg/ml), kanamycin (0.25, 0.5, 1, 2, 4, and 8 µg/ml),
streptomycin (0.03125, 0.0625, 0.125, 0.25, 0.5, 1, and 2 µg/ml),
amikacin (0.1, 0.2, 0.4, 0.8, 1.6, and 3.2 µg/ml), ciprofloxacin
(2.5, 5, 10, 20, and 40 µg/ml), chloramphenicol (320, 640, 1,280,
2,560, and 5,120 µg/ml), rifampicin (80, 160, 320, 640, and
1,280 µg/ml), and isoniazid (20, 40, 80, 160, and 320 µg/ml).
For metabolite supplementation experiments, bacterial cells were
grown in a 7H9 medium supplied with 1 mM xanthine and
subjected to an antibiotic killing assay. After indicated antibiotic
treatment, 100 µl aliquot samples were removed for 10-fold serial
dilution, and the diluted bacterial cells were plated 10 µl into
7H9 agar plates. All plates were incubated at 37◦C for 3 days and
the colony-forming units (c.f.u) were counted. Percent survival

was calculated by dividing the c.f.u of treated groups by that of
the control group.

Transcriptome Assay and Data Analysis
Logarithmic phase WT and 1MSMEG_5174 strains were
subjected to transcriptome analysis. The bacteria pellets were
collected and total RNA was isolated using the RNeasy
mini kit (Qiagen, Germany). Libraries were constructed and
subjected to sequencing using the Illumina HiSeq 2500 (Illumina,
United States) at Shanghai Biotechnology Corporation. The raw
reads were preprocessed and low-quality reads were filtered out.
The fold change of each gene was estimated according to the
FPKM value generated by Cufflinks v2.1.1 after genome mapping.
The Cuffdiff and false discovery rate (FDR) were used for
dysregulated gene identification and multiple testing correction,
respectively. The dysregulated genes were selected and filtered by
FDR≤ 0.05 and fold-change≥ 2. The raw data were deposited to
NCBI and the accession numbers for WT and 1MSMEG_5174
are SRR19667998 and SRR19667999, respectively.

qRT-PCR Analysis
The total RNA was isolated using the RNeasy mini kit (Qiagen,
Germany). cDNA was synthetized from 1 µg of total RNA
using the RevertAid First Strand cDNA Synthesis kit (Thermo
Fisher, United States) with random primers. Quantitative real-
time PCR was performed by using the iQ SYBR Green Supermix
in the CFX96 Touch System (Bio-Rad, United States) under
the following thermocycling parameters: 95◦C for 5 min and
40 cycles at 95◦C for 30 s, 60◦C for 30 s and 72◦C for 30 s.
Gene expression was normalized to sigA (Wang et al., 2011) and
gene-specific primers are listed in Table 1.

Metabolome Assay and Data Analysis
Sample preparation and analysis were performed as previously
described with minor modifications (Chuang et al., 2015).
WT, 1MSMEG_5174 and 1MSMEG_5174 + pRv1152 were
grown into logarithmic phase. Bacterial pellets, including eight
replicates of each sample, were collected and subjected to
µHPLC (1290 Infinity LC, Agilent Technologies, Santa Clara,
CA, United States) coupled to a quadrupole time-of-flight (AB
Sciex TripleTOF 6600, United States) analysis (Ivanisevic et al.,
2013). The ProteoWizard MSConvert tool was used to convert
the raw MS data into the MzXML files that can be processed using
the XCMS for data analysis (Benton et al., 2008). The metabolites
were identified by automated comparison of the ion features
in the experimental samples to a reference library of chemical
standards. After Pareto scaling, principal component analysis
(PCA) and partial least-squares-discriminant analysis (PLS-DA)
were performed, respectively. Metabolites were determined by
the combination of variable importance in project (VIP) value
and a two-tailed Student’s test (p-value). The metabolites with a
significant difference were determined and filtered by the VIP
values ≥ 1.0 and p-value ≤ 0.1. The dysregulated metabolites
were subjected to Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis.
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Ethidium Bromide Accumulation Assay
The accumulation of ethidium bromide (EB) was measured as
previously described (Chuang et al., 2015; Deng et al., 2020).
Logarithmic phase bacterial cells cultured in the presence or
the absence of xanthine were collected and washed twice with
PBS containing 0.05% Tween 80, and the resulting bacterial
cells were subjected to EB accumulation assays. The time-course
fluorescence intensity was detected by excitation at 544 nm and
emission at 590 nm using Biotek Synergy H1 (Winooski, VT,
United States). All data were normalized to the first-time point
reading of each well.

Statistical Analysis
All statistics were calculated using GraphPad Prism 8 software
and Student’s t-test was used to determine the statistical
significance between different groups. ∗∗∗P < 0.001, ∗∗P < 0.01,
∗P < 0.05, means ± SD from at least three biological replicates.
Data are representative of at least three independent experiments.

RESULTS

Deletion of MSMEG_5174 Has no Effect
on the Basic Characteristics of
M. smegmatis
To test the effect of GntR family regulator MSMEG_5174
deficiency on bacteria itself, the morphology and structure
of M. smegmatis (WT) and MSMEG_5174 mutants
(1MSMEG_5174) were monitored. No significant difference was
detected in morphology between WT and 1MSMEG_5174
strains grown in 7H9 agar (Figure 1A). SEM analysis
revealed a normal rod morphology and similar bacterial
length in MSMEG_5174 mutants compared to WT strains
(Figures 1B,C). In addition, TEM analysis also showed that
MSMEG_5174 deletion has no effect on bacterial membrane
integrity and intracellular structures (Figure 1D). Moreover,
the growth of MSMEG_5174 mutants was similar to that
of WT strains (Figure 1E). Taken together, GntR family
regulator MSMEG_5174 deficiency has no effect on the growth,
morphology, and intracellular structure of the M. smegmatis.

MSMEG_5174 Negatively Regulates
Genes Associated With Purine
Metabolism
Studies have shown that GntR regulators regulate genes
associated with metabolic processes, including carbon
metabolism in Salmonella typhimurium (Titgemeyer et al.,
1995), amino acid metabolism in Pseudomonas putida
(Allison and Phillips, 1990), and glucose metabolism in
Pseudomonas aeruginosa (Daddaoua et al., 2017). To
detect whether M. smegmatis MSMEG_5174 regulates the
expression of metabolism-related genes, WT and MSMEG_5174
mutants were subjected to transcriptome analysis. Two
operons, in which all genes were significantly upregulated
in MSMEG_5174 mutants, attracted our attention. One
operon contains two hypothetical proteins, MSMEG_1135

and MSMEG_1136, which were approximately 799- and
3.4-fold upregulated in MSMEG_5174 mutants, respectively
(Figures 2A,B). The other operon contains genes potentially
associated with bacterial purine metabolism. These genes
are oxidoreductase MSMEG_0870 (67-fold), putative
xanthine dehydrogenase MSMEG_0871 (66-fold), twin-
arginine translocation pathway signal protein MSMEG_0872
(90-fold), and hypothetical protein MSMEG_0873 (14-
fold) (Figures 2A,B). In addition, a hypothetical protein
MSMEG_0869 near this operon was also upregulated
about 7.5-fold in MSMEG_5174 mutants (Figures 2A,B).
To verify the expression of these dysregulated genes in
WT and MSMEG_5174 mutants, the total RNA of each
strain was extracted and subjected to qRT-PCR. Consistent
with transcriptome data, the expression of these genes
was significantly upregulated in 1MSMEG_5174 strains
compared to WT strains (Figure 2C). These data demonstrate
that MSMEG_5174 negatively regulates the expression of
genes associated with purine metabolism and genes with
unknown functions.

MSMEG_5174 Deficiency Contributes to
Antibiotic Resistance via Purine
Metabolism
Yang et al. (2019) demonstrated that Escherichia coli mutants
deficient in genes involved in the early steps of purine
biosynthesis exhibit a significant increase in gentamicin
lethality compared to the WT, indicating a role of purine
metabolism in aminoglycoside lethality. We reasoned that up-
regulation of purine metabolism-related genes in MSMEG_5174
mutants may contribute to the decreased aminoglycoside
antibiotic lethality. To this end, we overexpressed the xanthine
dehydrogenase gene MSMEG_0871 in M. smegmatis and
monitored aminoglycoside antibiotics-mediated bacterial
killing. Overexpression of MSMEG_0871 had no impact
on the growth of M. smegmatis (Figures 3A,B). Strikingly,
M. smegmatis overexpressing MSMEG_0871 exhibited a
significant increase in survival in aminoglycoside antibiotics-
mediated killing compared to the control group (MS_Vec)
(Figures 3C,D), indicating that MSMEG_0871 facilitates
aminoglycoside antibiotic resistance of M. smegmatis. In
support of this, MSMEG_5174 deficiency also reduced
bacterial killing by aminoglycoside antibiotics treatment
(Figures 3E,F). In contrast, there was no significant difference
in survival between WT and MSMEG_5174 mutants when
treated with ciprofloxacin, chloramphenicol, rifampicin, or
isoniazid (Supplementary Figure 1). These data suggest that
MSMEG_5174 deletion has specificity and high resistance
to aminoglycoside antibiotics. Moreover, the MIC for both
amikacin and kanamycin increased by 4-fold, and the MIC for
gentamicin and streptomycin increased by 2- and 16-fold in
MSMEG_5174 mutants compared to WT, respectively (Table 2).
To further confirm the function of MSMEG_5174 in regulating
antibiotics resistance, we introduced an MSMEG_5174 homologs
Rv1152 from M. tuberculosis into the MSMEG_5174 mutants
and found it could rescue the susceptibility of MSMEG_5174
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FIGURE 1 | The effect of MSMEG_5174 deficiency on the basic characteristics of Mycobacterium smegmatis. (A) The morphology of WT and MSMEG_5174
mutants grown in 7H9 agar. (B) Scanning electron microscopic micrographs of WT and MSMEG_5174 mutants. (C) The length of WT and MSMEG_5174 mutants,
each point represents a single cell from a field of view. (D) Transmission electron microscopic micrographs of WT and MSMEG_5174 mutants. (E) The growth of WT
and MSMEG_5174 mutants.

mutants to aminoglycoside antibiotics (Figure 3G). These data
suggest that purine metabolism-associated genes controlled
by M. smegmatis MSMEG_5174 or its homologs Rv1152 in
M. tuberculosis play an important role in aminoglycoside
antibiotic resistance.

Purine Metabolites Accumulate in
MSMEG_5174 Mutants
To explore whether the MSMEG_5174 deletion modifies
the metabolites associated with purine metabolism,
metabolomic profiling of WT, 1MSMEG_5174, and
1MSMEG_5174 + pRv1152 strains with eight biological
replicates are analyzed by LC-MS/MS. Hierarchical clustering
was used to rank metabolites whose abundance differed
significantly among these strains (Figure 4A). Compared with
WT strains, seven strongly impacted KEGG pathways were
identified in MSMEG_5174 mutants, including secondary
metabolites, biosynthesis of antibiotics, purine metabolism,
plant secondary metabolites, ABC transporters, pyrimidine
metabolism, and amino acids (Figure 4B). Among these
pathways, dysregulated metabolites in MSMEG_5174
mutants, including amino acids, carbon sources from
secondary metabolites, pyrimidine metabolites, and purine
metabolites, could be rescued by Rv1152 (Figures 4C–E).
The abundance of one amino acid (L-lysine) and five carbon
sources (glycerol 3-phosphate, β-D-Fructose 6-phosphate,
sn-Glycerol 3-phosphoethanolamine, D-mannose 1-phosphate,

and D-glucose 6-phosphate) were decreased in MSMEG_5174
mutants compared to WT (Figure 4C). For pyrimidine
metabolites, four metabolites (dTTP, thymidine, uracil, and
uridine) were accumulated and five metabolites (CMP, UDP,
UMP, dCMP, and dTMP) were reduced in MSMEG_5174
mutants compared to WT (Figure 4D). Notably, compared
with WT strains, nine purine metabolites including inosine,
hypoxanthine, xanthine, adenosine, guanosine, dATP, cAMP,
deoxyguanosine, and deoxyinosine were increased, while
four purine metabolites (adenine, AMP, ADP, and GMP)
were decreased in MSMEG_5174 mutants (Figure 4E). The
dysregulation of metabolites from purine metabolism may
be caused by the up-regulated expression of genes associated
with purine metabolism in MSMEG_5174 mutants (Figure 2).
Collectively, MSMEG_5174 in M. smegmatis or Rv1152 in
M. tuberculosis regulates the expression of genes involved in
purine metabolism, resulting in metabolites accumulation or
reduction that may affect aminoglycoside antibiotics lethality.

Xanthine Reduces Bacterial Cell Wall
Permeability
The enzyme xanthine oxidoreductase consists of two different
forms including xanthine oxidase and xanthine dehydrogenase,
which catalyzes the oxidation of hypoxanthine to xanthine
and xanthine to uric acid in humans (Battelli et al., 2014).
We identified M. smegmatis xanthine dehydrogenase
MSMEG_0871 contributes to aminoglycoside antibiotics
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FIGURE 2 | Transcriptome profiling of WT and MSMEG_5174 mutants. (A) Heat maps of dysregulated genes in WT and MSMEG_5174 mutants. (B) The fold
changes of gene expression in MSMEG_5174 mutants calculated and normalized to WT strains. (C) qRT-PCR was used to verify the expression of the genes in WT
and MSMEG_5174 mutants. **P < 0.01.

resistance (Figures 3A–D), which may be caused by xanthine
accumulation during purine metabolism (Figure 4E). To
explore whether xanthine accumulation could decrease
aminoglycoside antibiotics against M. smegmatis, xanthine
from purine metabolism was chosen and exogenously added
for aminoglycoside antibiotics treatment (Figures 5A,B). WT
strains were pre-treated with or without xanthine and then
challenged with streptomycin or amikacin. As expected, the
survival of M. smegmatis was significantly increased when
treated with streptomycin or amikacin in the presence of
xanthine (Figure 5C), suggesting that xanthine could enhance
aminoglycoside antibiotics resistance of M. smegmatis. To
further understand the potential role of xanthine in reducing
antibiotics lethality, we investigated EB accumulation in WT
strains treated with or without xanthine. Interestingly, WT
strains showed significantly reduced EB accumulation when
treated with xanthine (Figure 5D), suggesting that xanthine
opaques the cell wall, leading to reduced antibiotics uptake.
Similarly, MSMEG_5174 mutants showed lower uptake of the
EB compared to WT strains (Figure 5E). These results indicate
a role of MSMEG_5174 in the negatively regulation of purine
metabolites accumulation, resulting in reduced antibiotics
uptake and lethality.

DISCUSSION

Aminoglycosides, such as gentamicin, kanamycin, streptomycin,
and amikacin, are important second-line anti-TB drugs via
targeting the 30S subunit of the ribosome and interfering with
translational fidelity (Purohit and Stern, 1994; Borovinskaya
et al., 2007). Generally, aminoglycosides-resistant bacteria are
typically caused by 16S rRNA modification, aminoglycoside
modifying enzymes, and efflux pumps (Poole, 2005; Jana and
Deb, 2006; Shakil et al., 2008; Garneau-Tsodikova and Labby,
2016). Recently, the altered bacterial metabolism was reported
to be important to aminoglycoside antibiotics-mediated killing
(Allison et al., 2011; Cho et al., 2014; Peng et al., 2015; Meylan
et al., 2017; Yang et al., 2017; Fan et al., 2018). In view of the
importance of metabolites in promoting or impairing antibiotics
lethality, understanding of how bacterial metabolism interfaces
with antibiotics efficacy has the potential to shed light on drug
discovery (Murima et al., 2014; Bald et al., 2017).

The presence of a penetration barrier for antibiotics
uptake in bacteria has been regarded as a major problem
of antibiotics lethality (Lewis, 2013). Studies have shown that
metabolites potentiate aminoglycoside antibiotics uptake and
bactericidal activity via stimulating proton motive force (PMF)
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FIGURE 3 | MSMEG_5174 deficiency blocks aminoglycoside antibiotics mediated bacterial killing. (A) The exogenous expression of MSMEG_0871 in M. smegmatis.
(B) The growth of MS_Vec and MS_MSMEG_0871. (C) MS_Vec and MS_MSMEG_0871 were treated with indicated concentration of aminoglycoside antibiotics.
(D) MS_Vec and MS_MSMEG_0871 were treated with different concentration of aminoglycoside antibiotics. (E) WT and 1MSMEG_5174 were subjected to
indicated concentration of aminoglycoside antibiotics treatment. (F) WT and 1MSMEG_5174 were treated with different concentration of aminoglycoside antibiotics.
(G) WT, 1MSMEG_5174 and 1MSMEG_5174 + pRv1152 strains were treated with indicated concentration of aminoglycoside antibiotics.

production (Allison et al., 2011; Peng et al., 2015; Meylan
et al., 2017; Deng et al., 2020). Non-replicating M. tuberculosis
displayed a reduction in antibiotics uptake and the phenotype
of antibiotics resistance (Sarathy et al., 2013), however, the
underlying mechanism keeps unknown. In this study, we
identified the purine metabolism, controlled by a GntR family
regulator MSMEG_5174 in M. smegmatis or its homologous
gene Rv1152 in M. tuberculosis, manipulates the bacterial
susceptibility to aminoglycoside antibiotics. Our study uncovered
a mechanism for how bacteria manipulate antibiotics lethality
via targeting purine metabolism. Therefore, targeting bacterial
purine metabolism may serve as a promising strategy for the
treatment of the infectious disease caused by drug-resistant
pathologic bacteria, such as M. tuberculosis, the causative agent
of tuberculosis.

Disturbance in purine metabolism was linked to increased
prevalence and progression of many diseases, such as chronic
kidney disease (Mazumder et al., 2018), Huntington’s disease
(Tomczyk et al., 2021), coronary artery disease (Swain
et al., 1982), Alzheimer’s disease (Ansoleaga et al., 2015),
and Parkinson’s disease (Garcia-Esparcia et al., 2015). It

TABLE 2 | The MIC of WT and 1MSMEG_5174 to antibiotics.

Antibiotics (µg/ml) WT MSMEG_5174

Amikacin 0.25 1

Kanamycin 1 4

Streptomycin 0.125 2

Gentamicin 2 4
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FIGURE 4 | Metabolic profiles of WT, 1MSMEG_5174 and 1MSMEG_5174 + pRv1152. (A) Heat map of dysregulated metabolites in WT, 1MSMEG_5174 and
1MSMEG_5174 + pRv1152 strains. Map scale (blue to red: low to high abundance). (B) Enriched KEGG pathways in MSMEG_5174 mutants. (C) Dysregulated
amino acids and carbon source derived from secondary metabolism. (D) Dysregulated pyrimidine metabolites. (E) Dysregulated purine metabolites. ***P < 0.001,
**P < 0.01, *P < 0.05.
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FIGURE 5 | Xanthine decreases aminoglycoside antibiotics lethality for M. smegmatis. (A) Fold changes of purine metabolites in MSMEG_5174 mutants compared
to WT. (B) Purine metabolic pathway. Red and blue color represent upregulated and downregulated metabolites in MSMEG_5174 mutants, respectively. (C) Percent
survival of M. smegmatis in the presence or absence of xanthine with indicated antibiotics treatment. (D) EB accumulation in WT cultured with or without xanthine.
(E) EB accumulation in WT and MSMEG_5174 mutants. **P < 0.01.

is plausible to think that dysregulated purine metabolism
in these patients could be more susceptible to infection,
as the purine metabolites accumulation could decrease the
antibiotics killing. Therefore, compounds targeting purine
metabolism are being developed for the reconstruction of
purine pool that would be a promising strategy for bacterial
killing.
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