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Abstract: A healthy lifestyle is essential for maintaining physical and mental health. Health pro-
motion, with a particular emphasis on regular exercise and a healthy diet, is one of the emerging
trends in healthcare. However, the way in which exercise training and nutrients from dietary intake
interact with each other to promote additive, synergistic, or antagonistic effects on physiological
functions leading to health promotion, and the possible underlying biomolecular mechanisms of
such interactions, remain poorly understood. A healthy diet is characterized by a high intake of
various bioactive compounds usually found in natural, organic, and fresh foodstuffs. Among these
bioactive compounds, astaxanthin (ASX), a red carotenoid pigment especially found in seafood, has
been recognized in the scientific literature as a potential nutraceutical due to its antioxidant, anti-
inflammatory, and neurotrophic properties. Therefore, scientists are currently exploring whether this
promising nutrient can increase the well-known benefits of exercise on health and disease prevention.
Hence, the present review aimed to compile and summarize the current scientific evidence for ASX
supplementation in association with exercise regimes, and evaluate the additive or synergistic effects
on physiological functions and health when both interventions are combined. The new insights
into the combination paradigm of exercise and nutritional supplementation raise awareness of the
importance of integrative studies, particularly for future research directions in the field of health and
sports nutrition science.
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1. Introduction

A physically active lifestyle and healthy dietary habits are two key modifiable environ-
mental factors that play a critical role in exercise performance and disease prevention [1–4].
The majority of studies to date have focused on one intervention alone (e.g., exercise
regimes or nutritional modulation) to clarify, separately, the effects and molecular mech-
anisms of each variable on human physiological outcomes [5,6]. Other studies compare
which intervention is the best for improving some physiological parameters, e.g., adipose
tissue accumulation [7]. More recently, a smarter approach has been applied. Rather than
pitting nutrition and exercise against each other, scientists are trying to determine how
these two research branches combined can interact additively or synergistically in their
effect on health and performance.

Nutrition and sport science are huge areas of research. In terms of exercise training,
different exercise protocols and methods (e.g., intensity or duration) have been tested to
explore their specific effects on the clinical outcomes of conditions such as cardiovascular

Antioxidants 2021, 10, 870. https://doi.org/10.3390/antiox10060870 https://www.mdpi.com/journal/antioxidants

https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0001-5799-0672
https://orcid.org/0000-0002-6465-0550
https://www.mdpi.com/article/10.3390/antiox10060870?type=check_update&version=1
https://doi.org/10.3390/antiox10060870
https://doi.org/10.3390/antiox10060870
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/antiox10060870
https://www.mdpi.com/journal/antioxidants


Antioxidants 2021, 10, 870 2 of 12

diseases [8], intraocular pressure [9], and immune response [10]. On the other hand,
different diets [11] and nutritional supplements have been tested to evaluate their effects as
prophylactic therapies [12] or as ergogenic tools for increasing exercise performance [13].
Among nutritional supplements, astaxanthin (ASX) is one of the nutraceuticals that are
gaining attention in scientific literature, especially regarding the fields of muscle recovery
and fatigue, aging, and, more recently, cognitive function [14–16]. It is worthy of note that
both astaxanthin [15,16] and exercise [10] have independently shown immunomodulatory
effects, an important aspect for the prevention of inflammatory diseases such as type 2
diabetes, stroke, and cancer. Therefore, concomitant ASX intake and exercise training
presents a promising approach to determining how exercise and nutritional intervention
can interact with each other to produce positive effects on health conditions or illnesses.

Hence, this review aimed to compile and summarize the current scientific knowledge
of exercise training and ASX supplementation, focusing on its additive or synergistic effects.
To that end, in 2021, a general and simple keyword search, “astaxanthin AND exercise”,
was used in the PubMed online database. No filters were used in order to find the largest
number of studies possible. As a result, 42 studies from 2003 to 2021 were found. The
titles and abstracts of all papers were read to check whether they fit this review’s criterion.
Then, 20 English-language papers which were published in peer-review scientific journals,
and which discussed ASX and exercise interventions, were selected. Studies that used a
mix of nutritional supplements were excluded from the analysis, since it is not possible to
determine whether the outcomes described were due to ASX or other nutrients.

2. Astaxanthin

To date, more than 800 carotenoids have been discovered. Among them, ASX has
caught the interest of the scientific community with regards to its potential biological
effects, due to the features promoted by its optical symmetry, and to the hydroxyl plus
keto endings on both ionone rings (Figure 1) [17]. ASX is categorized as a xanthophyll
carotenoid, which sets it apart from its counterpart group, hydrocarbon carotenoids, due to
its chemical structure, which includes the presence of oxygen atoms in its extremities. These
hydroxylated derivatives are responsible for the antioxidant effects found in xanthophyll
carotenoids. They scavenge reactive oxygen species (ROS), especially singlet oxygen. At
the same time, they prevent oxidation in the conjugated backbone C = C bond, thereby
preventing lipid membrane peroxidation [18]. Indeed, two in-vitro reports showed that
ASX’s antioxidant effect is a hundredfold higher than that of other common nutrients such
as α-tocopherol [19,20].
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Figure 1. Astaxanthin’s non-stereochemical structural formula.

From an evolutionary point of view, another interesting characteristic of carotenoids
regards their molecular length, with approximately 10–12 double conjugated bonds in
their backbone, which is similar to the length of a bilayer phospholipid cell membrane [21].
Dipolar carotenoids like xanthophylls (e.g., lutein, zeaxanthin, β-cryptoxanthin, or ASX)
are inserted in cell-membrane interfaces in a perpendicular orientation (“molecular rivets”,
Figure 2). This particular position gives stability and protection to bacterial cell membranes,
leading to an evolutionary advantage for these microorganisms, which have existed since
the early ages of the Earth. It also exposes hydroxylated derivates to the cytosol and outside
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cell membrane, providing excellent antioxidant localization. This membrane biophysical
property can also partially explain the several roles that carotenoids play in mammals (e.g.,
in the retina and brain) [22,23].
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Although animals cannot synthesize ASX, its intake through microalgae is respon-
sible for the dark red color found in many forms of marine life (e.g., fish eggs, shrimp,
lobster, salmon, etc.). It is worthy of note that ASX sources may vary between artificial,
synthetic sources, microalgae, crustacean by-products, aquaculture, or wild seafood. The
source of ASX can contribute to its differing associations with fatty acids, proteins, and
lipoproteins. The source can also influence ASX’s hydroxyl group esterification (non-ester,
monoester, diester), and provide different ratios of ASX’s geometric, configurational, and
optical isomers (3R,3′R; 3S,3′S; 3R,3′S (meso)) [16]. In the twentieth century, synthetic ASX
production was allowed on an industrialized, large scale, reducing its cost, and making the
synthetic form of ASX the most popular choice in the aquaculture industry [16]. However,
in recent years the development of natural ASX production from Haematococcus pluvialis
has significantly improved [24]. Natural Haematococcus ASX has three differences from
synthetic ASX: (i) it differs in esterification (natural: monoester, diester; synthetic: non-
ester), (ii) it differs in stereochemistry (natural: 100% 3S,3′S; artificial: 25% 3S,3′S), and (iii)
it provides an additional mix of other natural carotenoids [25]. In 2013, an original paper
reported stronger antioxidant effects of natural ASX compared to synthetic ASX [25]. Its
source (wild vs. aquaculture fish) also seems to cause ASX to be metabolized differently
in humans [26]. Taken together, these results suggest that ASX studies should take into
account and describe the source of the ASX used.

In 2019, ASX’s popularity in cosmetic products and as a common additive in the food
industry forced the European Commission to issue a report regarding its safety. The Panel
on Nutrition, Novel Foods, and Food Allergens concluded that an intake of 8 mg per day
plus the possible ingestion of ASX via daily diet is safe for adult humans [27]. However,
a review claimed that the daily dosage set by the panel was based mainly on animal
studies using artificial ASX supplements. The review’s final message called attention to the
necessity of more human clinical trials, both for natural and artificial ASX [28]. It is worthy
of note that an in vitro study found ASX toxicity by significantly decreasing gap junctional
intercellular communications, an important intercellular channel that performs many
physiological functions in human tissues [29]. Furthermore, to date, there is no systematic
review, followed by meta-analyses or phase III or IV clinical trials, that establishes the
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efficacy and safety of ASX treatment as a disease-specific targeting drug. Therefore, ASX
dosage safety is still under debate.

Animal and in vitro studies have provided pieces of promising evidence for the possi-
ble positive biological effects of this compound. Following this evidence in basic studies,
exercise has also shown several beneficial effects on rodent models. Currently, there is no
strong evidence in human clinical trials regarding the biological effects of ASX. This is
because the effects of ASX have been diluted and tested under many different conditions,
making it difficult to compile the data in one strong report such as a systematic review
followed by meta-analyses. For instance, ASX has been tested on ophthalmological dis-
eases [30], for exercise performance [31], and for skin and cosmetic benefits [32]. However,
all of these recent and extensive reviews of the scientific literature concluded that more
homogeneous, long-term, carefully managed double-blind randomized-controlled trials
are warranted in order to establish the benefits and safety of ASX supplementation in each
respective circumstance. Therefore, the hypothesis that ASX can interact with exercise
regimes was raised, especially using animal models instead of human research, as shown
in the next section.

3. Astaxanthin and Exercise: Animal Studies

Among papers on animal research, there are ten rodent model studies relevant to the
purpose of this review (Table 1). Five of these evaluated the effects of ASX supplementation
on exercise performance, and all five showed positive effects [33–37]. Another five studies
evaluated the effects of ASX on health-related parameters [38–42], of which two were
related to cognitive function [41,42]. The animal studies differed in rodent age (4–14 weeks
old) and model (Wistar rats, ddY mice, ICR mice, and C57BL/6J mice).

Table 1. Animal studies.

Author (Year) Animal
(Age)

Intervention
(Duration)

Primary
Outcome Results

M. Ikeuchi
(2006)

ddY mice
(4 weeks)

ASX: 30 mg/kg b.w.
(gavage)

Exe: swimming to
exhaustion
(5 weeks)

Endurance
performance

Increased time to exhaustion by
increasing lipid metabolism [33]

W. Aoi
(2008)

ICR mice
(7 weeks)

ASX: 0.02% w/w
Exe: 2/wk, 18 m/min—5 min

(4 weeks)

Endurance
performance

Increased time to exhaustion by
increasing lipid metabolism [34]

H. Liu
(2014)

ICR mice
(7 weeks)

ASX: 0.02% w/w
Exe: 30 min 25 m/min

treadmill
(2 weeks)

Lipid
metabolism Increased PGC-1alpha in skeletal muscle [38]

T. G.
Polotow (2014)

Wistar rats
(NA)

ASX: 1 mg/kg bw (gavage)
Exe: swimming to

exhaustion
(6 weeks)

Endurance
performance

Increased time to exhaustion by
redox balance [35]

T. Shibaguchi
(2016)

Wistar rats
(14 weeks)

ASX: 0.04% w/w
(6 weeks) Muscle atrophy Attenuated skeletal muscle atrophy by

redox balance [37]

W. Aoi
(2017)

ICR mice
(8 weeks)

ASX: 0.02% w/w
Exe: 3/wk, 25 m/min—5 min

(5 weeks)

Endurance
performance Increased time to exhaustion [36]

Y Zhou
(2019)

C57BL/6J mice
(7 weeks)

ASX: 30 mg/kg bw (gavage)
Exe: 45 min moderate

swimming
(4 weeks)

Redox status Suppressed antioxidant enzyme
activity [39]

Y. Nishida
(2020)

C57BL/6J mice
(6 weeks)

ASX: 0.02% w/w
(24 weeks)

Insulin
resistance

Increased mitochondria biogenesis via
AMPK pathway [40]

J. S. Yook
(2016)

C57BL/6J mice
(11 weeks)

ASX: 0.5% w/w
(4 weeks)

Cognitive
function

Increased spatial memory by
increasing hippocampal neurogenesis [41]

J. S. Yook
(2019)

C57BL/6J mice
(11 weeks)

ASX: 0.5% w/w
Exe: mild treadmill running

(4 weeks)

Cognitive
function

Increased spatial memory with
increasing hippocampal neurogenesis [42]

ASX: Astaxanthin, Exe: exercise, b.w.: body weight, NA: not applicable. Bold font indicates studies in which additive effects between ASX
and EXE were found.
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All studies used ASX derived from natural sources, usually provided by the same
company. The duration of astaxanthin supplementation was, on average, from two to six
weeks. Unfortunately, a comparison of ASX dosage between studies is difficult since most
studies lack information regarding daily food intake and animal body weight, which is
essential information to calculate the intake (mg/kg. b.w./day). Seven studies administered
the ASX supplement by mixing it into the diet (0.02–0.5% w/w) while three studies provided
ASX by gavage (1–30 mg/kg b.w./day). Despite the heterogeneity between studies, all of
them revealed promising effects of ASX (Table 1). Regarding exercise intervention, most
studies implemented a moderate- or high-intensity exercise protocol, with the exception of
one mouse study, which showed that low-intensity exercise, associated with ASX intake,
improves cognitive function [36].

Among all studies, only three were able to investigate the interaction between exer-
cise and ASX supplementation [34,39,42]. One study found additive effects on exercise
performance. The synergistic effect could not be evaluated since there were no data for
ASX intervention alone. The additive effect of ASX on exercise training was explained by
describing the improving fat metabolism and decreasing oxidative stress [34]. A second
interesting article found two distinct interaction effects (antagonistic and additive); how-
ever, there was no ASX intervention alone to measure the synergistic effect. Astaxanthin
exhibited antagonistic interaction with exercise, with regard to antioxidant enzyme activity.
In other words, ASX suppressed the exercise-induced enhancement of antioxidant enzymes.
However, ASX exhibited an additive effect by decreasing oxidative stress and ameliorating
the nitric oxide system [39]. These findings call attention to the fact that ASX can interact
with exercise in opposite ways, depending on which physiological variables are being
analyzed. Finally, a third study found an additive, but not synergic, effect of ASX: it led
to increased newborn neurons [42]. In summary, ASX supplementation seems to interact
with exercise regimes in an additive manner by improving metabolism, redox status, and
neurogenesis. A more well-controlled study design is needed to determine whether ASX
and exercise exhibit synergic effects.

As shown in Table 1, the most popular examination of ASX associated with exercise
in animal studies is its potential to increase exercise performance. The idea that ASX may
improve exercise performance is not recent. The first report published is dated 15 years ago,
in 2006 [26]. The reason for this hypothesis comes from the fact that ASX may delay exercise
fatigue by improving lipid metabolism via the enhancement of peroxisome proliferator-
activated receptor-γ coactivator (PGC-1α) [28]; it also increases mitochondrial biogenesis
via AMP-activated protein kinase (AMPK) pathways [33], and it may accelerate muscle
recovery through the amelioration of redox status [32].

Astaxanthin intake has been tested for many diseases in which oxidative stress and
inflammation play a critical role in pathophysiological progressions, such as diabetes,
cardiovascular disease, cancer, and dementia [43]. Dementia is one group of diseases for
which inflammation and oxidative stress are key developmental factors that lead to further
cognitive decline [44]. A recent study found preventive effects of ASX in a humanized APP
mice model of Alzheimer’s disease (AD) [45]. In this study, the authors mixed ASX into the
animals’ diet from the juvenile period. This mouse model carries familial AD mutations
(Swedish, Beyreuther/Iberian, and Arctic) via knock-in techniques, and it is expected to
exhibit AD pathology hallmarks starting from three months of age [46]. The ASX group
exhibited decreased AD onsets compared to the control group after nine months [45].
Interestingly, a rat study [47] and a monkey study [48] found ASX in brain tissues, in
specific areas such as the cortex and hippocampus, suggesting that this compound can
cross the blood–brain barrier and may exert a direct effect on cognitive function.

Exercise has been recognized as a non-pharmacological intervention for the treatment
or prevention of dementia [49]. These neuronal benefits of exercise on brain function
can be explained through several molecular mechanisms, for example via Irisin-myokine
release [50], via neurotrophic factors such as brain-derived neurotrophic factor (BDNF) [51]
or insulin-like growth factor 1 (IGF-1) [52], by modulating dopamine turnover [53], or by
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improving the cardiovascular system [54]. On the other hand, many nutrients have been
indicated as potential neuromodulators that can regulate synaptic plasticity and thereby
improve cognitive capacity [55]. However, little is known about how dietary nutrients can
increase the well-known positive benefits of exercise on cognitive function.

Surprisingly, one animal study suggests that ASX intake further increases exercise-
induced neurogenesis [42] (Figure 3). The role of newborn neurons in cognitive function is
still under debate, but there is consensus that this phenomenon contributes to neuroplastic-
ity, memory, and learning [56]. Furthermore, this same report suggests that the additive
effects of exercise and ASX on enhancing neurogenesis are mediated by brain-derived
leptin signaling [42]. Leptin is mainly known as a hormone responsible for controlling food
intake, but its role on cognitive function and cognitive decline has also been extensively
investigated [57]. The main molecular mechanism of leptin’s effects on learning and mem-
ory can be explained by its capacity to increase hippocampal synapses and plasticity [57].
Although more studies are necessary to confirm the effects of ASX on leptin metabolism, the
effects of exercise training on leptin are already well established [58]. Therefore, improve-
ment of cognitive function might be a promising research field to evaluate the additive or
synergistic effects of ASX and exercise.
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4. Astaxanthin and Exercise: Human Studies

Although animal study results are promising regarding the ergogenic effects of ASX in
sport science, human research data are controversial. Among the human studies examined
for the present review, there are only six studies about ASX supplementation and exercise
(Table 2), all of which tested its ergogenic effects in non-sedentary individuals. Three
revealed no performance improvement with ASX [59–61], two did reveal performance
improvement (cycling time-trial test) [62,63], and the final one revealed only an antioxidant
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effect [64]. Interestingly, a low dosage (4–12 mg/day) appears to be more promising than
a higher dosage (20 mg/day). The duration of ASX supplementation was between one
and twelve weeks. Interestingly, one study suggests that a short duration (one week) is
enough to increase the time to exhaustion [63]. It is worthy of note that all ASX used in the
human studies presented here were from natural sources and not synthetic. However, due
to the low number of studies, at present, it is not possible to draw conclusions about the
ergogenic effects of ASX in humans.

Table 2. Human studies.

Author (Year) Subjects Intervention Primary Outcome Results

R.J. Bloomer (2005) Resistance-trained males 4 mg/d, 3 weeks Muscle performance No difference [59]

C. P. Earnest (2011) Amateur
endurance-trained males 4 mg/d, 4 weeks TT performance Improved

performance [62]

B. Djordjevic (2012) Male elite soccer players 4 mg/d, 12 weeks Redox status Stress oxidative
prevention [64]

P.T. Res (2012) Well-trained male cyclists
or triathletes 20 mg/d, 4 weeks TT performance No effect [60]

L.J.J. Klinkenberg (2013) Well-trained male cyclists 20 mg/d, 4 weeks Redox status No effect [61]

D.R. Brown (2021) Trained male cyclists 12 mg/d, 1 weeks TT performance Improved
performance [63]

TT = time trial.

As expected, animal studies have revealed more promising results. This is common
in translation studies because the number of possible confounding factors is reduced in
animal research. Another explanation may be due to the fitness level of participants in the
research presented here. All studies tested ASX supplementation in non-sedentary subjects
engaged in high-level protocol training. Therefore, ASX supplementation in sedentary
subjects engaged in low to moderate training protocols should be tested.

The weak evidence for the effects of ASX supplementation in human studies may be
partially explained by ASX’s bioavailability. Generally, carotenoids have low bioavailabil-
ity, and this is also true for ASX [65–70]. The absorption, distribution, metabolism, and
excretion of ASX are mainly reported in animal studies rather than human studies [71].
Since ASX bioavailability differs between rats and humans [72], it is difficult to extrapolate
the main existing data to clinical trials. Moreover, human studies are controversial since
many factors can influence ASX bioavailability, such as oil intake [73], ASX esterifica-
tion [66], diet, and smoking habits [74]. Therefore, more human studies are necessary to
completely understand ASX dynamics and kinetics in order to establish the optimal intake
or supplement dosage.

Another possible reason for the lack of evidence in human studies is linked to the
redox status dynamic of exercise physiology. Robust evidence emphasizes the importance
of exercise-induced oxidative stress as a molecular signal trigger to promote long-term
exercise adaptations [75]. Furthermore, the attenuation of this oxidative stress stimulus
via antioxidant supplementation seems to mitigate exercise performance improvements.
Therefore, it is expected that a strong antioxidant approach in the sports field should be
undertaken with caution [75].

There were no human studies found that evaluated the effect of ASX supplementation
alone or that had a sedentary control group. Consequently, it is difficult to analyze the
possible interactions between the two interventions. Nevertheless, it is premature to
assume that ASX and exercise do not interact in humans. First, many studies have been
performed with the goal of increasing ASX bioavailability [65–70]. Therefore, it is expected
that in the future new ASX formulations will provide better outcomes. Second, ASX
and exercise paradigms should be also be tested under different conditions rather than
exercise performance only: for instance, cognitive function. Third, as mentioned above, the
non-trained individual may exhibit a strong response to a training and supplementation
configuration. For these reasons, the scientific community should continue performing
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clinical trials in order to increase evidence for the combined effect of ASX and exercise
in humans.

5. Overview of the Current Scientific Literature

Exercise training and ASX intake promote similar physiological modulations that
induce the hypothesis of an additive or synergistic effect when both are applied simultane-
ously. For instance, ASX intake and exercise are potential non-pharmacological interven-
tions for the prevention or treatment of several chronic non-communicable diseases, from
metabolic diseases to neurodegenerative diseases [15,76]. Moreover, basic studies point to
ASX as an ergogenic supplement that enhances exercise performance [77], though positive
results in human studies remain scarce [75]. However, a more prominent additive effect
between exercise and ASX might be related to cognitive domains. The beneficial effects
of exercise on cognitive function are well known [78], and many molecular mechanisms
have emerged to explain this phenomenon. On the other hand, ASX’s effects on the brain
have also been targeted for investigation due to its neuroprotective characteristics [77].
Recently, a large study investigating a multifactorial approach to the prevention of de-
mentia was performed. To summarize the study’s results, targeting more than one risk
factor simultaneously seems to be the best way to fight cognitive decline [79]. Therefore,
future research should make an effort to understand how multiple interventions work in
an additive or synergic manner that strengthens the potential therapeutic effects of each
individual lifestyle factor alone.

In the current scientific literature, several papers are related somewhat to ASX and
exercise regimes. The main purpose of this review was to investigate the potential ad-
ditive or synergistic effects of both interventions, given their similar primary outcomes.
Unfortunately, studies that investigated potential interactions are scarce. The difficulty of
analyzing the combination of both intervention effects may partially explain this lack of
evidence. To explore this, researchers should first establish the effects of each intervention
alone; after that, it is necessary to find a statistical difference between the groups for which
both interventions are simultaneously applied. Another challenge is that the synergistic
effects must statistically overcome the strong effects of exercise training alone.

Four extensive reviews about ASX have been published in the online database. Al-
though all of these reviews compiled excellent original investigations of ASX effects in
different fields of study, the authors always concluded that more investigation was needed
to ensure the best ASX supplementation protocol needed in order to achieve the most
efficient effects. However, the more optimistic conclusion about ASX supplementation
among the reviews is regarding its neuroprotective effects (Table 3).

Table 3. Review studies.

Author (Year) Purpose of the Study Practical Value

S. A. Mason (2020)

The authors performed an extensive and critical literature
review regarding the most common antioxidant

supplements for athletes (e.g., ASX, catechins, curcumin,
quercetin, resveratrol, vitamin C., etc.)

After considering ASX evidence, the authors
concluded that there is a lack of evidence to

support it as a supplement [75]

D. R. Brown (2018)

In this review, the authors rigorously interpreted scientific
literature regarding the ergogenic effects of ASX.

Although they recognized the promising data found in
in vitro and in vivo research, human studies were

not satisfactory.

Their final message was that future
investigation is needed regarding ASX

ergogenic effects in humans [31].

B. Grimmig (2017)
In this narrative review, the authors introduced a wide
range of evidence from basic studies to clinical trials for

the possible effects of ASX on cognitive function.

After the discussion, the authors conclude
that ASX is a promising therapeutic agent for

neurodegenerative diseases [77].

J.P. Yaun (2011)
Using a broad approach, ASX’s biological effects were

reviewed. The authors summarized the scientific evidence
for ASX’s effect on several disease conditions.

Finally, the authors stated that although it is
encouraging, more extensive and well-

controlled clinical trials are necessary [15]
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6. Conclusions and Perspectives

Overall, the majority of studies have tested the effect of ASX supplementation on
exercise performance parameters. No synergistic effects have been found. However, the
most promising effect of ASX and exercise interacting in an additive manner might be
related to cognitive function. This new finding may open up an original area of research:
the additive physiological function of nutrition and exercise for improving brain function.
Unfortunately, little is known regarding the interaction of ASX and exercise for many of the
other well-known physiological changes caused by both interventions separately (Figure 4).
Therefore, more studies investigating exercise intervention plus ASX intake are warranted.
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