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Abstract

Genotype imputation is now routinely applied in genome-wide association studies (GWAS)
and meta-analyses. However, most of the imputations have been run using HapMap sam-
ples as reference, imputation of low frequency and rare variants (minor allele frequency
(MAF) < 5%) are not systemically assessed. With the emergence of next-generation se-
guencing, large reference panels (such as the 1000 Genomes panel) are available to facili-
tate imputation of these variants. Therefore, in order to estimate the performance of low
frequency and rare variants imputation, we imputed 153 individuals, each of whom had 3
different genotype array data including 317k, 610k and 1 million SNPs, to three different ref-
erence panels: the 1000 Genomes pilot March 2010 release (1KGpilot), the 1000 Genomes
interim August 2010 release (1KGinterim), and the 1000 Genomes phase1 November 2010
and May 2011 release (1KGphase1) by using IMPUTE version 2. The differences between
these three releases of the 1000 Genomes data are the sample size, ancestry diversity,
number of variants and their frequency spectrum. We found that both reference panel and
GWAS chip density affect the imputation of low frequency and rare variants. 1KGphase1
outperformed the other 2 panels, at higher concordance rate, higher proportion of well-
imputed variants (info>0.4) and higher mean info score in each MAF bin. Similarly, 1M chip
array outperformed 610K and 317K. However for very rare variants (MAF<0.3%), only
0-1% of the variants were well imputed. We conclude that the imputation of low frequency
and rare variants improves with larger reference panels and higher density of genome-wide
genotyping arrays. Yet, despite a large reference panel size and dense genotyping density,
very rare variants remain difficult to impute.
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Introduction

Genotype imputation [1] is now an important step in the analysis of genome-wide association
(GWA) data. This method allows inferring the genotype of a genetic marker, for example a sin-
gle nucleotide polymorphism (SNP), which is not directly genotyped, thus providing the evi-
dence for association of this mark. Genotype imputation is particularly useful in meta-analysis
of GWA studies, where the results across studies were generated by different genotyping plat-
forms. Since common variants, which mainly identified by GWA studies, explain little of the
variances of most common diseases [2, 3], and common variants association might be the syn-
thetic associations arising from rare variants on the same haplotype background [4], the next
phase in the genetic mapping of common disease will involve sequencing experiments to iden-
tify rare variants associated with disease risk. However, the statistical power to associate rare
variants with common disease is poor [5, 6], therefore, imputation of rare variants from
genome-wide genotypic arrays offers a cost-efficient strategy to achieve necessary sample sizes,
provided that additional samples have been genome-wide genotyped.

There are several programs such as BEAGLE [7], MaCH [8] and IMPUTE2 [9], permitting
imputation of untyped variants. All these three imputation methods are developed to infer
SNP genotypes by linkage disequilibrium (LD) with typed SNPs based on a reference panel.
With the emergence of next-generation sequencing technology and the 1000 Genomes Project,
several versions of the haplotype data were released as imputation reference panels: the 1000
Genomes pilot data released on March 2010 (1KGpilot) [10], the 1000 Genomes interim data
released on August 2010 (1KGinterim), and the 1000 Genomes phasel data released on No-
vember 2010 and May 2011 [11].

Prior to the 1000 Genomes Project, most GWAS meta-analyses have been run using
HapMap haplotypes as reference for imputation, we previously assessed the HapMap-based
imputation and found that variants with lower MAF are difficult to impute [12], meaning that
low frequency and rare variants were not being comprehensively investigated in previous
GWAS meta-analyses. Therefore, a primary goal of this study has been to assess the imputation
performance of rare variants from the 1000 Genomes, so that additional GWAS samples can
be included in the rare variants association analysis after imputation, thus the statistical power
could be improved without substantially increasing costs. We therefore imputed 153 partici-
pants, each of whom had genotypes on 3 different genotyping arrays including 317k, 610k and
1 million SNPs, to 3 different releases of the 1000 Genomes reference panels. We assessed the
performance of imputation for rare variants across these 9 scenarios.

Materials and Methods
GWAS samples and genotyping

This study is nested within the TwinsUK study, a prospective study comprising a total of
12,000 identical and non-identical twins from right across the UK with ages between sixteen
and ninety-eight. The study has been approved by the institutional review board (Medical Eth-
ics Committee) of the King’s College London, UK. Over 5654 samples have been genotyped
with different Illumina (San Diego, CA, USA) microarray beadchips (HumanHap300 (317k),
Human- Hap610Q (610k), IMDuo and 1.2MDuo 1M (1M)) [13, 14, 15], of which, 2040 are
from the 317k, 3461 are from the 610k and 153 are from the 1M.

A subset of individuals from the TwinsUK study was chosen as the study sample for this
project. We took the 153 subjects genotyped by 1M platform as the study samples (Supporting
information), then extracted 317k and 610k SNPs for these 153 samples to make three GWAS
datasets of the same 153 samples (317k, 610k and 1M), by doing this, we make sure that the
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genotype of the same SNP is always the same, the only difference between the 3 GWAS datasets
is the density of the SNP.

Reference panels used for imputation

Three reference panels are the CEU panel from March 2010 released pilot data of the 1000 Ge-
nomes Project (1IKGpilot, b36), the EUR panel from August 2010 released interim data of the
1000 Genomes Project (1KGinterim, b37), and all panels from November 2010 and May 2011
released phasel integrate data of the 1000 Genomes Project (1KGphasel, b37) as reference
panels. The CEU panel of 1KGpilot has 112 haplotypes (56 samples) and ~8.5 million SNPs,
the EUR panel of 1KGinterim has 566 haplotypes (288 samples) and about 11.5 million SNPs,
and the all panels of 1KGphasel has 2188 haplotypes (1094 samples) and about 37.4 million
SNPs. The haplotype reference panels were downloaded from website (http://mathgen.stats.ox.
ac.uk/impute/impute_v2.html#reference).

Genotype Imputation

We used IMPUTE version 2 [9] in this study. The 153 samples from the 3 GWAS datasets
(317k, 610k and 1M) were first phased without reference panel, respectively [16], then the re-
sulting haplotypes were used to perform fast imputation from the 3 reference panels. In order
to decrease the real computing time, we split each chromosome into ~5M chunks for analysis,
the chunks then could be imputed in parallel on multiple computer processors, both phasing
and imputation were done by chunks. In total, 558 chunks were obtained in the genome. For
153 samples, it took ~9.5 min to phase a chunk with 30 iterations in a machine with 64GB
RAM, and it took ~5 min to impute a chunk from the best guess phased haplotype.

Basically, IMPUTE2 reports an information metric (info score). This metric typically takes
values between 0 and 1, where values near 1 indicate that a SNP has been imputed with high
certainty. The info metric is often used to remove poorly imputed SNPs from the association
testing results. Different thresholds were recommended for different MAF categories. We con-
sidered a SNP with info score great than 0.4 as an acceptable well-imputed variant in this study.

Concordance analysis

We masked the genotype of one variant at a time throughout the genome in the GWAS data,
and then imputed the masked genotypes from the reference data. The imputed genotypes were
then compared with the original genotypes to evaluate the quality of the imputation. Only vari-
ants with input data were masked and imputed in this analysis, all input genotypes were treated
as being true.

For concordance rate analysis, we made hard genotype calls by applying a threshold (0.9) to
the maximum value in each input probability triple. For example, an imputed genotype with P
(G=0,1,2) = (0.008, 0.98, 0.012) would be called as a ‘1’ (heterozygous), while a genotype with
P(G=0,1,2) = (0.11, 0.74, 0.15) would be set to missing and omitted from the concordance cal-
culations. The missing rates were low for all the 9 scenarios, the highest missing rate was got at
1KGpilot imputation for 1M array at 1.9% (S1 Table). The missing rates for 317K array were
lower than 1M array, because most of the SNPs in 317K array were common SNPs, and were
imputable with high probability value (S1 Table).

The squared correlation R2 between input genotypes and expected continuous dosages (not
hard call) of each SNP were also reported [17]. To do this, the imputed probability triple should
be converted to genotype dosages, for example, for a SNP with P(G = 0,1,2) = (0.008, 0.98,
0.012), the dosage of the reference allele should be 1.004 (= 0.98+0.012*2).
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Results
Overview of the reference panels

We observed that the sample size and number of variants across the reference panels increases
from 1KGpilot to 1KGphasel. Fig. 1 shows the MAF distribution of different reference panels,
indicating that most of the variants in 1KGphasel (including 1094 individuals and ~37.4 mil-
lion variants) are rare, with a mean MAF of 0.02 (S1 Fig.). Almost half of the variants in the
1KGinterim EUR panel (including 288 EUR individuals and ~11.5 million variants) are com-
mon, with mean MAF of 0.12 (S1 Fig.), while the 1KGpilot CEU panel (which includes 56 indi-
viduals and ~8.5 million variants) contains mostly common variants and has mean MAF of
0.22 (S1 Fig.).

Overview of the imputation scenarios

The percentage of well-imputed SNPs (info>=0.4) consistently drops as the mean MAF de-
creases from 1KGpilot panel to 1IKGphasel panel (Table 1), with the 1KGphasel-based impu-
tations only providing 28% of SNPs with an info score >0.4, however, the absolute number of
well-imputed variants increases across the 1000 Genome panels (Table 1). The proportion of
the well-imputed SNPs increases while the density of the GWAS genotyped SNPs increased
(From 84% to 89% in 1KGpilot-based imputations) (Table 1).

100%
90%
80%
70% -
B maf>5%
60% M 1% < maf <5%
10.5% < maf <1%
50%
M 0.3% < maf < 0.5%
40% B maf<0.3%
30%
20%
10%
0%

1KGphasel 1KGinterim 1KGpilot
2088 haplotypes 556 haplotypes 112 haplotypes
~37.4 million SNPs ~11.5 million SNPs ~8.5 million SNPs

Figure 1. The proportion of variants by Minor Allele Frequency (MAF) across imputation reference panels.

doi:10.1371/journal.pone.0116487.9001
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Table 1. Overview of the imputation performances for the 3 genome-wide genotype arrays based on different reference panels.

GWAS
datasets
317k
610k

1M

Genotyped

SNPs*

281,641
488,822
841,995

* SNP QC was done
** Well-imputed SNPs were those with proper info > 0.4

doi:10.1371/journal.pone.0116487.t001

1KGpilot CEU (b36) (112 1KGinterim EUR (b37) (556 1KGphase1 ALL (b37) (2088
haplotypes, ~8.5M SNPs) haplotypes, ~11.5M SNPs) haplotypes, ~37.4M SNPs)
Total Well-imputed % Total Well-imputed % Total Well-imputed %
SNPs SNPs SNPs SNPs SNPs SNPs
8,508,091 7,123,480 84% 11,577,780 7,526,749 65% 37,427,201 10,642,325 28%
8,510,853 7,412,689 87% 11,581,767 7,767,264 67% 37,427,643 10,649,233 28%
8,522,561 7,610,312 89% 11,591,081 7,939,987 69% 37,429,304 10,743,754 29%

Imputation concordance of the genotyped variants

The overall concordance rate of different scenarios were reported in Table 2, we can see that
the concordance rate is high (up to 93.8%) in all scenarios. Table 3 shows the MAF distribu-
tion of the genotyped variants, it is expected that there are few rare variants and some low-fre-
quency variants in the genotyped datasets (Table 3). There are no variants with MAF <0.5%,
except only 74 variants in 1M dataset. The squared correlations (R2) between original geno-
types and imputed dosages are high even at rare MAF bin (from 0.72 to 0.92 in different sce-
narios with 0.005<MAF<=0.01) (Table 2), however, the standard deviations of R2 in rare
MAF bin are larger than those in common MAF bin (Table 2). The median R2 improves

with larger reference panels and higher density of genome-wide genotyping arrays (52 Fig.
and Table 2).

Imputation Performance by Minor Allele Frequency, Reference Panels
and Genotypic Arrays

Fig. 2B shows the percentage of well-imputed SNPs (info>=0.4) in each MAF bin for 610k-
based imputations classified by different reference panels. It shows that common variants are
well imputed; more than 95% of the imputed SNPs in common MAF bin had info scores >0.4.
For low frequency and rare variants (MAF<5%), 1KGphasel outperforms the other reference

Table 2. Concordance of the 9 imputation scenarios.

GWAS Reference Overall Median R2 (Std. Dev.)
datasets panels concordance rate

MAF<=0.003 0.003<MAF<=0.005 0.005<MAF<=0.01 0.01<MAF<=0.05 MAF>0.05
317K 1KGpilot 93.83 0 0 0.72(0.348) 0.85(0.274) 0.93(0.187)
317K 1KGinterim 93.81 0 0 0.74(0.349) 0.86(0.281) 0.93(0.192)
317K 1KGphase1 94.70 0 0 0.78(0.349) 0.88(0.268) 0.94(0.184)
610K 1KGpilot 96.11 0 0 0.77(0.354) 0.91(0.251) 0.97(0.155)
610K 1KGinterim 96.22 0 0 0.81(0.341) 0.93(0.249) 0.97(0.158)
610K 1KGphase1 96.99 0 0 0.87(0.311) 0.95(0.224) 0.98(0.145)
M 1KGpilot 97.05 0 0.0015 0.84(0.355) 0.96(0.251) 0.98(0.141)
M 1KGinterim 97.30 0 0 0.88(0.358) 0.97(0.255) 0.98(0.138)
M 1KGphase1 97.98 0 0 0.92(0.354) 0.99(0.226) 0.99(0.122)
doi:10.1371/journal.pone.0116487.t002
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Table 3. The MAF distribution of the genotyped variants.

GWAS datasets Genotyped SNPs*

317k 281,641
610k 488,822
1m 841,995

* SNP QC was done

doi:10.1371/journal.pone.0116487.t003

MAF<=0.003 0.003<MAF<=0.005 0.005<MAF<=0.01 0.01<MAF<=0.05 MAF>0.05

0 0 33 7,982 273,626
0 0 168 20,508 468,146
0 74 1,203 54,367 786,351

panels. The proportion of well-imputed SNPs in 610k imputations was 94%, 84%, 72% for
SNPs with MAF from 1% to 5% for 1KGphasel, 1KGinterim and 1KGpilot respectively. This
proportion of well-imputed SNPs dropped to 85%, 60% and 45% for SNPs with MAF from
0.5% to 1%; and 62%, 33% and 30% for SNPs with MAF from 0.3% to 0.5% for the same refer-
ence panels. For SNPs with MAF < 0.3%, only 1% of the variants were well imputed in
1KGphasel and 1KGinterim imputations, and none are well imputed in 1KGpilot imputation.
The 317k/1M imputations show similar performances as 610k, with small decreases in propor-
tion for the 317k array and likewise small increases for the 1M array (Fig. 2A and 2C).

Fig. 2E compares the median info in each MAF bin among the 3 reference panels based
upon the 610k array imputations, and consistently demonstrates that 1KGphasel imputations
outperform the other reference panels and this difference is most marked for variants with a
MAF <0.05. We note that even with more than ~1000 samples in reference panel such as
1KGphasel, variants with a MAF < 0.003 are not reliably imputed. This frequency range is
close the frequency of singletons of the genotype dataset. Similar results are also observed in
317k and 1M imputations (Fig. 2D and 2F).

S3A-C Fig. compare the proportion of well-imputed SNPs in each MAF bin among the 3
GWAS arrays for the 1IKGpilot-based, 1KGinterim-based and 1KGphasel-based imputations,
respectively. These findings suggest that higher density GWAS genotyping results in small in-
creases in the proportion of well-imputed SNPs. Consistent results were observed when com-
paring the median info in each MAF bin between the 3 GWAS chip arrays, however, these
differences were small compared to effect of the size of the reference panel (S3D-F Fig. vs
Fig. 2D-2F). Additionally, the effect of SNP density on imputation quality decreased when the
sample size of reference panel increased (S3D-F Fig.).

Discussion

In this study, we investigated the effect of the size of reference panels and density of genome-
wide genotyping arrays on the performance of low frequency and rare variant imputation. Our
results demonstrate that the imputation quality of majority of variants with a MAF higher than
the frequency of singletons becomes acceptable as the size of the reference panel increased

to ~1000 samples such as in the 1IKGphasel release. Very rare variants, such as singletons, are
not reliably imputed under any conditions. These results provide guidance in the design and
implementation of imputation-based GAW studies.

We note that majority of the common variants (MAF>5%) could be well imputed across all
of the 9 scenarios, which is concordant with previously reported results [12, 18, 19, 20]. For
low frequency and rare variants (MAF < 5%), 1KGphasel based imputations consistently out-
performed 1KGinterim and 1KGpilot reference panels across all three genome-wide genotyp-
ing arrays. This is likely because the sample size of the three 1KG reference panels increased
from 56 CEU individuals (1KGpilot) to 283 EUR individuals (1KGinterim) and then to 1094
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Figure 2. The proportion of well-imputed SNPs (info>0.4) in different MAF bins across imputation reference panels (Panel A is for the 317K
genotypic array, Panel B is for 610K genotypic array, and Panel C is for 1M genotypic array). Panel D, E and F is a comparison of median info score
across 3 reference panels for 317K, 610K and 1M genotypic array respectively.

doi:10.1371/journal.pone.0116487.g002

individuals (1KGphasel). Higher imputation quality as a function of more haplotypes in the
reference sample has also been reported for common variant imputation [21]. Another possible
reason is that 1KGphasel panel contains haplotypes from diverse ancestries (EUR, AFR, ASN
and AMR), as reported by other researchers, reference panel diversity could increase imputa-
tion accuracy to a certain degree either across populations [22, 23] or within the same popula-
tion [24]. For the very rare variants, the imputation quality is poor across all scenarios,
suggesting that imputation of very rare variants will require extremely large reference panel
[25] or may be futile [19].

Besides the 1000 Genomes reference panel, more and more large sequencing projects pro-
vide public available reference panel for imputation. UK10K consortium (http://www.uk10k.
org/) is among one of these, four thousands European-descent samples were whole genome-
wide sequenced at 6x depth. Most recently, Marchini et al presented a haplotype map derived
from whole genome low-coverage sequencing of over 25,000 individuals at the American Soci-
ety of Human Genetics meeting in Boston [25], This huge reference panel will be released in
the near future. We believe imputation of rare variants will improve as the number of individu-
als included in reference haplotypes increases.

We also estimated the effect of the density of genotypic arrays on the imputation. The 3
GWAS chip arrays (317K, 610K and 1M) we used in this study were the most common plat-
forms. For the low frequency and rare variants, the imputation quality improved with increas-
ing density of the genotypic array, but the difference is small. These findings provide guidance
to cohorts that had previously genome-wide genotyped their samples on older
genotypic arrays.

To keep in mind that, INFO score is an estimated quality measurement of imputation. In
imputation-based GWAS data analysis, we use INFO score reported by IMPUTE2 as quality
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control, and keep variants with high score to the downstream analysis. Different thresholds
were recommended for different MAF categories [26]. INFO score >0.4 is always used to de-
fine a “well-imputed SNP”, however, it is hard to know the imputation accuracy of the imputed
SNPs, because there are no “True Genotype” for the SNPs that are not genotyped. Therefore, a
better way to avoid the effect of imputation on the association results is to directly genotype the
significant variants that came out from the imputation-based analysis. In fact, the statistical
power and effect size of association of the variants will improve by doing direct genotyping, as
we have commented somewhere else [27].

In our study, we have compared imputation performance only within the IMPUTE2 soft-
ware [28], similar conclusions that imputation quality increases with larger reference panel
sizes could be observed with other imputation programs, at least in MaCH [23, 24].

In summary, the 1000 Genome Project reference panels can be used to impute common,
low frequency and rare variants, thereby providing a substantially increased number of variants
for analysis. However, the imputation quality for variants with frequency from singletons to
5% is strongly dependent on the sample size of the reference panel, such that the quality in-
creases with the sample size, and with acceptable quality at ~1000 samples such as in the
1KGphasel release. Genotypic array density also influences the imputation quality. Given the
upcoming challenges posed by sequencing studies, our data suggest that imputation quality of
rare variants will continue to improve as the number of individuals included in reference hap-
lotypes increases. These data therefore provide guidance in the design and execution of large-
scale sequencing based association studies.
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S1 Fig. The MAF distribution of the 3 reference panels. 1KGphasel has a mean MAF of 0.02
1KGinterim EUR panel has a mean MAF of 0.12; 1IKGpilot CEU panel has mean MAF 0.22.
(DOCX)

S2 Fig. Panel A, B and C is a comparison of median R2 across 3 GWAS chip arrays for
1KGpilot, 1KGinterim and 1KGphasel based imputation respectively in different MAF
bin. And Panel D, E and F is a comparison of median R2 across the 3 reference panels for
317k, 610k and 1M, respectively. R2 is the squared correlation between input genotypes and
imputed dosages.
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S3 Fig. The proportion of well-imputed SNPs (info>0.4) in different MAF bins across 3
GWAS chip arrays (Panel A is for 1KGpilot based imputation, Panel B is for 1KGinterim
based imputation, and Panel C is for 1IKGphasel based imputation). Panel D, E and Fis a
comparison of median info score across 3 GWAS chip arrays for 1KGpilot, 1KGinterim and
1KGphasel based imputation respectively.
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S§1 Table. For concordance rate analysis, we made hard genotype calls by applying a thresh-
old (0.9) to the maximum value in each input probability triple. A genotype with maximum
value less than 0.9 would be set to missing. The missing rates for 317K arrays were lower than
1M array, because most of the SNPs in 317K array were common SNPs, and were imputable
with high probability value.
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