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Erythropoietin dampens injury-induced microglial motility

Miso Mitkovski'®, Liane Dahm??, Ralf Heinrich®, Mathieu Monnheimer?, Simone Gerhart?, Judith Stegmdiller*®, Uwe-Karsten Hanisch®,

Klaus-Armin Nave®’ and Hannelore Ehrenreich®®

Traumatic brain injury causes progressive brain atrophy and cognitive decline. Surprisingly, an early treatment with erythropoietin
(EPO) prevents these consequences of secondary neurodegeneration, but the mechanisms have remained obscure. Here we show
by advanced imaging and innovative analytical tools that recombinant human EPO, a clinically established and neuroprotective
growth factor, dampens microglial activity, as visualized also in vivo by a strongly attenuated injury-induced cellular motility.
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INTRODUCTION

Microglia are essential mediators of innate immunity in brain
providing constant surveillance and protection via rapid reaction
to homeostatic disturbances. Enduring microglia (over)activation,
however, may foster neurodegeneration.'™ Recently, we reported
a bilateral increase in activated microglia in the brain 24 hours
after a small, standardized, unilateral parietal cortical cryolesion
in juvenile mice, which persisted for at least 1 year and was
associated with progressive global brain atrophy and cognitive
decline. Intriguingly, early treatment with recombinant human
erythropoietin (EPO) prevented this increase as well as the
downstream neurodegenerative consequences.>®

Erythropoietin has been recognized for nearly two decades in
both preclinical and clinical studies as a potent neuroprotective
and neuroregenerative growth factor with a multifaceted,
hematopoiesis-independent action profile® The present paper
has been designed to test the hypothesis that EPO might
modulate microglial motility.

MATERIALS AND METHODS

Materials and methods with associated references as well as four
videos with legends are provided in the Supplementary
information on the JCBFM website.

RESULTS AND DISCUSSION

We first tested in vivo the hypothesis that EPO might modulate
microglial motility. Using CX3CR1* %" mice, we performed our
standardized right parietal cortical cryolesion and injected EPO or
placebo intraperitoneally immediately thereafter. At 24 hours later,
we compared in vivo microglial process protrusion before (‘basal’)
and upon laser-induced microinjury in the contralateral (left)

parietal cortex. Microglia respond strongly with goal-directed
process movement to laser injury (Supplementary video 1).”% This
intense response was dampened under EPO compared with
placebo. In contrast, basal movements were similar between
treatment groups (Figures 1A-C).

Next, we wondered whether the effect of systemically injected
EPO on microglia would be reproducible in a less complex system,
i.e, primary murine microglia-astrocyte mixed cultures, and thus
be clearly independent of hematopoiesis. We developed an
in vitro method of quantifying microglia movements upon laser-
induced microinjury. To first characterize the activity state of the
cultures under our experimental conditions, immunocytochem-
istry was performed with EPO or placebo, again added 24 hours
before the planned time point of injury. Under placebo conditions,
mainly ramified microglia in surveilling state (94% with only weak
Ibal staining) were seen. ATP, added for 2 hours as in vitro lesion
equivalent’””'® provoked strong Ibal and L-citrulline staining
(Figures 1D-H). Expectedly, the L-citrulline signal, readout of
inducible nitric oxide formation, was reduced under EPO
(Figure 11)."" Both microglial process motility (Figures 1J and 1K;
Supplementary video 2) and cell migration (Figure 1L; Supple-
mentary video 4), observed upon in vitro laser microinjury in this
coculture, were attenuated by EPO.

Multiple cell types in the brain are known to express EPOR (EPO
receptor) and may contribute to the measured EPO effect on
microglial motility. To prove a direct effect of EPO on microglia, we
further reduced complexity by using pure microglia cultures
(=99%). This allowed us to quantify the effect of EPO on microglial
migration in the Boyden chamber under the influence of ATP
(again as injury model). The EPOR mRNA expression declined
from very prominent expression at seeding throughout the
4-hour experiment, likely related to the settling of the initially
highly stressed cells (Figure 2A). Again, EPO acted on microglial
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motility, diminishing ATP-stimulated migration by up to 50% active microglial Rac1 is associated with numerous neurodegen-
(Figures 2B-D). erative diseases,'”> we determined the activation state of this Rho

We next searched for first hints regarding molecular mediators GTPase 3hours after seeding, the time point at which the
of this striking motility reduction. Taking into consideration that migration curves under EPO versus placebo start dissociating
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Figure 1.  Erythropoietin (EPO) effects on cortical microglia in vivo and on microglia in mixed cultures. In vivo: (A) Microglial processes converge
onto a central laser lesion (colors represent time). Lower left and right insets illustrate pre- and post-laser lesion views (see Supplementary Video 1).
(B) Process movements were traced (arrow in A shows exemplary path) and sampled to create kymographs, whose slope corresponds to the
process protrusion speed. (C) Laser lesion-induced process protrusion was higher than basal motility, but reduced by 24 hours EPO pretreatment
(5 1U/g intraperitoneally), compared with placebo (PL). Numbers of analyzed processes from 4 to 5 independent experiments each are given in the
bars. Mean + s.e.m. presented, **P < 0.01, ***P < 0.001 (two-tailed t-test). In vitro: (D to G) Representative images of surveilling (placebo, PL) and ATP-
stimulated microglia: EGFP fluorescence (D, inverse signal), Iba1 (E), L-citrulline (F), overlay plus DAPI (G); arrows denote a weakly Ibal-stained,
L-citrulline-negative ramified microglia; stars designate a strongly Iba1+/L-citrulline+ cell. (H) Increase in strongly Iba1+/EGFP+ microglia under ATP
(300 umol/L, 2hours) and (I) reduction of ATP-stimulated L-citrulline by EPO pretreatment (31U/mL, 24 hours); numbers of independent
experiments are given in the bars. (J) Microglia send processes to a central laser lesion (colors represent time). Insets correspond to pre- and post-
laser lesion time points. (K) Kymograph-derived speed measurements (arrow in J shows exemplary path, see Supplementary videos 2 and 3)
indicate increased process protrusion rate upon laser lesion, which was reduced under EPO (3 [U/mL, 24 hours). (L) Under EPO, a lower percentage
of microglia migrates toward the laser lesion (Supplementary video 4). Numbers in bars refer to analyzed processes (K) or independent cultures (L).
Mean + s.e.m. presented, *P<0.05, **P<0.01, ***P<0.001 (one- or two-tailed t-tests).
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Figure 2. Erythropoietin (EPO) effects on pure microglia cultures. (A) EPO receptor (EPOR) mRNA levels decrease over time, independent of
ATP. (B) Increasing number of ATP stimulated microglia (expressed in fold change of the placebo condition) passing through Boyden chamber
membranes after 1, 3, and 4 hours, with EPO-treated cells showing less migration (area under the curve P=0.02), (C) most obvious at 4 hours.
(D) Boyden membrane slide mount with representative fields-of-view of Boyden chamber membranes of the Hoechst-33342-stained nuclei
(inverted) at 4 hours of placebo (PL) or EPO-pretreated microglia + ATP exposure. (E) EPO pretreatment reduces ATP-stimulated Rac1 GTPase
activation at 3 hours; representative western blots. (F) Proliferation or (G) cell death in these cultures. (H) MAPK signaling, investigated by
monitoring pERK/ERK after 10 minutes, 1 hour, 2 hours, and 3 hours of 300 umol/L ATP and 3 IU/mL EPO or PL, shows accelerated inactivation
by EPO. (I) EPO decreased microglial water soluble tetrazolium-1 (WST-1) conversion starting with the 2-hour ATP stimulus. Numbers of
experiments are given in the bars. Mean + s.e.m. presented, *P < 0.05, **P<0.01, ***P<0.001 (two-tailed t-test).
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(Figure 2B). Rac1 signaling is a critical component in the formation of
lamellipodia, one of the earliest structural events in microglia
motility.'*'* ATP led to the expected increase in active/total Rac1,"
which was attenuated by EPO (Figure 2E). Erythropoietin did not
influence proliferation of microglia in this context but slightly reduced
cell death in the basal (nonATP) condition (Figures 2F and 2G).

Since EPO was shown to inhibit overactivation of MAPK in
astrocytes,'® and MAPK signaling in turn is associated with Rac1
activity,'>'” we determined the pERK/ERK ratio over time. Under
EPO, the inactivation of the ERK pathway after ATP stimulation was
accelerated, leading to a reduced pERK/ERK ratio at the 2-hour
time point (Figure 2H). This acceleration could be a consequence
of EPO-induced Rac1 inhibition, or indicate a mediator role of ERK
for the reduced Rac1 activity under EPO.'*'” We also noted
that EPO decreased ATP-stimulated WST-1 (water soluble
tetrazolium-1) conversion in microglia (Figure 2I), suggesting
mitigated metabolic activity and lower superoxide production
under EPO in conditions of injury.'®

At three different levels of experimental complexity, ranging
from in vivo to in vitro, we showed the capacity of EPO to reduce
motility as an important feature of microglial (over)reaction to
damage. This mechanism may underlie in part the beneficial
effects observed for EPO in neurodegenerative diseases.
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