
Innovations and Controversies in Brain Imaging of Pain: Methods and Interpretations

Review

Neuroimaging-based pain biomarkers: definitions,
clinical and research applications, and evaluation
frameworks to achieve personalized pain medicine
Sean Mackeya,*, Henry T. Greelyb, Katherine T. Martuccic

Abstract:
One of the key ambitions of neuroimaging-based pain biomarker research is to augment patient and clinician reporting of clinically
relevant phenomena with neural measures for prediction, prognosis, and detection of pain. Despite years of productive research on
the neuroimaging of pain, such applications have seen little advancement. However, recent developments in identifying brain-based
biomarkers of pain through advances in technology and multivariate pattern analysis provide some optimism. Here, we (1) define
and review the different types of potential neuroimaging-based biomarkers, their clinical and research applications, and their
limitations and (2) describe frameworks for evaluation of pain biomarkers used in other fields (eg, genetics, cancer, cardiovascular
disease, immune system disorders, and rare diseases) to achieve broad clinical and research utility and minimize the risks of
misapplication of this emerging technology. To conclude, we discuss future directions for neuroimaging-based biomarker research
to achieve the goal of personalized pain medicine.
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1. Introduction

Magnetic resonance imaging (MRI) has opened a window to the
brain by allowing noninvasive study of both structure and
function. Neuroimaging has elucidated how pain processing is
linkedwithin the central nervous system (CNS); how it is disrupted
in chronic pain; and how those disruptions occur with the
chronification of pain.18,20,62,63,67,75,108 However, to date,
functional MRI (fMRI) has provided minimal direct clinical
application for pain.

Identifying and validating neuroimaging-based biomarkers and
surrogate endpoints for painwould beuseful for clinical and research

communities in several ways: (1) prognosis (ie, for indicating the likely

progression of pain after injury or surgery,5,74 or the progression from

chronic pain to high-impact chronic pain57,58,102), (2) identifying likely

patient responders to a particular treatment (ie, prediction), (3)

identifying a specific pain disorder (ie, diagnosis), (4) identifying

targets for therapeutic intervention, and (5) defining surrogate

endpoints to augment clinical endpoints and predict clinical benefit

(N.B. Food and Drug Administration [FDA] validation of surrogate

endpoints requires a different validation process than biomarkers,

but are listed here in the context of biomarkers). Valid neuroimaging-

based biomarkers of pain would also be useful in providing evidence

in the legal system. The benefits and limitations of machine learning

and classification techniques that can assess neuroimaging data for

meaningful patterns of neural structure and function have been

reviewed elsewhere.86 Preliminary brain biomarkers have been

identified in individuals experiencing acute and chronic

pain.3,11,12,16,50,51,56,61,103,110,111,114 Potential future applications of

this technology are exciting; however, the field of brain biomarkers of

pain is still in its early phases. As such, we should not prematurely

apply neuroimaging biomarkers of pain generally for clinical or legal

purposes, until proper validation is performed. Although the task of

formal validation is large, we can learn from other fields how to

systematically approach the validation of neuroimaging pain

biomarkers. Finally, as the field evolves, it is important to consider

ethical, social, and legal implications of future validated biomarkers

and how or whether they should be used, as previously

reviewed.19,21,35
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Our goals of this article are to (1) review the different types of
potential neuroimaging-based biomarkers, their clinical and
research applications, and limitations and (2) describe frame-
works used in other fields (eg, genetics, cancer, cardiovascular
disease, immune system disorders, and rare diseases) for the
future validation of pain biomarkers to achieve broad clinical and
research utility and minimize the risks of misapplication of this
emerging technology. Although we focus predominantly on MRI-
based pain biomarkers, there are a variety of imaging methods to
characterize structure (eg, quantitative morphometry, white
matter “connectivity,” gray matter ultrastructure, and cytoarch-
itectonic mapping) and function (eg, physiology [cerebral blood
flow], metabolism, receptor distribution, gene and protein
expression, electrophysiology, and functional connectivity). Of
note, the purpose of this article is not to provide a comprehensive
review of brain imaging in clinical and experimental pain or of
brain-based biomarkers for pain. For those purposes, there are
several recent comprehensive reviews.19,63,64,72,73,98,109,112

2. TheBESTway forward in developing neuroimaging
biomarkers for pain: definitions, applications,
and utility

Pain is a complex physiological and psychological experience,70

making it both subjective and inherently difficult to study and
treat. Individual variability in pain perception poses additional
challenges to assessing and treating pain.17,29,76 The most
common means to determine whether an individual has pain in
both research and clinical settings is subjective reporting. For
example, rating pain on a scale from 0 to 10 is an extensively
validated and useful measure.79 However, in some clinical
situations, individuals are unable to report their pain, such as in
very young, elderly, infirmed, and unconscious patients. In these
cases, objective biomarkers of pain could be helpful.

It is of importance to first clearly and precisely define the types
of biomarkers to assure effective and unambiguous communi-
cation. The 2016 FDA-NIH Biomarker Working Group glossary,
BEST (Biomarkers, EndpointS, and other Tools Resource),7

defines a biomarker as “a characteristic that is objectively

measured and evaluated as an indicator of normal biological
processes, pathogenic processes, or pharmacologic responses
to a therapeutic intervention.” Thus, a biomarker is not an
assessment of how an individual feels, functions, or survives—the
characteristics of which more appropriately defines a clinical
endpoint. The BEST glossary also provides a framework for
conceptualizing the multiple types and uses of biomarkers. We
draw heavily from the BEST Working Group and provide several
of these categories of biomarkers and their potential application
to clinical, research, and legal aspects of pain below. Althoughwe
focus on neuroimaging biomarkers of pain in this review, the
concepts apply to other potential biomarkers of pain (eg,
molecular, histologic, radiographic, or physiologic). Figure 1
summarizes the biomarker definitions.

2.1. Diagnostic biomarkers

This type of biomarker detects or confirms the presence of
a condition or identifies individuals within a specific subtype of
a condition.7 Pertinent to neuroimaging-based pain biomarkers,
the research field has primarily focused on developing diagnostic
biomarkers. Our group’s initial effort was to address a simple
question of whether a pattern or signature of brain activity
identified in a training set could be used to accurately determine
whether individuals (not part of the training set) were experiencing

pain to a thermal stimulus.12 For this goal, we trained a linear
support vector machine learning algorithm to distinguish painful
from nonpainful stimuli with more than 80% classification
accuracy. Subsequently, Wager et al.103 demonstrated the ability
of using a trained brain signature to distinguish between brain
states experiencing painful heat and nonpainful warmth; pain
anticipation and pain recall; physical and social pain; physical
pain and the empathy of pain49; and the presence or absence of
pain self-regulation.110 Other groups have extended these
general concepts and methodology to distinguish the presence
or absence of various chronic pain states, including but not
limited to chronic low back pain,100 fibromyalgia,56 irritable bowel
syndrome,53 pelvic pain,3,50 and trigeminal neuralgia114; further
details can be found in the following reviews.73,109

Along with a rapid growth in the number of research studies
focused on neuroimaging-based pain detection, the field has
sparked much controversy. Researchers have debated whether
chronic pain is a disease of the brain,95 whether brain-derived
diagnostics (ie, identifiers of disease) of chronic pain are plausible
or would be beneficial,84 and whether neuroimaging surrogate
measures of pain are useful.59,85 Some argue that “brain imaging
adds neuroanatomical and neurophysiological information, not
validity, to pain reports”95 and question whether “these bio-
markers “mark” the pain itself or just the neural causes and
correlates of pain?”85 One review95 argues that neuroimaging
findings merely reflect one part of a chronic pain condition, which
affects the person as a whole (across many body systems and
functions, both physiologically and psychologically). Another
concern for the use of neuroimaging-based pain biomarkers is
the concept of reverse inference in that brain biomarkers may not
take into account how selectively an area is activated by the
mental process in question (eg, pain).77 Based on these valid
concerns, neuroimaging findings should not and cannot be
expected to represent the sole source, cause, or experience of
pain. Furthermore, we should be cautious in generalizing findings
until there are appropriately well-controlled replication studies.

In addition, researchers, clinicians, and ethicists have raised
the issue of potentially detrimental outcomes from false
negatives leading people truly suffering from pain to be
unjustifiably denied treatment or compensation. Similarly, a false
positive could subject a person to unnecessary and risky
treatments. There is also the concern of false-negative findings
compromising doctor–patient, employee–patient, or
family–patient trust.21

These concerns are understandable. However, the goal of
neuroimaging biomarkers of pain should not be to replace patient
self-reporting, but rather to supplement the information from self-
reporting. In other words, we do not normally need an MRI to tell
us a patient is in pain when we can just ask them. Although the
initial studies of diagnostic brain biomarkers of pain were
conceptually simple (but methodologically complex), they were
necessary to establish the research infrastructure and methods
upon which this technology could be expanded to provide true
clinical and research utility. We provide some examples of the
utility of diagnostic pain biomarkers below.

The practice of pain medicine requires accurate diagnosis of
specific pain conditions. Diagnostic biomarkers can help
clinicians determine whether a patient has a particular medical
condition for which a treatment may be indicated. For example,
imagine a 44-year-old woman who falls and injures her wrist. She
subsequently develops burning pain in her hand and wrist with
swelling and color changes. This presents a clinical challenge to
distinguish whether such a presentation is complex regional pain
syndrome (CRPS)—a terribly disabling neuropathic pain
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condition—or simply a delay in healing after injury, as injury itself
leads to similar signs and symptoms as CRPS. A brain biomarker
to detect the presence or absence of CRPS could be clinically
useful to target appropriate treatment in those with CRPS and
avoid overtreatment in those without.

As is becoming increasingly appreciated, many chronic pain
conditions have subtypes or clusters with markedly different
prognoses or responses to a specific treatment. Researchers can
use diagnostic biomarkers in clinical trials evaluating chronic pain
subtypes to select patients more likely to respond to a specific
treatment (ie, to ultimately serve as a predictive biomarker).
Finally, the brain regions and networks identified by these
biomarkers can serve as therapeutic targets for pharmaceuticals,
mind–body interventions, transcranial magnetic stimulation, or
deep brain stimulation. For example, Kutch et al. pooled data (n5
1079) across 7 academic sites as part of the NIHMultidisciplinary
Approach to the Study of Chronic Pelvic Pain Research
Network54 to compare those with urological chronic pelvic pain
syndrome (UCPPS) with pain-free controls and individuals with
fibromyalgia. A subset of individuals (n 5 182) underwent fMRI
and structural MRI. Individuals with UCPPS reported pain ranging
from localized (pelvic) to widespread (throughout the body). The
authors found that individuals with widespread UCPPS had
increased brain gray matter volume and functional connectivity
involving sensorimotor and insular cortices.50 These results
indicate that individuals with localized UCPPS may represent
a different phenotype than those with more widespread pain and
may respond differentially to treatment. Development of a brain-
based biomarker of pain to better classify subtypes of pain may
allow for more efficacious targeting of specific treatments.

For diagnostic brain-based biomarkers to have true clinical and
research utility, we first need to assess their performance. A

perfect diagnostic biomarker test would detect 100% of all
patients with a disease or disease subset (ie, 100% sensitivity for
individuals with the disease who test positive) and detect 100% of
patients who do not have the disease (ie, 100% specificity for
people without the disease who test negative). However, no
biomarker test has perfect sensitivity and specificity, thereby
requiring tradeoffs among these features. Additional measures of
diagnostic biomarker performance include positive predictive
value (ie, the proportion of thosewho tested positive who have the
disease or condition) and negative predictive value (ie, the
proportion of those who tested negative who do not have the
disease or condition).7 The diagnostic biomarker must have
appropriate analytical validity (ie, the performance of the detection
measure itself). For instance, analytical validity must address: (1)
the dynamic range of the detection method (will it pick up
a positive signal within the range of variability), (2) the precision of
the detection method within the full range of the population of
interest, and (3) the accuracy of the detection method. This can
be a complex problem for imaging biomarkers and especially for
signatures which use an algorithm as the actual detection
method. Finally, the biomarker must be tested and validated in
large samples of the population to which it is intended to be used
to assure generalizability. This emphasizes the importance of
incorporating base rates or disease prevalence in assessing the
generalized performance of a diagnostic biomarker for broad
clinical or research purposes.

The concepts of applying epidemiologic base rates, or disease
prevalence, to assess the validity of a diagnostic test in a general
population are well-founded applications of Bayes theorem. In
fact, over 60 years ago, Meehl and Rosen69 described how base
rates impact the diagnostic utility of a test, noting that utility is
strongly influenced by the base rate of the diagnosis in the

Figure 1. Biomarker Definitions with Context of Use Examples. Adapted from the 2016 FDA-NIH Biomarker Working Group glossary, BEST (Biomarkers,
EndpointS, and other Tools Resource)1. FDA, Food and Drug Administration.
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population of interest.91 Classic epidemiologic studies have
demonstrated that, contrary to intuition, tests with more than
90% sensitivity and specificity can perform poorly overall when
the base rate of the condition is low—a phenomenon known as
the “base rate fallacy.”82 This issue was raised in an editorial by
Robinson et al.,83 in which the authors critique multiple brain
imaging studies’ results for not including base rates. However, in
this stage of research discovery, the use of base rates is
premature and should be saved for studies that assess clinical
validity in a general population (as described below in the section
on ACCE), rather than be used in carefully controlled laboratory
environments. The following study illustrates these points. In Ung
et al.,100 we applied machine learning techniques to distinguish
individuals with chronic low back pain vs carefully matched
healthy controls, and then defined the neural correlates re-
sponsible for this distinction. The subjects chosen with low back
pain were narrowly screened to have little to no significant
emotional distress, no current medications, no radicular symp-
toms, and no other sites of pain. The advantage of this narrow
selection was to reduce confounds and allow for scientific
discovery. In other words, the application of epidemiologic base
rates would have been inappropriate for the purposes of this and
other similar studies seeking to develop and refine methods and
techniques. It is important to note that these subjects with low
back pain bear little resemblance to real-world patients with
chronic low back pain seen in a clinical setting, limiting the
generalizability of the results. Fortunately, the field is making rapid
advances that will soon allow diagnostic brain-based biomarkers
to be tested in the general population. Until then, application of
these diagnostic biomarkers for clinical, commercial, or legal
applications is premature.19

2.2. Prognostic biomarkers

Prognostic biomarkers can indicate an increased (or decreased)
likelihood of a future clinical event, disease recurrence, exacer-
bation of a painful condition, or progression in patients with pain.7

Neuroimaging-based prognostic biomarkers of pain hold great
potential in identifying patients likely to develop persistent pain or
opioid use after injury. For example, researchers have investi-
gated the use of resting state functional connectivity after an
acute back pain injury to predict persistence of pain.5,42 These
authors noted that when pain persisted, brain gray matter density
decreased; in addition, greater functional connectivity of the
nucleus accumbens with prefrontal cortex predicted pain
persistence.5,42

Prognostic biomarkers could also be useful in defining the
natural history of a painful condition or disease progression. For
example, as part of a multicenter clinical trial to characterize
chronic pelvic pain, Kutch et al.51 used resting state functional
connectivity to significantly predict short-term (3-month) pain
reduction in individuals with chronic pelvic pain with 73.1%
accuracy (69.2% sensitivity and 75.0% precision). In addition,
prognostic biomarkers could aid in targeted clinical trials by
selecting patients more likely to have pain conditions at high risk
of exacerbation and therefore thought more likely to respond to
a particular treatment.

2.3. Susceptibility/risk biomarker

A susceptibility/risk biomarker is one associated with an in-
creased, or decreased, risk of developing a chronic pain
condition in an individual who does not yet have that condition.
This contrasts with prognostic biomarkers noted above, which

are used to indicate an increased or decreased likelihood of
a clinical event in an individual who already has the painful
condition.

At the time of this writing, we were unable to identify any
published research involving neuroimaging to track healthy
people without pain and use brain biomarkers to predict who
will develop chronic pain. The NIH is planning on funding large
scale multicenter trials to identify such susceptibility/risk bio-
markers inmusculoskeletal pain and after surgery. These trials will
include neuroimaging, and the results should yield valuable
biomarkers to identify who is vulnerable to the development of
chronic pain. Here, we will use examples from other non-
neuroimaging fields to illustrate the utility of such biomarkers in
predicting risk of developing chronic pain after surgery, injury,
disease, or idiopathically.

We and other researchers have identified preoperative risk
factors for the development of persistent pain and opioid use after
surgery.14,38,40,41 Recently, Hah et al.39 used a k-means
clustering approach in 422 patients undergoing surgery to
identify risk predictors of who would develop persistence of pain
and opioid use and delayed recovery postoperatively. They
identified a possible uniform predictor of disparate surgical
outcomes long after hospital discharge. With accurate neuro-
imaging susceptibility/risk biomarkers, clinical trials could test
therapeutic interventions in those most likely to develop
persistent pain or opioid use, thereby sparing those at less risk
from potentially untoward adverse events from unnecessary
intervention.

The Orofacial Pain: Prospective Evaluation and Risk Assess-
ment (OPPERA) study was an NIH-funded, multicenter, cross-
disciplinary investigation of the development of temporomandib-
ular disorder (TMD).30 The primary goals of the OPPERA study
were to identify putative psychological and physiological risk
factors, clinical characteristics, and related genetic mechanisms
that influence the development of chronic orofacial pain
associated with TMD. In this prospective inception cohort study
of 3263 individuals with no current or previous experience of
TMD, the investigators collected a comprehensive battery of
baseline and follow-upmeasures to predict those individuals who
ultimately developed TMD. In addition to multiple psychosocial
factors predicting development of TMD, the authors found 6
single-nucleotide polymorphisms as risk factors for chronic
TMD.4,92 Through the Helping to End Addiction Long-term
(HEAL) project, the NIH is currently initiating a multicenter trial to
characterize risk factors and define susceptibility/risk biomarkers
(including neuroimaging) to predict which individuals develop
persistent pain after surgery. These initiatives and others aimed at
identifying susceptibility/risk biomarkers may provide information
that would allow for earlier identification of individuals at risk of
developing persistent pain conditions and indicate modifiable
factors (eg, diet, exercise, and behavioral change) that could be
influenced to mitigate or reduce the susceptibility of chronic pain.

2.4. Predictive biomarkers

Predictive biomarkers are used to identify those individuals who
are more likely to respond to a specific treatment.7 Biomarkers
that can predict treatment responses are critical for the de-
velopment and success of precision pain medicine
approaches.13 Predictive biomarkers are typically used in
pharmaceutical and device development to enrich a clinical study
population for a subsequent randomized controlled trial
(RCT).6,87,99 To date, most research in predictive biomarkers
has been in the field of genetics for the prediction of cancer
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treatment response. For example, in a study of cancer treatments
approved by the FDA from 1998 to 2013, researchers demon-
strated that a biomarker-based approach to clinical trials of
anticancer drugs was associated with improved efficacy and
longer progression-free survival relative to conventional trials.87

Two examples from psychiatry illustrate the potential of
neuroimaging-based predictive biomarkers to predict treatment
responses. Amygdala reactivity and early life stress (ELS) both
have been strongly implicated in themechanisms of depression in
animal and human models.23,31,33 Researchers integrated
neuroimaging and ELS measures within a controlled trial of
antidepressant outcomes.33 They demonstrated that the in-
teraction between ELS and amygdala engagement predicted
functional remission on antidepressants with more than 80%
cross-validated accuracy. In depressed people exposed to high
ELS, a greater likelihood of remission was predicted by amygdala
hyperreactivity to socially rewarding stimuli, whereas for those
with low-ELS exposure, amygdala hyporeactivity to both re-
warding and threat-related stimuli predicted remission.33 Thus,
amygdala reactivity and ELS are biobehavioral biomarkers for

predicting functional remission in depression.
Like many pain conditions, depression is not a unitary disease;

rather, it is a heterogeneous syndrome encompassing subtypes
with varied, co-occurring symptoms and divergent treatment
responses. Drysdale et al. used neuroimaging in a large multisite
sample (n 5 1188) to demonstrate that patients with depression
can be divided into 4 neurophysiological subtypes defined by
distinct patterns of dysfunctional connectivity in limbic and
frontostriatal networks.22 The authors used this clustering to
develop diagnostic biomarkers with high (82%–93%) sensitivity
and specificity for depression subtypes in multisite validation (n5
711) and out-of-sample replication (n 5 477) data sets.
Interestingly, these subtypes could not be differentiated solely
on the basis of clinical features but were associated with differing
clinical-symptom profiles. The researchers used these bio-
markers to predict responsiveness to transcranial magnetic
stimulation therapy (n 5 154), thereby identifying the individuals
most likely to benefit from targeted neurostimulation therapies.22

Predictive biomarkers could help guide go/no-go decisions in
selecting effective analgesics in early human drug development.
Borsook et al. outlined the utility of functional imaging to define
biomarkers to predict efficacy and safety, determine drug–dose
relationships, and provide objective measure of symptom re-
sponse and disease modification.8–10 A more recent example of
this was by Wanigasekera et al.107 who assessed the utility of
fMRI with a capsaicin-induced central sensitization (amechanism
relevant to neuropathic pain) to differentiate an effective
(gabapentin) from ineffective (ibuprofen) treatment and both from
placebo. They found that gabapentin reduced connectivity
between the thalamus and secondary somatosensory cortex,
whereas ibuprofen did not when compared with placebo. They
also determined that the neural activity evoked by hyperalgesia
from the right nucleus cuneiformis and the left posterior insula
was more sensitive than the behavioral pain scores in detecting
a statistically significant difference between gabapentin and
placebo. This work built upon the group’s previous work to
generate and validate a general protocol for neuroimaging-based
assessment of drug activity in the CNS that can be used to
optimize drug discovery and validation.23

Predictive biomarkers would have obvious utility in the clinical
field of pain medicine. Effect sizes for many analgesic efficacy
RCTs in chronic pain are modest at best. Nonetheless, within
each treatment group, there are often clear responders mixed

with nonresponders.13 Neuroimaging-based biomarkers would
be valuable in predicting these responders in an RCT.

The neuroimaging biomarker could be used either to select
patients for participation or to stratify patients into biomarker-
positive and biomarker-negative groups, with the primary
endpoint being the effect in the biomarker-positive group. These
biomarker enriched clinical trials could be used to identify
effective treatments that might otherwise fail if more heteroge-
neous populations were enrolled.

Predictive pain biomarkers would also inform patient care
decisions. Currently, clinicians are faced with a myriad, and
increasing number, of treatment choices for pain including
pharmacologic, psychological, interventional, physical therapy,
complementary and alternative medicine, and self-management
approaches. Unfortunately, outside of clinical experience, clini-
cians often have little information to guide them on treatment
decisions. Predictive pain biomarkers could aid clinical decision-
making in choosing the best treatment(s) for a specific patient
with a specific pain condition under specific environmental
circumstances, such as the role of long-term prescribing of
opioids in chronic noncancer pain, which is one of the most
important pain issues our country is facing.

According to the Centers for Disease Control and Prevention,
opioid misuse, abuse, addiction, and associated overdose
deaths have reached epidemic levels in the United States.15

More than 90 Americans die daily from opioid overdose.93 This
health care crisis exists despite studies showing that long-term
use is increasingly associated with significant negative side
effects, risk of misuse, abuse, and addiction.90,93,94 However,
stable doses of opioids may provide extended pain relief with
limited side effects for a subgroup of individuals.47 Consequently,
a poor risk/benefit ratio in a large patient population may obscure
a positive profile in a subgroup of opioid-responsive chronic pain
patients. Perhaps, one of the most valuable applications of
predictive pain biomarkers would be in predicting those patients
who would respond favorably, and with minimal adverse events,
to opioids—and those who are at increased risk of misuse,
abuse, diversion, and overdose.

The development of neuroimaging-based predictive bio-
markers could transform our care of those in pain. From
optimizing clinical trials to aiding clinical care decisions, predictive
biomarkers are a critical component of realizing the goal of
precision pain medicine.

2.5. Monitoring biomarkers

A monitoring biomarker is used to serially assess the presence,
status, or extent of a medical condition, or to provide evidence of
a treatment or adverse effect.7 This type of biomarker represents
a change in a biomarker value across multiple points in time. As
such, this biomarker category is broad and can include other
types of biomarkers if they are assessed serially. For example,
clinicians could use a neuroimaging monitoring pain biomarker to
serially assess the progression of pain to persistent pain or opioid
use after surgery or injury or the progression from chronic pain to
high-impact chronic pain in an individual.102

2.6. Pharmacodynamic/response biomarkers

A pharmacodynamic/response biomarker is a biomarker whose
levels change in response to an exposure to a medical product or
an environmental agent. A change in a pharmacodynamic/
response biomarker can provide evidence for clinical efficacy or
assess an endpoint related to safety concerns. It can also provide
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clinical decision support for patient management to help de-
termine whether to continue treatment or to adjust dose. In
addition, these biomarkers can be useful for pharmaceutical/
device development by assessing whether a treatment had
a pharmacodynamic/device effect related to a clinical response.
Because of the repeated nature of their assessment,
pharmacodynamic/response biomarkers are also often consid-
ered monitoring biomarkers. For example, tricyclic antidepres-
sants (TCAs) are a class of medications often used to treat
chronic neuropathic pain. Clinicians can monitor blood levels of
TCAs as a pharmacodynamic/response biomarker and use the
results to titrate drug levels to within a therapeutic range.78

Similarly, the corrected QT interval is used as a safety biomarker
to assess potential for drugs such as methadone or TCAs to
induce torsades de pointes, a potentially fatal arrhythmia.

2.7. Safety biomarkers

Safety biomarkers detect or predict adverse drug or exposure
effects.7 Many of the treatments used in pain management,
particularly medications, have undesirable and potentially harmful
or toxic effects. An example of this is the use of TCAs for treating
neuropathic pain, as noted above. Although TCAs can be
efficacious for pain, they can also have adverse effects (eg,
drowsiness, constipation, cardiac arrhythmias and sudden
death, blurred vision, and orthostatic hypotension). A
neuroimaging-based safety biomarker would be useful if it could
predict which treatments would negatively impact which patients
under specific circumstances.

2.8. Need for multimodal biomarkers of pain

It is clear that neuroimaging alone will not capture all of the
variance in models defining diagnostic, predictive, prognostic,
and risk biomarkers. More likely, we will need to combine
neuroimaging and non-neuroimaging data (eg, behavioral,
genotype, phenotype, and longitudinal data) into a multimodal
biomarker of pain. Combining measures of genomics and other
’omics, activity monitors, passively recorded psychometrics, and
quantitative sensory testing with neuroimaging data could
improve the sensitivity and specificity of neuroimaging-based
biomarkers. Figure 2 illustrates the integration of multiple
potential biomarkers and provides a schematic of how these
different types of biomarkers may be applied.

3. A framework for evaluating neuroimaging-based
biomarkers of pain

Neuroimaging-based pain biomarkers must be validated to have
true clinical and research utility. Validation is “a process to
establish that the performance of a test, tool, or instrument is
acceptable for its intended purpose.”7 It is critical to confirm that
a neuroimaging pain biomarker measures what it is intended to
measure and that it predicts or measures the relevant clinical
concept (ie, it has appropriate analytical and clinical validity). A
biomarker must also have clinical utility, in that it provides
information that assists in the care of patients. An essential first
step in evaluating a neuroimaging-based pain biomarker is to
precisely define the brain measures it is intended to assay, the
pain condition of interest, the purpose of the test, and the
population or health care setting in which it is going to be used. In
other words, context is paramount in considering the validity and
utility of a neuroimaging-based pain biomarker to achieve clinical
or research utility.

To formally evaluate a biomarker, we can draw upon other fields
that have developed evaluation frameworks. One such framework
that researchers have successfully adopted in the field of genetic
testing is the ACCE criteria.71,88,115 The ACCE framework was
established by the Centers for Disease Control Prevention Office of
Public Health Genomics to set a standard path for genetic tests to
follow toward clinical and public use.55 After initial research
discovery, the framework includes the ACCE acronym stages of
(1) Analytic Validity (2) Clinical Validity (3) Clinical Utility, and (4) Ethical,
Legal, and Social Impacts37,115 (Fig. 3). The ACCE model includes
a standard set of 44 questions to ensure proper application and to
safeguard against critical social, ethical, and legal issues.37 Although
originally written for the purpose of diagnostic genetic tests, these
questions can be adapted to other types of biomarkers listed in
Section 2. For example, we have adapted these standard questions
to reflect an approach for diagnostic neuroimaging pain biomarkers.

The National Academies of Medicine (NAM) recently com-
pleted a report entitled “An Evidence Framework for Genetic
Testing.”1 In this report, the authors built upon ACCE and other
testing frameworks to refine the notion of analytic validity, clinical
validity, and clinical utility and emphasize the importance of
integrating societal benefit into the evaluation process.1

In 2010, a landmark report from NAM provided a foundation for
evaluating biomarkers and surrogate endpoints.89,104 This report
recommended an evaluation process that included: “(1) Analytical
validation: analyses of available evidence on the analytical
performance of an assay; (2) Qualification (NB: Qualification as
used here is synonymous with clinical utility used in ACCE):
assessment of available evidence on associations between the
biomarker and disease states, including data showing effects of
interventions on both the biomarker and clinical outcomes; and (3)
Utilization: contextual analysis based on the specific use proposed
and the applicability of available evidence to this use. This includes
a determination of whether the validation and qualification
conducted provide sufficient support for the use proposed.”89,104

These steps are interrelated and not separated in time. Therefore,
conclusions in 1 step may require revisions in other steps.

The FDA Center for Drug Evaluation and Research Biomarker
Qualification Program’s mission is to work with external stake-
holders to develop biomarkers as drug development tools.27

Their program outlines a multistep process for a biomarker to be
qualified for drug development. This program relies heavily on the
BEST resource outlined above as a “living” glossary of terms used
in biomarker qualification science and medical product de-
velopment. TheFDA’s program relies heavily ondefining a specific
context of use for the biomarker to be used in drug development.
The FDA defines the Context of Use as a complete and precise

statement that describes the appropriate use of the biomarker
and how the qualified biomarker is applied in drug development
and regulatory review. The context of use statement also
describes important criteria regarding the circumstances under
which the biomarker is qualified. As with the other frameworks
above, the FDA Biomarker Qualification Program involves both
analytical validation and clinical validation for approval. Here, the
FDA defines analytical validation as to “establish that the
preanalytical considerations and performance characteristics
acceptably support the biomarker’s context of use,” while clinical
validation is to “establish that the biomarker acceptably identifies,
measures, or predicts the concept of interest.” Two important
points about the FDABiomarker Qualification Program is inwhat it
does not do. Specifically, the program does not imply the test/
assay has been reviewed by the FDA and cleared or approved for
use in patient care. In addition, the qualification does not qualify
the biomarker for use in clinical practice.
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In summary, there is more commonality with these frameworks
than differences. They all require analytical and clinical validity.
The differences are more to do with the intended purposes of the
framework, with for instance, the FDA Biomarker Qualification
Program aimed more at drug development and the others having
a broader utility.

3.1. Analytical validity

The analytical validity of a neuroimaging-based biomarker
refers to “assessing [an] assay and its measurement perfor-
mance characteristics and determining the range of conditions

under which the assay will give reproducible and accurate
data.”105 In this context, an assay is a method to analyze or
quantify brain activity or a structure in an individual or animal.
Analytical validity is concerned with assessing the perfor-
mance of a biomarker test in a laboratory setting as opposed to
the clinic or general population. Here, we need quality
assurance to ensure that the results are reliable and re-
producible across scanners, clinical settings, and analysis
pipelines.

Pooling of neuroimaging data across centers and scanners
will be required to yield the numbers of subjects to
demonstrate proper analytical and clinical validity. Multiple

Figure 2. Multimodal Pain Signatures. Imaging data sources (top, gray box) and nonimaging data sources (middle, green box) can be combined into machine
learning algorithms to provide a multimodal signature pattern of pain (right, red box). Various sources of imaging biomarkers include (1) structural changes
measured with MRI (eg, diffusion tensor imaging [DTI] of white matter tractography; gray matter volumetry), (2) functional differences measured with fMRI (eg,
resting state fMRI networks and functional connectivity between brain regions; brain activity in response to evoked stimulation or during a task), and (3) functional
differences measured with non-MRI modalities such as EEG. Nonimaging data sources include, eg, genotype information, biometrics from wearable technology
(eg, actigraphy), actively reported biometrics (eg, through handheld devices for recording patients’ symptoms throughout the day), psychometrics including
reaction time tests and voice analysis (eg, to measure emotional states such as depression or anxiety), and actively reported psychometrics (ie, demographic,
psychological, and clinical questionnaires) (middle, green box). Themultimodal pain signature can then be used in a variety of biomarker applications (bottom, red
box). fMRI, functional MRI.
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neuroimaging research networks have addressed the chal-
lenges of pooling multicenter neuroimaging data, as well as
developing common informatics, quality control, analysis, and
visualization tools and protocols. These networks include the
International Consortium for Brain Mapping,68 Alzheimer’
Disease Neuroimaging Initiative (ADNI),44 Function Biomed-
ical Informatics Research Network (fBIRN),32 National Insti-
tutes of Health Pediatric MRI Database,24 and the Human
Connectome Project.60,101 As part of the National Institutes of
Health-funded Multi-Disciplinary Approach to the Study of
Chronic Pelvic Pain (MAPP), we emulated many of these
pioneering research networks in establishing the neuroimag-
ing protocols, databases, analyses, and visualizations used
across 5 research centers with different manufacturers and
models of MRI scanners. Alger et al. outlined many of the
challenges and solutions to neuroimaging across multiple centers
and scanners within the MAPP network.2 The MAPP network
subsequently published multiple articles demonstrating the feasi-
bility and insights that are possible with large multicenter neuro-
imaging data sets of pain.3,28,43,48,50–52,54,65,66,96,97,113

The analysis approach and algorithms used in analytical
validation are critical. Most approaches are using a multivar-
iate pattern analysis or machine learning approach. An

important factor in the context use of such analyses is the
embedding of feature selection, classifier optimization, and
the estimation of the models’ generalizability in a cross-
validation scheme. In the cross-validation steps, it is
important to avoid information leakage between the training
and the test samples to avoid overfitting and inflated
estimates of classification accuracy. Moreover, even in the
case of correct feature embedding, different cross-validation
schemes might lead to different results. In a multivariate
pattern analysis meta-analysis for detecting neuroimaging
biomarkers of depression, the authors identified that 2-fold
cross-validation was associated with higher diagnostic
accuracy than 10-fold or leave-one-out cross-validation.45

We will need generalizability of the models across research
centers as well as agreement on the identification of the
methodological and clinical variables moderating classifica-
tion success.

The biomarker must also show adequate sensitivity and
specificity before it is assessed in subsequent biomarker
evaluation steps. This quality assurance will typically
include both internal and external control assessments within
a structured framework. Analytical validation can also include
determining the extent to which data from different tests

Figure 3. Framework for Evaluating Neuroimaging-based Biomarkers of Pain. A candidate biomarker will need to be vetted through all stages of analytic validity,
clinical validity, clinical utility, and ethical, legal, and social implications.
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for the same biomarker may be compared to one another.
Highly comparable data strengthen the biomarker and add
power to retrospective analyses of data related to the
biomarker.89

3.2. Clinical validity

Clinical validity is defined as the “evidentiary process of linking
a biomarker with biological processes and clinical end-
points.”89 Clinical validity (1) defines the ability of a neuro-
imaging pain biomarker to detect or predict the presence or
absence of a phenotype or clinical disease or (2) defines
a biomarker’s ability to predict the effects of interventions on
clinical endpoints of interest. If a biomarker-clinical endpoint
relationship occurs over several interventions, we can
consider the biomarker more generalizable. Candidate bio-
markers that are both informative of pathophysiology and
highly prognostic (ie, able to identify risk factors for developing
disorders and disease predisposition) should pass standards
of diagnosticity, interpretability, deployability, and generaliz-
ability. Similarly, candidate biomarkers will need to differen-
tiate CNS features associated with different clinical pain
conditions—assuming such features exist. Are the CNS
features of chronic low back pain the same or different as
compared with CRPS, migraine, pelvic pain, or fibromyalgia?
Are there biomarker differences in a painful condition that is
presumed to be more peripherally vs centrally driven? As
noted previously, in a cohort of localized chronic pelvic pain vs
pelvic pain plus widespread pain, we identified different
neuroimaging biomarkers that distinguish both groups.50

Assuming there are differences in features amongst painful
conditions, do they matter regarding prognosis of natural
history or prediction of treatment response? In addition,
candidate biomarkers will need to account for patient
heterogeneity introduced with age, severity and duration of
pain, concomitant medications or other treatments, and
comorbid conditions such as depression, anxiety, and
catastrophizing. In addition, population base rates will need
to account for prevalence of chronic pain syndromes,69,83

similar to previous applications for genetic and psychological
testing. Formally evaluating the sensitivity, specificity, positive
predictive value, and negative predictive value of the bio-
marker is also pertinent. Researchers must include appropri-
ately selected controls in any formal biomarker evaluation.

3.3. Utilization or clinical utility

Utilization refers to the “contextual analysis based on the specific
use proposed and the applicability of available evidence to this
use. This includes a determination of whether the validation and
qualification conducted provide sufficient support for the use
proposed.”89 Clinical utility assesses the likelihood that the
biomarker will lead to an improved clinical outcome. Clinical
utility helps address the purpose of the biomarker? Do the
biomarker findings change clinical management or prognosis?
What is the natural history of the disorder? Are there effective
interventions based on the biomarker results? Is the biomarker
result information useful for family members? Does the biomarker
give rise to any ethical, legal, or social consequences? Are there
other ways of achieving the same purpose apart from using
a neuroimaging biomarker? For example, and as mentioned
previously, there is little clinical utility for a neuroimaging pain
biomarker to simply determine in a binarymanner if a person seen
in a clinical setting is in pain or not.We can simply just ask.What is

the cost of the neuroimaging biomarker? Is the biomarker cost
effective? In these latter 2 questions on cost, we will have to
consider that at $5001/hour of scanner time, neuroimaging
biomarkers are expensive. For broad use, more cost-effective
MRI systems will need to be developed or other imaging
modalities used (eg, EEG and functional-near infrared spectros-
copy) that are less costly.

3.4. Ethical, legal, and social implications

The NAM and ACCE frameworks formally consider ethical, legal,
and social implications of biomarkers. This component of the
biomarker evaluation is perhaps the most difficult to address as it
is wide ranging.

A neuroimaging biomarker that accurately detects pain could
be useful in society for reasons beyond improving patient care.
For example, in the legal system, the existence and extent of
pain cannot be taken for granted but is at the heart of a dispute.
In many personal injury cases, plaintiffs seek damages for
ongoing pain that may have little evidence beyond self-report.
Even more often—hundreds of thousands of times a year—in
disability determinations, workers claim to private disability
insurers or to Social Security that pain makes them incapable of
working. The courts and administrative agencies cannot always
by default accept the claimant’s self-report as true, but often,
there is little other evidence. While clinicians and researchers
usually can “just ask” patients if they are in pain, the incentives
involved means the legal system cannot blindly trust their
answers, particularly in the American adversary system where
there is always “the other side” fighting against any claims. Not
only can this lead to people being granted or denied damages or
benefits improperly but also the uncertainty involved increases
the time and money spent in litigation.46,80 Further legal
applications of neuroimaging-based pain biomarkers are
beyond the scope of this review, but have been described in
the following reviews.19,81

We must also consider several legal concerns regarding
pain biomarkers.34 First, what would be necessary before
neuroimaging evidence of pain could be accepted into
evidence to use in a court or an administrative proceeding?
A neuroimaging-based biomarker would have to perform at an
acceptable level of accuracy in at least 3 areas: (1) accuracy
with respect to demographics and phenotype (eg, men vs
women, young vs elderly, mentally ill, and illegal drug users), (2)
accuracy with different kinds of pain (eg, acute vs chronic, low
back pain, and migraine), and (3) accuracy that cannot be
undermined by countermeasures to “fool” the neuroimaging-
based biomarker.

In addition to these issues, we must resolve the deeper
question of “how accurate would it need to be?” The law does not
set standards based on P values or confidence intervals; judges
will need to decide whether it is “sufficiently” reliable to help the
legal process.36 Second, even if a neuroimaging-based bio-
marker met the vague standards for accuracy, could a claimant
be forced to undergo such a test? Typically, people can be forced
to undergo medical examinations at the request of their legal
opponents or forfeit their claims. Is it different when the test
involves probing an individual’s interior mental states vs
a vertebral disk? The question whether there is, or should be,
some kind of “cognitive liberty” that is free from compulsory
intrusion is important, yet undecided.25,26 Although a reliable
brain biomarker of pain would clearly be of benefit to the legal
system, the additional requirements for fair and just use are
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complicated, and misguided use could profoundly impact
patients’ lives beyond their clinical care and outcomes.

Perhaps, the greatest risk may be the premature availability of
such tests and their use by patients, doctors, employers,
agencies, or judges when they have not been shown to be
“accurate enough.” Our system has incentives for individuals to
use any evidence they can to try to persuade others, as well as
incentives to lead some people to sell goods and services to
others without knowing they are effective—and, in the cases of
some frauds, while consciously knowing that they are
ineffective.

Before and during each of the above evaluation stages,
critical questions must be addressed. For example, we must
consider the impact of the biomarker on insurance and
employment, health care disparities including equity and
access, privacy and confidentiality, and stigmatization. As
alluded to earlier, there is great potential for misuse and abuse
of these neuroimaging-based pain biomarkers with real
potential for stigma and discrimination. An early example of this
involved broad-based community screening efforts for sickle
cell disease in the 1970s. These screening efforts were
accompanied by a misunderstanding of the health implications
of the carrier state, leading to subsequent insurance and
employment discrimination.106 This, and other discrimination
events around genetic testing, led to the federal Genetic
Information Nondiscrimination Act in 2008, which blocks health
insurers and employers from using genetic information (but not,
eg, neuroimaging information) in health coverage or employ-
ment decisions. The Patient Protection and Affordable Care Act
of 2010 added further protections, although their continuation is
in some doubt. Nonetheless, in any event, there is still potential
for discrimination not covered under these acts including
determination of life insurance, mortgage insurance, long-term
care insurance, and long-term disability insurance. Importantly,
there are few protections in place for the misuse of
neuroimaging-based pain biomarkers. As such, these potential
issues will require scientists, clinicians, ethicists, attorneys, and
patients to be vigilant for such misuse and abuse.

4. Conclusions

We have reviewed the different types of potential neuroimaging-
based pain biomarkers, their clinical and research applications,
and their limitations. The field of neuroimaging-based bio-
markers has advanced rapidly. With this rapid advancement
comes a need for structured frameworks and processes to
validate them as biomarkers. We have presented such
a framework adapted from several successfully applied frame-
works in other fields. This model of assuring analytical validity,
clinical validity, and clinical utility and accounting for ethical,
legal, and social implications can help advance these bio-
markers to achieve broad clinical and research utility while
minimizing the risks of misapplication of this emerging technol-
ogy. Neuroimaging pain biomarkers are helping to advance the
goal of personalized pain medicine to ultimately aid clinicians
and patients to choose the best treatment that both safe and
effective.
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