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Abstract

Compliant bamboo poles have long been used for load carriage in Asian cultures. Although
this custom differs from Western conventions of rigid body attachments (e.g. backpack),
potential benefits include reduced peak shoulder forces as well as metabolic transport cost
savings. Evidence that carrying a flexible pole benefits locomotion remains mixed, perhaps
in part because the properties of pole design (e.g. bamboo material, structural geometry,
etc.) have largely been neglected. These properties influence vibrational forces and conse-
quently, the energy required by the user to manage the oscillations. We collected authentic
bamboo poles from northern Vietnam and characterized their design parameters. Four
poles were extensively studied in the lab (load-deflection testing, resonance testing, and
computed tomography scans of three-dimensional geometry), and 10 others were tested at
a rural Vietnamese farm site (basic measures of form and resonance). A mass-spring-
damper model was used to characterize a relationship between resonant frequency (which
affects the energetics of the pole-carrier system) and pole properties concerning stiffness,
damping, etc. Model predictions of resonant frequencies agreed well with empirical data.
Although measured properties suggest the poles are not optimally designed to reduce peak
oscillation forces, resonant frequencies are within range of a typical human walking
cadence, and this is likely to have a consequence on locomotion energetics.

Introduction

Human load carriage remains an important part of working life in various cultures around the
world, and this has led to the development of diverse carrying strategies. One notable example
is the use of flexible bamboo poles in Southeast Asia. These resilient tools are typically placed
on the shoulder to facilitate carrying of substantial loads (often as much as body weight or
more) as well as awkward or bulky loads for farm work and transportation to the marketplace
(Fig 1). This is of particular interest in locomotion research because the flexible pole may influ-
ence the metabolic expenditure required to transport loads. However, there is conflicting evi-
dence supporting this hypothesis. Specifically, some researchers have found a slight increase in
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Fig 1. Pole carrying technique and example poles. Top: A farm worker carries a bamboo pole in northern Vietnam.
The pole is supported at the shoulder with the hand (same side as the supporting shoulder) resting on top of the
forward end to steady the system. Growth nodes are also indicated (Bottom Left: poles used in the study; Bottom Right:
CT scan of pole C). These nodes are characterized by a thickening of the cross-section from a portion of a hollow tube
to a portion of a solid cylinder.

https://doi.org/10.1371/journal.pone.0196208.9001

metabolic cost (+3%) whilst others have found a decrease (-5%) for carrying with a compliant
pole [1,2]. Although it is not the focus of this paper we highlight these studies to show how
material/structural properties of the pole may have an effect on locomotion energetics.

Kram described a dynamic interaction in which the pole’s deflection allows the load to
travel in a relatively flat trajectory compared to the carrier’s body mass during locomotion,
thus reducing the mechanical work (proportionate to the load’s oscillation amplitude)
required to lift the load with each step [1]. He used polyvinyl chloride (i.e. PVC) pipes as a
proxy for bamboo poles to explore whether general flexibility might have this effect on human
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subjects performing a running gait. Although the relatively low stiffness of the plastic poles
(approximately 523 Nm™" in Kram’s study) reduced peak forces acting on the shoulder,
increases in metabolic expenditure (+22% for a 19%-of-body-weight load) were mostly in line
with studies showing that metabolic cost increases approximately proportionately to the mass
of a load carried with a backpack or waist harness [3,4]. In other words, the plastic poles used
in Kram’s study did not save energy and metabolic cost was similar to the expected cost of car-
rying the load in a standard backpack, despite differences in stiffness and other influential
parameters, such as damping.

In a subsequent study, Castillo et al. compared the metabolic cost of transport for carrying a
total load of 170 N (17.3 kg) using rigid steel poles and bamboo poles (that they fabricated
themselves) [2]. In contrast to the previous study, the cost was reduced by approximately 5%
when using the bamboo pole compared to the steel pole over a defined range of walking step
frequencies. The authors performed a basic vibration analysis to show that resonance (i.e. the
fundamental oscillation frequency at which the flexible pole vibrates freely) can influence the
energetics of locomotion. This is because the magnitude (and phase) of the vibrations—as well
as reaction forces felt by the individual—occur as a function of oscillation frequency, and this
is largely determined by the step frequency of the user [1,2,5-9].

More specifically, Castillo et al. implied that a carrier should walk with a step frequency
slightly higher than the resonant frequency of the pole-load system in order to receive an ener-
getic benefit. At this relative frequency, the pole and load oscillate at a relatively high magni-
tude while out of phase with the vertical body oscillation of the carrier. Ultimately, it is
theorized that this interaction should require less leg work by the carrier, since the summed
mass of the system stays relatively flat (the load is low when the body is high and vice versa,
where motion cancels when summed). The apparent contradiction in results of studies by
Kram and Castillo et al. may be due to a variety of factors (e.g. walking versus running gaits,
pain or discomfort carrying with a steel pole, etc.). However, the type of pole (e.g. material,
structure, etc.) and, consequently, its properties can likely have an important influence on the
energetics of load carriage.

Potwar et al. [10] recognized the importance of pole properties in a study that described a
design parameter optimization model constraining stiffness, weight of the pole, and strength
(in order to mitigate mechanical failure). The explicit intent of this model was to identify a
range of pole dimensions minimizing peak forces on the shoulder for both walking and run-
ning gaits. Although this theoretical analysis successfully determined optimal design parame-
ters for load carrying, the structural and material properties of authentic bamboo poles (i.e.
fashioned by individuals using them daily) have not been rigorously evaluated within the con-
text of locomotion energetics and load carrying.

The purpose of this study was to characterize the design parameters of authentic bamboo
poles used in traditional load carrying by Vietnamese farmworkers. Although multiple consid-
erations are likely to influence the fabrication of a carrying pole, two specific design outcomes
were evaluated: reduction of both (1) peak forces to the body and (2) energetic expenditure of
the carrier. The former was evaluated by comparing pole properties in this study to those
determined as optimal by Potwar et al. [10]. The latter was evaluated by comparing resonant
frequencies measured in this study to those associated with a reduced metabolic cost of the car-
rier [2].

To accomplish this analysis, we performed testing in rural northern Vietnam (farm site) as
well as in the lab. Conditions at the farm site meant we were only able to make simple evalua-
tions (10 poles). However, four additional poles were fabricated by a local craftsperson at the
farm site with local materials, and these were subsequently brought back to the lab for more
thorough evaluation. The data from the lab-tested poles (LPs) were used to determine detailed
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mechanical and structural properties and validate a theoretical model describing dynamic pole
behaviors. This model was then used to determine the same set of properties and design
parameters—albeit indirectly, through the model’s outputs—for the 10 farm-tested poles
(FPs).

Specifically, Euler-Bernoulli equations (i.e. classical beam theory) were used to characterize
stiffness of a mass-spring-damper system describing load oscillations. The purpose of this
model was to characterize a relationship between resonance behaviors and fundamental prop-
erties of the bamboo poles in order to assess potential influence on human locomotion.
Insights from this study should prove useful to the understanding of load carriage with a flexi-
ble apparatus. In particular, the implications of design strategies on reaction forces and ener-
getics are discussed. While many potential benefits have previously been identified for the
implementation of such devices, authentic bamboo poles fabricated with traditional tech-
niques have not been evaluated. Design attributes are inferred from empirical and theoretical
analysis described further in the following sections.

Methods

Two experiments (resonance and load-deflection) were performed in order to test relevant
mechanical and structural properties. These data were used in a theoretical model describing
the relationship of resonance and other dynamic behaviors. Furthermore, computed tomogra-
phy (CT) scans were used to image the LPs and measure basic geometric parameters associated
with cross-sectional profiles along the length of each pole.

The physical properties explored in this study can be grouped into two categories: (1) base
and (2) derived. The base group comprises Young’s modulus (i.e. E, modulus of elasticity), hys-
teresis (hys), damping ratio ({), basic geometric parameters, and second moment of area (I).
The derived group includes spring constant (k) and damping coefficient (c). A flowchart
describing testing and analysis of the two pole groups is shown in Fig 2.

Resonance test

In the first test, resonant frequencies were measured for the poles oscillating during free vibra-
tion over a range of loads. To accomplish this, a rigid testing frame was constructed. Two
aluminum I-beams (S 3 in X 7.5 in, ASTM A6) were clamped across a steel frame solidly con-
nected to both the floor and ceiling in a reinforced concrete building. Each pole was tightly
clamped at a single attachment point at its functional center, which was determined by balanc-
ing the pole on the shoulder (with an arbitrary but equal load at each end of the pole). The
functional center often did not coincide with the geometric center of the pole due to variance
in density as well as an extra moment created by the weight of the carrier’s hand laying over
the top of the pole, in the natural carrying style used by the indigenous Vietnamese farmwork-
ers (see Fig 1). Because of this imbalance, functional centers tended to lie closer to the front of
each pole. The functional center was chosen in order to more closely replicate pole loading as
it would be seen in practice.

When mounted to the frame, two limit stops (wooden pegs) were placed just above the neu-
tral height of each end of the pole (i.e. the height of the pole ends while under no load). This
served to ensure that the resonant frequencies only characterized the stiffness of the pole bend-
ing in its functional direction—downward. Next, the testing pole was loaded with lead weights
(21.82-201.09 N or 2.225-20.505 kg applied equally to each end of the pole, in intervals of
21.82 N or 2.225 kg). Baskets and wire supports (commonly used and purchased in Vietnam)
were used to cradle the weights (Fig 1) and added an additional 4.71 N (0.480 kg) to each end.
With each loading level, the pole ends were held up by hand until they lightly touched the limit
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Fig 2. Methods flowchart. The flowchart indicates experimental data/results used in the model to quantify pole
parameters and resonance predictions for the lab- and field-tested poles. Note: properties labeled with [A], [B], or [C]
were determined from the corresponding test indicated at the bottom of the flowchart.

https://doi.org/10.1371/journal.pone.0196208.9002

stops (neutral position). Data collection was synchronized to the release of the pole from its
neutral position. The loaded pole was allowed to oscillate under free vibration for 30 seconds
(this duration was adequate to allow all poles to come to rest under any of the applied loads).
Throughout all tests, the pole ends did not touch the limit stops, thus ensuring the correct
direction of bending.

Inertial sensors (Xsens MTw, Xsens Technologies, Enschede, The Netherlands) were used
to measure the vertical acceleration of the loads during free vibration (one at each end of the
pole) and displacement was subsequently calculated by double integration with initial condi-
tions. Mean values and standard deviations of the oscillation frequency were calculated for all
poles and under a range of loading. Furthermore, the decay of the displacement signal was

determined via:
¢:ln<y;>vyi > Yin (1)
i+1

where ¢ is the logarithmic decrement; y; and y;,; are the magnitudes of two consecutive signal
peaks. The logarithmic decrement was noted for each cycle until the signal decayed completely
and the median value was chosen to characterize the signal. This median value was then used
in Eq (2) to calculate the damping ratio—signal decay relative to a critically damped system.

(=——— 2)
(2n)" +¢?
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Load-deflection test

Stiffness and hysteresis properties of the poles were characterized using a load-deflection test.
Each pole was fixed to the rigid frame at its functional center. High contrast markers were
placed along the length of each pole (at each growth node and intermediate between each
node, see Fig 1). A total of 12-13 points were measured, depending on the number of nodes
per pole.

A digital camera (Casio EX-ZR700) was placed perpendicular to the pole at a distance of 10
m (to minimize parallax and lens distortions). Continuous video (30 Hz) recorded pole deflec-
tion under a series of loads placed in the baskets attached at each end of the pole. Starting from
a zero load position, successive weights of 21.82 N (2.225 kg) were added to both baskets until
a total of 201.09 N (20.505 kg) was applied (nine weights in each basket, overall pole load
402.17 N or 41.010 kg). The pole was allowed to settle to a constant deflection following the
addition of each weight. These weights were then removed in succession so the pole’s relaxa-
tion could be recorded. The images were calibrated, and a marker on the frame was used to
verify that support frame deflection was negligible. For all test videos, the support frame’s
deflection was measured as less than a pixel, and thus, the frame was considered to be ideally
fixed and rigid. All marker videos were digitized in MATLAB (The MathWorks Inc., Natick,
Massachusetts) using the DLTdv5 software program [11].

Displacements were determined by subtracting the initial (i.e. zero-load) positions from the
deflection positions for each load. All positions were measured by averaging the data over each
ten-second interval (after any basket sway was brought to rest). The standard deviation of each
position was also determined for each load increment.

Load-deflection curves were used to depict deflection at the load attachment peg for a full
cycle of loading and unloading. The area between the curves was calculated in order to quan-
tify strain energy lost to hysteresis, defined as:

[oms B (8)do — [0 F~(8)do

Ji B+ (0)do ®

hys =

where & is deflection, F" is the curve for loading and F is the curve for unloading. The concept
of resilience as strain energy returned by the system can also be defined as res = 1 — hys.

Model

Simple beam theory was used to determine the Young’s modulus of the bamboo. Specifically,
two cantilever beams were considered—one for each end of the pole—with a single concen-
trated load applied at the load attachment peg. Note this model assumes that no net transla-
tional or rotational motion should occur about the contact point at the carrier’s shoulder.
Although this assumption is likely violated in practice, experienced users typically maintain a
balance of forces at the shoulder (a technique facilitated by the hand resting on the front end
of the pole, see Fig 1) for increased system stability.

In order to assess pole compliance, a deflection surface was mapped over two parameters:
distance from the fixed functional center to each marker along the pole and weight of the load.
A least squares non-linear regression was fit to this surface via the following model, derived
from simple beam theory for a cantilever beam:

1

= GH (4)

0 = a(3mgx, x> — mgx*),a

where & is the deflection, m is mass of the load, g is gravitational acceleration (9.81 ms™), x is
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the distance from the fixed functional center of the pole to a given marker, x; is the distance
from the fixed functional center of the pole to the load attachment point, E is the Young’s
modulus of the bamboo and I is the second moment of area of the pole’s cross-section at the
marker of interest. From this model, the flexural rigidity (E*I) was determined for each pole.

Next, a mass-spring-damper model was used to determine a theoretical relationship for the
damped resonant frequency of the system. The equation of motion for this one degree of free-
dom system is:

mj +cy + ky = mg (5)

where y describes motion of the load along a vertical axis (positive is defined downward - the
assumed direction of the pole’s deflection under load), ¢ is the damping coefficient, equivalent
to the expression 2{w,m where w, is the natural frequency of the oscillating system during free
vibration when no damping is present and k is the spring constant describing the relationship
between force and deflection. A cantilever beam model was used to show this relationship in
Eq (4). Here however, the spring constant influencing the load is only relevant for the case
when x = x;. Also, since deflection is equivalent to the displacement of the load, ¢ is substituted
with the spatial variable y. A further adaptation allows for a dynamic point load, P(y), that

can change as a function of the load’s displacement. Note that in the static form, P is simply
the weight of the load, as in Eq (4). After these adjustments, the spring constant can be defined
as:

_ 3EI

T .3
‘xL

P y=ky (6)
With the mass-spring-damper system described, a damped resonant frequency (wpg) is cal-
culated from the expression in Eq (7), where % is substituted for k via Eq (6):
L

Wppg =V 1— 2*\/5
=v1-0+x E

3
mx;

Eq (7) provides a theoretical prediction of the pole-load’s damped resonant frequency via a
mass-spring-damper system and simple beam theory. This model was used to compare the fre-
quencies measured in the resonance test with the theoretical frequencies predicted by basic
pole properties measured directly in the load-deflection test.

CT scans and geometric model

Three-dimensional images of the bamboo LPs were acquired using computed tomography
(GE Revolution GSI, General Electric, Milwaukee, WI, USA). Scan parameters were selected
(120 kVp, 99 mA, pitch 1:1) to produce images with a voxel size of 0.625 mm x 0.625 mm x 5
mm (width x height x length; see S1 STL, S2 STL, S3 STL, and S4 STL for respective CT data as
STL files). Slices of the images were analyzed at 5 mm intervals along the longitudinal axis of
each pole. This analysis included a determination of width, height, cross-sectional area, cen-
troid, and second moment of area for each slice. To calculate these parameters, linear interpo-
lation was used to consider the culmination of vertices as a polygon in a given slice. Because
the resolution of the scanner is sufficiently high, errors introduced by the linear interpolation
are negligible. The calculations for centroid, area, and second moment of area for a polygon
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are shown in Eqs (8-10) [12]:

C = 6A ::01 (2 + 2,.) 2V — Z10))

1 .- ;
Cy - 6_A Zizol ()’i +yi+1)(ziyi+1 - zi+1yi) ( )
C = (Cz7 Cy)

where Cis the centroid of the shape, z and y are the horizontal and vertical components of the
coordinate system, respectively, # is the total number of vertices in a cross-sectional slice and i
represents a particular vertex being processed by the algorithm. Also, A is the area of the
defined shape [12]:

1,
A= _Zi:(]l (21 — Ze10h) )

2
Further, the second moment of area was determined for the polygon-shaped section of each
CT slice using the following algorithm [12]:

1o
L= X5 0 i i) (@0 — 2a2) (10)

Mean values of the second moment of area were recorded for all LP measurements within the
center region bordered by the nearest growth nodes (bamboo grows to form a hollow stem
that is fairly uniform between horizontally thickened nodes). The FPs were measured (by
hand) at the functional center only, and a geometric model was used to approximate the sec-
ond moment of area along the length of the pole. This model is essentially a horizontal portion
of a tubular cross-section (see Fig 3A) and requires two simple parameters as inputs: (i) height
(while the pole lays flat) and (ii) width. The outer radius R and other important parameters
were calculated from the input values. Since the inner radius r is not available from this model,
it was scaled in direct proportion to the outer radius. This proportionality constant ranged
from 0.69 to 0.78 for a variety of poles and a mean value 0.73 was used as an approximation in
the model.

The second moment of area of the geometric model (see Fig 3A) was calculated for the FPs
by subtracting the inner circle from the outer circle. Horizontal elements were integrated over
the vertical range (i.e. height) of the shape relative to a coordinate system located at the center
of the concentric circles.

L= [y dA=2[ " (0PVRE—y2) dy — 2P = ) dy (11)

where I, is the second moment of area about the horizontal axis passing through the center of
the concentric circles, y is the vertical coordinate relative to this center, R is the outer radius, r
is the inner radius, and 4 is the height of the tubular portion. The parallel axis theorem was
used to determine the second moment of area relative to the centroid of the cross-sectional
shape.

I;Z = IZZ - ADZ (12)

where I¢_is the second moment of area relative to the center of the cross-sectional shape, A is
the area of the shape and D is the distance from the center of the concentric circles to the cen-
troid of the tubular portion. Eq (12) was used to calculate the second moment of area for both
LPs and FPs.
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Results
Stiffness and hysteresis

The stiffness of a linear system is commonly characterized by the slope of its load-deflection
curve where a steeper slope implies a structurally stiffer system. These curves describe the
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https://doi.org/10.1371/journal.pone.0196208.9004

deformation at the load attachment point for a full cycle of loading/unloading and are shown
for each of the LPs (see Fig 4). It should be noted that the different slopes in each pair of curves
is primarily due to a functional center that is biased towards the front of the pole. As a result,
the curves representing the front end of each pole (shorter length) tend to be stiffer. The aver-
age hysteresis [see Eq (3); Fig 4] and resilience are also listed for each pole. Hysteresis values
ranged from 2.9% in Pole F to 9.9% in Pole E. These values indicate relatively modest energy
losses due to damping.

Young’s modulus

Although the plots shown in Fig 4 illustrate pole stiffness over a range of loads, each pair of
curves only indicates deflection for two discrete points at the basket attachment points near
the ends of the pole. However, multiple points were measured along each pole’s axis during
the stiffness test. Thus, in order to more thoroughly characterize stiffness of the LPs, a surface
was plotted where the vertical axis indicates deflection and the horizontal axes are load and
distance (from the fixed center to the point of deformation along the pole’s axis). A least-
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linear regression model fit to data from Pole C (LP) is shown. Note that the surface is linear with respect to load and
nonlinear with respect to distance of the loading point from the center. (b) The contour map shows the curvature of
the surface with yellow shades indicating more deflection and blue shades less deflection. (c) An example of signal
decay for a pole and load under free vibration is shown. The thick green line follows the exponential decay of peak
signal magnitude while the thin blue line shows the vertical oscillations measured with inertial sensors placed at the
load attachment points. Note that scaling of the vertical plot axis is not labeled since absolute magnitude is irrelevant
for this test.

https://doi.org/10.1371/journal.pone.0196208.9005

squares non-linear regression was used to fit the data to a theoretical surface derived from clas-
sical beam theory for a cantilever beam [see Eq (4); Fig 5A and 5B]. The coefficient a—defined
in Eq (4)—was determined from these regressions in order to solve for the Young’s modulus,
E, of the bamboo material.

The resulting regression coefficients, a, are reported for poles labeled C-F (LPs) as best esti-
mate (95% confidence intervals) (x10™* szkg‘lm'3): 7.29 (7.25-7.34), 5.14 (5.12-5.16), 8.56
(8.53-8.60) and 3.98 (3.94-4.02), respectively. Upon measuring the second moment of area
(see section 3.4) the Young’s Moduli were calculated from the best fit regression coefficient
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and ranged from 14.7-22.2 GPa for the LPs. Furthermore, the spring constant, k, was deter-
mined for the load acting at the basket attachment point on the pole via the relationship given
in Eq (6). The resulting values ranged from 1.31-3.59 kNm for the LPs.

The spring constant was also determined for the FPs. However, instead of calculating this
parameter from its relationship to Young’s modulus, it was determined from the coefficient of
a least-squares non-linear regression applied to resonance test data. The non-linear model
used for this regression is given by Eq (7). The spring constant values determined from this
regression ranged from 1.83-4.18 kNm™ for the FPs. After calculating the second moment of
area, the Young’s modulus was determined for all of the FPs using the best estimate of the
spring constant. These values ranged from 10.1-21.0 GPa for the FPs.

Damping ratio and damping coefficient

The damping ratio was calculated from resonance behavior by characterizing the exponential
decay of signal peaks over time (see Fig 5C). Damping ratio results ranged in value from
0.010-0.013 for the LPs and 0.011-0.018 for the FPs. The average damping coefficients were
calculated from these results: 2.77-3.56 Nsm™" for the LPs and 3.45-7.28 Nsm™" for the FPs.

Second moment of area

Fig 3B and 3C show a comparison of the dimensional measurements of an example pole
(LP-C) from the CT scan with the corresponding model geometry. The middle panel (b)
shows an overlay of the model and the CT scan while the bottom panel (¢) shows the second
moment of area data calculated from both the model and the CT scan for all slices of Pole C.
Although there are subtle differences between the scans and the model, it gives a reasonable
representation of the pole geometry.

Although the second moment of area tapers slightly toward the ends of the pole (the form
cut by the Vietnamese craftsperson who fabricated each pole), these systematic trends are
modest, confirming that the cross-sectional geometry is relatively consistent along the pole’s
axis. More prominent fluctuations are found at fairly regular intervals where the second
moment of area spikes. These spikes occur at the pole’s growth nodes, however their influence
on the deflection of the structure is likely modest given their small contribution to the total
length—essentially brief interruptions to an otherwise consistent cross-section. Mean values
for geometric parameters—determined from the middle section bordered by the nearest bam-
boo nodes—were used to characterize the entire pole. The widths of the poles range from 55.7-
61.4 mm for the LPs (measured with the CT scans) and 48.0-62.0 mm for the FPs (measured
by hand at the farm site). The heights of the poles range from 17.9-25.0 mm for the LPs (CT
scans) and 18.0-24.0 mm for the FPs (hand measurements). Finally, the second moment of
area measurements are reported as follows: 1.028-2.740x10* mm* for the LPs and 1.078-
2.254x10* mm* for the FPs.

Model predictions and empirical resonant frequency

The predictive capacity of the mass-spring-damper model was assessed by comparing it to
empirical data of free vibration under various loads. Resonant frequencies associated with the
lowest load were approximately 3-5 Hz while frequencies at the highest load were approxi-
mately 1-2 Hz. Standard error (SE) of the model ranged from +0.099-0.177 Hz (or 5.11-7.54%
of the frequency range over all tested loads) for the LPs (see Fig 6).

Model predictions were also compared to data gathered in the field (FPs) where the stan-
dard error ranged from +0.163-0.482 Hz (or 8.61-23.64% of the frequency range over all
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Fig 6. Resonant frequency curves for the LPs. The relationship between resonant frequency and load is shown for
each of the LPs. Circles are mean frequencies measured empirically during free vibration, and the solid line indicates
resonant frequencies predicted by the mass-spring-damper model. Two standard errors of each model approximates
95% confidence intervals and is indicated by the gray shaded region. Standard deviations of the empirical means are
also shown by the error bars of individual data points. Note, much of this error is too small to be visible at the scale of
these plots. (a) Pole C (b) Pole D (c) Pole E (d) Pole F.

https://doi.org/10.1371/journal.pone.0196208.9006

tested loads). For this sample, resonant frequencies for the lowest load were approximately
3.0-5.0 Hz while frequencies at the highest load were approximately 1.5-2.5 Hz (see Fig 7).

Summary of pole properties

One important function of the model is as a tool to predict fundamental pole properties with-
out explicit measurements. Thorough assessment and characterization of the four LPs verified
the resonance predictions of the model. Assuming that the LPs are a representative sample of
the larger bamboo pole population, properties of the FPs were also estimated from the model.
The results of these properties are summarized in Tables 1 and 2, as well as the properties that
were measured directly for the LPs.

The average Young’s modulus (mean+SD) was 18.3+3.9 GPa for the lab tested poles (LPs)
and 16.8+2.6 GPa for the field tested poles (FPs), an 8.1% difference. Comparisons of the aver-
age spring constant of the LPs and the FPs are as follows: 2.09+1.04 and 2.87+0.64 kNm™" a dif-
ference of 37.1%. Damping ratios were 0.011£0.001 for the LPs and 0.013+0.002 for the FPs, a
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each of the FPs. Circles are mean frequencies measured empirically during free vibration, and the solid line indicates
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https://doi.org/10.1371/journal.pone.0196208.g007

difference of 20.2%. Damping coefficient results were 3.13+0.42 and 4.63+1.13 Nsm, 48.1%
different. Finally, the second moment of area for the LPs and the FPs were 1.66+0.75 and 1.61
+0.36 x10* mm®, a 3.0% difference.

Discussion

Despite the different methods used to determine properties of LP and FP samples (direct test-
ing versus inference from the model), the mean values of the two groups are comparable.
Damping coefficient differs the most between the two groups (48.1%). As damping coefficient
was not measured directly, this is likely due to differences between these poles and the assump-
tions made in the model. Furthermore, damping coefficient is calculated from both damping
ratio and spring constant-each of which contribute their own sources of variance and error.
Damping ratio differs by 20.2% between the groups, however the absolute values are all very
low (0.010-0.018). That is, this variance is largely irrelevant (from a dynamics standpoint)
given that the lowest and the highest values still suggest the poles are quite resilient. There is
also a difference between the mean spring constants of both groups (37.1%), though this
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Table 1. Summary of pole geometry and inertia.

Testing | Pole | Mass [kg] | Second Moment of Area [10* mm®*] mean Width [mm] mean Height [mm] mean Outer Radius Length [m]
(xSD) (+SD) (xSD) [mm]
lab C 0.70 1.028 (0.059) 61.4 (0.8) 17.9 (0.5) 35.3 1.550
lab D 0.83 1.538 (0.058) 60.6 (0.6) 22.5(0.3) 31.7 1.573
lab E 0.73 1.322 (0.052) 58.2 (0.2) 19.4 (0.2) 31.5 1.527
lab F 0.98 2.740 (0.117) 55.7 (0.6) 25.0 (0.7) 28.0 1.409
field A 0.85 1.862 60.0 22.0 31.5 1.297
field B 0.85 1.422 59.0 20.0 31.8 1.256
field G 0.90 1.191 62.0 18.0 35.7 1.237
field H 0.94 1.689 61.0 21.0 32.7 1.272
field I 0.94 1.650 60.0 21.0 31.9 1.424
field ] 0.76 1.078 48.0 20.0 24.4 1.255
field K 0.81 1.905 61.0 22.0 32.1 1.305
field L 1.00 2.254 58.0 24.0 29.5 1.348
field M 0.90 1.698 56.0 22.0 28.8 1.395
field N 0.93 1.318 61.0 19.0 34.0 1.296

Values of inertial and geometric properties are listed for both the lab- and field-tested poles. Note that standard deviation (SD) is listed for some properties of the lab

poles but not for the field poles. This is due to the nature of the measurements made (basic hand measurements for the latter).

https://doi.org/10.1371/journal.pone.0196208.t001

difference is less than a standard deviation of the LP sample. Variance in the poles’ spring con-
stants can be attributed to a number of factors including cross-sectional geometry, Young’s
modulus of the bamboo, and pole length. In particular, the LPs tended to be longer than the
FPs on average, contributing to lower spring constants even as Young’s moduli were mostly
similar. The testing location may have also influenced some of the properties (e.g. Young’s
modulus, mass, etc.). In particular, the FPs were tested in the humid, subtropical climate of
northern Vietnam while the LPs were tested indoors in the relatively dry and moderate climate

Table 2. Summary of pole properties.

Testing | Pole |Spring Constant [kNm™] (95% CI) | Young’s Modulus [GPa] | Damping Coefficient [Nsm'] | Damping Ratio median (+SD) |Hysteresis [%)]
lab C 1.47 222 2.77 0.011 (0.019) 9.4
lab D 2.00 21.1 2.77 0.010 (0.016) 3.2
lab E 1.31 14.7 341 0.013 (0.032) 9.6
lab F 3.59 15.3 3.56 0.010 (0.022) 2.9
field A 2.46 (1.20-4.16) 11.2 3.92 0.012 (0.012)

field B 2.99 (1.80-4.48) 10.1 4.24 0.012 (0.010)

field G 2.50 (0.95-4.78) 16.5 345 0.011 (0.034)

field H 3.28 (1.25-6.29) 16.7 5.51 0.014 (0.020)

field 1 1.83 (1.25-2.52) 13.3 4.02 0.015 (0.015)

field ] 2.75 (1.91-3.75) 21.0 5.23 0.015 (0.011)

field K | 3.42(2.29-4.76) 16.6 4.63 0.012 (0.010)

field L 4.18 (3.09-5.44) 189 7.28 0.018 (0.042)

field M | 2.65(1.84-3.59) 17.6 3.68 0.011 (0.010)

field N | 2.66(1.80-3.69) 183 4.34 0.013 (0.040)

Values for stiffness and damping parameters are listed for both the lab- and field-tested poles. Note that 95% confidence intervals (CI) are listed for spring constant of
the field poles but not for the lab poles, since varying methods of analyses were used for each sample. Hysteresis values are not reported for the field poles since this test
was not conducted at the farm site.

https://doi.org/10.1371/journal.pone.0196208.t002
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of Calgary, Alberta. The effects of acclimatization were monitored every two weeks for a three-
month period after the LPs were first brought to the lab. During this time, only one property
value changed meaningfully; the average mass of the LPs dropped from 0.90 to 0.81 kg. This
compares to an average mass of 0.89 kg for the FPs (measured in Vietnam). It seems likely that
this loss of mass can be attributed to a decreased moisture content associated with the drier
testing climate of the LPs. It is likely that this contrast in moisture content may help to explain
differences in damping properties of the two pole types (recall, the FPs had a 48.1% higher
damping coefficient on average when compared to the LPs).

Regardless of the variation in properties and parameters between the two groups of poles,
the average values tend to agree with previous literature describing bamboo properties. For
example, the average Young’s modulus of all the poles (17.3 GPa) is consistent with values pub-
lished in various studies: Lakkad and Patel [13] measured the Young’s modulus of bamboo
(Kao Zhu and Mao Zhu species) in the orientation of individual fibers as 20.6 GPa; Amada
and Lakes [14] tested multiple samples of bamboo (species not specified) with different mois-
ture content and found a Young’s modulus for transverse bending ranging from 7.31-14.80
GPa. In the same study, loss tangent values indicated extremely low levels of damping (tan & ~
0.01). However, the loss tangent values were slightly increased when the bamboo samples were
subjected to thorough wetting (up to tan & ~ 0.015 after wetting). These findings align with
the results of our study showing generally very low values for damping ratio and hysteresis,
however slightly more damping with the humid FPs compared to the relatively dry LPs.

Although measured low levels of damping are consistent with previous studies, one limita-
tion remains a lack of knowledge about the specific mechanism(s) for energy loss (e.g. viscous,
structural, etc.). We chose viscous damping for our model primarily due to its extensive con-
sideration in previous literature—for engineering and biological structures and materials [15-
18]—as well as its ability to predict energy losses driven by various physical mechanisms
(including viscous and non-viscous mechanisms). In many systems, different models for
energy loss are relatively insensitive to the effect they have on the ultimate output of the model:
in our case, resonance. Although a discussion of energy loss mechanisms is important, we
opted for a more pragmatic approach to our modeling: namely, to predict the most dominant
influences on system resonance.

Another limitation of the model involves the assumption of a constant cross-sectional
geometry. Clearly, the CT data show that this is not precisely the case (see Fig 3C). However,
cross-sectional fluctuations are modest when considering trends over the length of the pole
(tapering at the ends) and abbreviated when considering localized inconsistencies such as
thickening at the nodes. Thus, we argue that introducing model complications to incorporate
these variations are unlikely to be worth the refined accuracy. Perhaps the most obvious
approach to further evaluation is a finite element model derived from the CT scans. We
rejected this approach because we felt it was not necessary for predicting fundamental reso-
nance of the pole-load system. Furthermore, analysis of the FPs would not benefit from such a
model, since CT scanners were not feasible on the farm site. Nonetheless, a future study look-
ing to test our simple model and understand nuanced behaviors of the structure could cer-
tainly benefit from the finite element method.

In order to consider design parameters of the bamboo poles, their properties (either mea-
sured or calculated) are compared with optimized values suggested by the peak force minimi-
zation model developed by Potwar et al. [10]. The model predicted shoulder forces based on a
spring loaded inverted pendulum locomotion model interacting with a beam-like pole (similar
to the current study). They also took multiple constraints into consideration. A pole mass con-
straint was used to limit the mass of the pole to less than 10% of the total load, assuming pub-
lished values of bamboo density and calculations of pole volume. A strength constraint was
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Fig 8. Measured pole parameters versus parameters of optimization model. Pole parameters (radius and length) are
compared to the shoulder force optimization model developed by Potwar et al. [10]. Four constraints were used to
determine a region of pole parameters that minimize forces felt at the shoulder. All 14 poles from the current study are
also plotted (light circles are the FPs and dark diamonds are the LPs) for comparison.

https://doi.org/10.1371/journal.pone.0196208.g008

also applied by considering the theoretical mechanical stress required for failure (e.g. plastic
deformation). A load clearance constraint was enforced by limiting pole stiffness (lower
bound) to allow for a maximum of 0.4 m pole deflections. The optimal parameter space was
further bounded by limiting pole stiffness (upper bound) in order to match peak shoulder
forces expected of a rigid backpack carrying a similar load.

In Fig 8, both the FPs (white circles) and LPs (grey diamonds) are plotted over the parame-
ter space bounding the optimal range for pole design. This figure is a recreation of the model
developed by Potwar et al. for a carrier walking at 1.34 ms™ with Mao Zhu bamboo [note this
species of bamboo (i.e. Phyllostachys edulis) is commonly found in northern regions of Viet-
nam [19] near the Thai Nguyen province where our poles were collected]. Although parameter
optimizations were conducted for other conditions, this comparison was chosen simply
because the optimal region is closest to the pole parameters measured in our study. Although
all of the pole parameter combinations (pole length and outer radius) are clearly outside of the
optimal range, there are a few reasons why this may be the case.

Specifically, the optimal parameter range assumes a pole with a semi-circular cross-sec-
tional geometry, which is thicker (greater cross-sectional height) than the pole geometries
observed in CT scans. As a result, applying our height measures to the Potwar et al. model
results in an erroneous stiffness estimate. Still, the suggested optimal pole length is likely too
far off for cross-sectional geometry to account for this discrepancy alone.

Although the optimal parameter space considers multiple constraints/bounds, there is per-
haps an additional consideration left unaddressed: the effect of pole length on practicality and
maneuverability. The current model predicts an optimal pole length of around 3 m and often
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more, (depending on bamboo species, cross-sectional properties, and walking speed). While
this length may not pose too much difficulty for an individual working alone in a field, it
would make loading and handling of the pole difficult in a crowded marketplace. It is possible
that our poles were fabricated in part to facilitate maneuverability.

The model indicates optimal parameters that reduce forces distributed over the bearing sur-
face of the shoulder. However, since our poles do not meet these optimality constraints, per-
haps it is fair to conclude that they are manufactured to meet different design goals, or
optimize a different aspect of the interaction between the individual and the tool. Here, we
consider an alternative: the resonant oscillation of the pole-load system is tuned to the cadence
of the carrier, to exploit an energetic benefit.

A thorough consideration of how pole properties influence locomotion energetics likely
requires a rigorous model validated through empirical data. However, it may be useful to con-
sider the general range of resonant frequencies, since reaction forces (felt by the carrier)
increase with larger oscillations of the load and oscillations typically spike at, and around, reso-
nant modes. For example, Castillo et al. [2] found that individuals received energetic benefits
when they walked at a step frequency slightly above the resonant oscillations of the pole-load
system. However, this is likely only feasible when the resonant frequencies are in the approxi-
mate range of a person’s preferred step frequency.

Typical preferred walking conditions include a step frequency range of approximately 1.5-
2.0 Hz and a velocity of 1.0-1.5 ms™ [20,21]. While this range of frequencies approximately
coincides with the resonant frequencies of the LPs at larger load levels (see Fig 6), they are
somewhat below the resonance curves for the FPs even at high loads (this difference is largely
due to increased load stiffness resulting from the generally shorter lengths of these poles). Still,
these comparisons are largely qualitative (i.e. non-rigorous) and do not take into consideration
potential frequency responses associated with carrying rigid or oscillating loads.

For example, subtle increases of walking frequency tend to occur when a person carries a rigid
load, although these changes are often insignificant [3,22]. At the same time, increases in walking
speed are associated with increases in step frequency [21,23]. Therefore, the pole resonant fre-
quencies may benefit the energetics of relatively fast walking, which may be appropriate for the
increased pace of busy work on the farm or in the marketplace. In summary, if there is indeed an
energetic benefit to walking with these poles, they would likely exist with heavier loads, 200 N (20
kg) per pole end or more (common load levels during farm work) and at relatively fast walking
speeds. Regardless, future research would benefit from investigating more sophisticated models
capable of predicting the motor behavior of locomotion when interacting with the flexible oscilla-
tions of different loads. However, such models should be thoroughly validated with rigorous
empirical studies assessing locomotion of experienced users under natural conditions.

Conclusions

A number of objectives were met by this study. We tested and assessed the mechanical proper-
ties of the four LPs (fabricated in a Vietnamese village according to traditional methods),
which allowed us to describe basic dynamic behaviors inherent to their structure, material and
design. Through this series of tests, we attained a set of fundamental parameters and proper-
ties. These included Young’s modulus of the bamboo, hysteresis and resilience of static load-
ing/unloading, the rate of energy loss due to viscous damping occurring during free vibration,
the second moment of area of the pole cross-sections and the resonant behaviors of the poles
vibrating under load.

We applied a theoretical model using classical beam theory (of a cantilever beam with a par-
tial tubular cross-section) to a mass-spring-damper system to predict the resonant behavior of
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differing loads. This model was experimentally validated for the four LPs. Finally, we used the
theoretical model to determine the same set of mechanical and structural properties for the
other 10 FPs.

These measurements provide a foundation for models evaluating the role of pole use and
function by traditional cultures using this technology. Although Western cultures rely on a
fixed load attachment such as a strapped backpack, this solution may be less effective and less
energetically economical than interacting with the dynamic oscillations of a flexible bamboo
pole. However, if the mechanisms of such interactions are to be determined, then the poles
themselves must be thoroughly evaluated and understood. With the results presented here, a
thorough and rigorous human locomotion model can now be used to investigate such
interactions.
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