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The indications of distraction osteogenesis in 
craniomaxillofacial field are increasing in the 
last 2 decades mainly in severe cases of hypo-

plastic bones and in the treatment of maxillofacial 
asymmetry as seen in hemifacial microsomia1–3 or 
lengthening of severely hypoplastic mandible as seen 
in Pierre Robin or Treacher Collins syndromes, result-
ing in obstructive sleep apnea.4,5 Other indications of 
distraction are the treatment of hypoplastic maxilla 
in cleft palate patients.4,6,7 Distraction osteogenesis 
of facial membranous bones provides an excellent 
in vivo system of membranous bone formation. In 
this system, bone is generated by stretching a callus 
that develops following osteotomy of midfacial bone 
(Fig. 1). Distraction osteogenesis is based on the 
 “tension-stress principle” proposed by Ilizarov.8,9 The 
essence of this technique is the  gradual distraction of 
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Summary: Gradual bone lengthening using distraction osteogenesis prin-
ciples is the gold standard for the treatment of hypoplastic facial bones. 
However, the long treatment time is a major disadvantage of the lengthen-
ing procedures. The aim of this study is to review the current literature 
and summarize the cellular and molecular events occurring during mem-
branous craniofacial distraction osteogenesis. Mechanical stimulation by 
distraction induces biological responses of skeletal regeneration that is ac-
complished by a cascade of biological processes that may include differen-
tiation of pluripotential tissue, angiogenesis, osteogenesis, mineralization, 
and remodeling. There are complex interactions between bone-forming 
osteoblasts and other cells present within the bone microenvironment, 
particularly vascular endothelial cells that may be pivotal members of a 
complex interactive communication network in bone. Studies have impli-
cated number of cytokines that are intimately involved in the regulation of 
bone synthesis and turnover. The gene regulation of numerous cytokines 
(transforming growth factor-β, bone morphogenetic proteins, insulin-like 
growth factor-1, and fibroblast growth factor-2) and extracellular matrix 
proteins (osteonectin, osteopontin) during distraction osteogenesis has 
been best characterized and discussed. Understanding the biomolecular 
mechanisms that mediate membranous distraction osteogenesis may guide 
the development of targeted strategies designed to improve distraction os-
teogenesis and accelerate bone regeneration that may lead to shorten the 
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a fracture callus after osteotomy or corticotomy of the 
facial skeleton bones with careful preservation of the 
soft-tissue envelope overlying the bone (Fig. 1). How-
ever, the method requires several days of latency pe-
riod, several weeks for active lengthening, and several 
months for consolidation until mature lamellar bone 
is formed for stable results. The extended wearing of 
the distraction devices several months especially those 
with external devices is uncomfortable to the patients 
and may create compliance complications.10–12

Mechanical stimulation by distraction induces 
biological responses of skeletal regeneration that is 
accomplished by a cascade of biological processes 
that may include differentiation of pluripotential 

tissue, angiogenesis, osteogenesis, mineralization, 
and remodeling.13,14 Our group,14 using immuno-
histochemical analysis and electron microscopy, 
characterized the bone formed and angiogenesis 
processes during the membranous midfacial distrac-
tion and also following the consolidation period and 
defines the characterization of the new bone in the 
distracted area (Fig. 2). It was found that as a result 
of the distraction force, a pool of undifferentiated 
 mesenchyme-like cells is created with osteogenic 
potential which in turn triggers capillary formation. 
The new bone trabeculae begin to form between 5 
and 10 days following the beginning of the distrac-
tion process (Fig. 3). These trabeculae soon become 
aligned with the osteoblasts and continue to grow as 
long as distraction forces are applied (Fig. 4). Vascu-
lar formation is intimately associated with bone for-
mation during distraction osteogenesis.14 There are 
complex interactions between the osteoblasts, the 

Fig .1. illustration demonstrates the maxillary and mandibu-
lar osteotomy before the distraction. the arrows demon-
strate the direction of the lengthening.

Fig. 2. Schematic drawing of bone formation and vasculo-
genesis during midface maxillary distraction. During the dis-
traction period, the regenerated tissue can be divided into 
3 zones and 2 transitional areas: CZ, central zone (mesen-
chymal area or proliferative area); PCZ, 2 paracentral zones 
(fibroblastic area or collagenous area, on both sides of the 
central zone); PDZ, distal and proximal zones (trabecular area 
or mineralization area); MF, mineralization front area (transi-
tional area); v, vasculogenesis area (transitional area). B rep-
resents the 2 parts of the old bone that became apart after 
the osteotomy and distraction.

Fig. 3. Recruitment of preosteoblasts (arrows) to the newly 
formed delicate trabeculae (t) (Masson trichrome; original 
magnification, 100×).

Fig. 4. the bony trabeculae (arrows) during the consolida-
tion period become thicker toward lamellar bone (Masson 
trichrome; original magnification, 100×).
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bone-forming cells, and other cells present within 
the bone microenvironment, particularly vascular 
endothelial cells that may be pivotal members of 
a complex interactive communication network in 
bone.14–17 Past studies have implicated a number of 
cytokines that are involved in the regulation of bone 
synthesis and turnover.15,16,18,19 The gene regulation 
of numerous cytokines [including transforming 
growth factor (TGF)-β, bone morphogenetic protein 
(BMP), insulin-like growth factor (IGF)-1, and fibro-
blast growth factor (FGF)-2] and extracellular ma-
trix proteins (osteonectin and osteopontin) during 
distraction osteogenesis have been best character-
ized and are discussed later in this article. Under-
standing the biomolecular mechanisms that mediate 
membranous distraction osteogenesis may guide the 
development of targeted strategies designed to im-
prove distraction osteogenesis and accelerate bone 
regeneration that may improve the clinical results 
with better bone quality and quantity and shorten 
the consolidation time with less relapse following 
larger bone lengthening as are in severe cases.

EFFECT OF DISTRACTION 
OSTEOGENESIS ON BONE CELLS

Bone cells respond to mechanical stimulation 
by gene expression. Lewinson et al20 have demon-
strated that mechanical stimulation of regenerating 
bone by daily distraction stimulates the expression of 
 early-response genes of the activator protein 1 family 
of transcription factors. After 15 days of distraction, 
when bone trabeculae start to form, mostly preosteo-
blasts and osteoblasts retained c-Fos and c-Jun im-
munoreactivity. The elevated expression of c-Jun and 
c-Fos is related to mechanical stimulation due to the 
distraction forces.20

Bone formation by osteoblasts is essential not only 
for skeletal growth and bone remodeling but also 
for bone healing and repair. Several hormones and 
growth factors that are implicated in the regulation 
of bone physiology are now known to up-regulate 
the expression of proteins of the AP-1 complex.21–25 
Several genes coding for bone-associated proteins 
contain an AP-1 response element in their pro-
moter, including collagen type I, alkaline phospha-
tase, osteocalcin, collagenase-3, and parathyroid   
hormone/parathyroid hormone–related peptide 
receptor.22,25,26 Moreover, one of the AP-1 proteins, 
c-Fos, has been implicated in transduction of me-
chanical stimulation to bone cells.22,27

THE ROLE OF PROINFLAMMATORY 
CYTOKINES IN DISTRACTION 

OSTEOGENESIS
The expression of proinflammatory cytokines 

interleukin (IL)-1 and IL-6 is elevated once distrac-
tion has started and mechanical strain is applied to 
the callus (Table 1). During the distraction phase, 
IL-6 is expressed by the oval cells. The IL-6 released 
in response to stress contributes to intramembra-
nous ossification by enhancing the differentiation 
of cells committed to the osteoblastic lineage.28 
During distraction osteogenesis in mouse tibiae, tu-
mor necrosis factor-α messenger RNA levels mark-
edly increased toward the end of consolidation.21 
In addition, the receptor activator of nuclear fac-
tor kappa-B ligand/osteoprotegerin expression 
ratio increased at the beginning of the distraction 
phase and decreased by the end of consolidation 
( Table 1). These results are similar to those from 
another study conducted on mandibular distrac-
tion osteogenesis.29 A comparison of the results sug-

Table 1. The Cellular and Molecular Events Taking Place during Craniomaxillofacial Distraction Osteogenesis

Phase Cellular Events Molecular Events

Latency During the osteotomy, a hematoma is formed, inflammation is initiated by 
the up-regulation of IL-1 and IL-6, mesenchymal stem cells are recruited 
by a rise in BMP-2 and BMP-4, and ossification is propagated by a 
 molecular increase of BMP-6 and TGF

IL-1↑, IL-6↑, BMP-4↑, BMP-
6↑, TGF-β↑, RANK/OPG↑

Distraction 
osteogenesis

During the stretching of the callus, a central fibrous interzone is formed; 
the fibroblasts secrete collagen fibers which align with the vector of 
 elongation; IL-6 is up-regulated, which in turn promotes osteoblastic 
 differentiation during the intramembranous ossification stage; and RANK 
ligand/OPG ratio is high during this phase, which in turn promotes 
resorption of the remaining mineralized cartilage formed during the 
latency phase. BMP-2, BMP-4, BMP-6, TGF-β, IGF-1, and bFGF increase 
and peak during this phase, which promote bone formation in response 
to the distraction forces. Neovascularization is initiated by the induction 
of VEGF and angiopoietin-1 and angiopoietin-2

IL-6↑↑, RANK/OPG↑↑, 
BMP-2, BMP-4↑↑,  BMP-6↑, 
TGF-β↑↑, bFGF↑↑, 
VEGF↑↑,  angiopoietin-1 
and  angiopoietin-2↑↑

Consolidation During this phase, maturation and mineralization of the bone trabeculae are 
continued, yet BMP-2, BMP-4, and bFGF are gradually down-regulated and 
remodeling of the newly bone is initiated by the up-regulation of TNF-α

BMP-2↓, BMP-4↓, bFGF↓,  
TNF-α↑↑

RANK/OPG, receptor activator of nuclear factor kappa-B/osteoprotegerin; TNF, tumor necrosis factor.
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gests that the resorption of mineralized cartilage in 
the external callus areas that form adjacent to the 
ends of the bone tissues and in the gap during the 
latency phase of distraction osteogenesis is more 
dependent on the levels of receptor activator of 
nuclear factor kappa-B ligand and osteoprotegerin 
and less affected by other cytokines.30

EFFECTS OF DISTRACTION 
OSTEOGENESIS ON THE PERIOSTEUM 
AND THE ROLE OF HYPOXIC CHANGES 

FOLLOWING THE SURGICAL CUT
Tissue hypoxia is caused following soft-tissue 

injury, post osteotomy, and during distraction forc-
es.31,32 The hypoxic environment affects cell sur-
vival and initiates angiogenesis by a complex and 
multistep mechanism.33 This leads to a hypoxic 
microenvironment of the cells and enhances the 
expression of various cytokines and growth factors 
that may regulate angiogenesis and bone remodel-
ing. However, hypoxia has a roll in communication 
between endothelial cells and osteoblast progeni-
tors during the osteosynthesis and bone remodel-
ing. Following the osteotomy, the formation of 
trabecular bone occurs under hypoxic conditions.34 
Cell culture models recapitulate events that occur 
in woven bone synthesis and are carried out using 
primary osteoblasts, osteoblast precursors such as 
bone marrow-derived mesenchymal stromal cells, 
or various osteoblast cell lines. Blengio et al35 sug-
gest that conditions of hypoxia cause inflamma-
tion by tuning the cytokine/chemokine repertoire. 
During these phases, there is an up-regulation of 
hypoxia-inducible genes coded for cytokines with 
a primary role in inflammation and angiogenesis, 
and they include osteopontin, vascular endothelial 
growth factor (VEGF), and  IL-1. This condition of 
cell proliferation, angiogenesis, and osteogenesis 
promotes the formation of fully mature bone in dis-
traction osteogenesis.

Several studies demonstrate the potential of 
bone formation by the periosteum during distrac-
tion.36,37 One of the mechanisms in distraction osteo-
genesis is exposure of cells that are provided by the 
periosteum and that have the ability to transform 
into osteoblasts.38 Mesenchymal cells transform 
into osteoblasts through an appropriate periosteal 
stimulation, and subperiosteal callus makes the pe-
ripheral part of the new forming bone. Although 
it is accepted that the force applied during distrac-
tion osteogenesis has an effect on subperiosteal 
bone formation, the formation of subperiosteal 
bone can be obtained also by a distraction on the 
periosteum.39–41

THE ROLE OF BMP IN DISTRACTION 
OSTEOGENESIS

Bone induction during regenerate ossification is 
a sequential cascade that includes chemotaxis, mito-
sis, and differentiation of both bone and cartilage.42 
BMPs purified from demineralized bone matrix of 
variety of mammalian species42–45 govern these 3 key 
steps in new bone formation. BMPs act at an early 
stage of bone induction (Table 1), and they promote 
and maintain bone formation. BMPs have a role in 
enhanced recruitment, proliferation, and differen-
tiation of pluripotent mesenchymal cells at the os-
teotomy site and become progenitor cells with the 
potential to form new bone. Differentiated mesen-
chymal cells may support the differentiation of other 
precursor cells and may stimulate the production of 
other growth factors such as TGF-β, FGFs, and IGFs.46

The expression of BMP-2 and BMP-4 is strongly 
enhanced by the application of mechanical strain 
during the distraction phase. They are produced by 
osteogenic cells at the primary mineralizing front. 
Once distraction has stopped, the expression of 
 BMP-2 and BMP-4 gradually disappears.19,47,48 These 
BMPs play a role in the proliferation of cells required 
for the completion of bone healing.18,47,49 As BMP-2 
has osteoinductive properties, the administration of 
exogenous BMP-2 has been used successfully to short-
en the treatment time during distraction osteogenesis 
by accelerating bone formation during the consolida-
tion stage.18,50 It has been reported that BMP-7 plays 
a role similar to that of BMP-2 and BMP-4 in distrac-
tion osteogenesis48; however, most experiments have 
detected only weak levels or no expression of BMP-7 
during distraction osteogenesis.19,49,51

TGF-β
TGF-β follows an increased level of expression 

that lasts into the distraction phase. It displays dif-
fuse expression throughout the distraction gap.52 An 
inverse relationship between TGF-β and osteocalcin 
has been observed in a canine distraction model, 
where elevated TGF-β levels were accompanied by 
lower levels of osteocalcin after the initiation of dis-
traction osteogenesis.53,54 These observations suggest 
that TGF-β acts as a suppressor for osteoblast matu-
ration by delaying cellular differentiation during the 
mineralization stage of distraction.

OTHER MORPHOGENS AND GROWTH 
FACTORS

IGF-1 and basic FGF (bFGF) are also  up-regulated 
during distraction.55 bFGF is mainly expressed by 
cells of osteoblastic lineage and mesenchymal cells 
on the newly formed trabecular bone.56 Unlike 
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bFGF, IGF-1 is diffusely expressed throughout the 
distraction gap52 (Table 1).

PLATELET-RICH PLASMA
The term platelet-rich plasma (PRP) refers to 

different types of platelet concentrates obtained us-
ing different techniques.57 It is believed that PRP 
contains growth factors and might therefore have 
biological properties that could enhance the re-
generation of certain tissues.58–61 It was also recently 
implied to have antimicrobial properties which also 
contribute to tissue repair and regeneration.62 It has 
been demonstrated that the administration of PRP 
in combination with bone marrow cells during the 
consolidation phase of distraction osteogenesis en-
hances the bone healing process.63–67 PRP can also 
be an effective scaffold to induce osteogenesis. It 
was shown experimentally that the combination 
of mesenchymal stem cells with PRP increases new 
bone formation, mineralization, and mechanical 
property compared with the PRP-only group and is 
more effective for reducing the consolidation period 
in mandibular distraction osteogenesis.68,69 Latalski 
et al70 demonstrated in humans that injection of PRP 
can enhance bone healing during limb lengthen-
ing by distraction osteogenesis. The main advantage 
of the use of PRP was seen as a significantly shorter 
treatment time. The injection of PRP into regener-
ate bone might be an effective method to shorten 
treatment time during craniofacial distraction and 
may lead to better functional outcomes and im-
proved patient satisfaction and compliance.

ROLE OF ANGIOGENIC FACTORS IN 
DISTRACTION OSTEOGENESIS

During distraction forces, there is an inevitable 
increase in blood flow, to facilitate a successful in-
duction of new bone regeneration.71,72 Neovascu-
larization during distraction osteogenesis may be 
induced by VEGF-A and neuropilin (especially neu-
ropilin 1), an alternative receptor for VEGF.  VEGF-A 
expression was localized mainly to the maturing os-
teoblasts at the primary mineralizing front and to 
the osteoclasts.15 The localization finding of VEGF-A 
suggests that there is coordination between areas of 
neovascularization and newly formed bone.73 Anoth-
er family of angiogenic factors, the angiopoietins, is 
also expressed during distraction74 (Table 1). The 
temporal appearance of angiopoietin-1 is followed 
by  angiopoietin-2, which in turn is followed by a 
maximal expression of VEGF-A in the distraction 
model. Angiopoietin-2 by itself is antagonistic to 
 angiopoietin-1. However, it has been proposed that 
the combination of angiopoietin-2 and VEGF-A stim-

ulates new vessel formation, enhances the plasticity 
of existent larger vessels, and contributes to new ves-
sel formation.73 It has also been reported that the in-
crease in VEGF-A and angiopoietin-1 expression is 
associated with an up-regulation in the expression 
of hypoxia-induced factor-1α, which is one of the 
key transcription factors regulating genes associated 
with an angiogenic response, such as VEGF-A and 
angiopoietin-1.72,73 An optimal angiogenic response 
has been shown to be directly related to the rate of 
distraction. Numerous investigators have speculated 
that it is this characteristic that drives bone forma-
tion, through an intramembranous pathway.17,75 Stud-
ies have shown that the regulation of angiogenesis 
in distraction tissues is associated with much higher 
levels of hypoxia-inducible factor 1α.21 The transient 
up-regulation of hypoxia-inducible factor 1α in re-
sponse to each round of distraction would suggest 
that many of the downstream genes that are targets 
of transcriptional activation of  hypoxia-inducible 
factor 1α, such as VEGF-A, may play a major role in 
promoting new bone formation during distraction 
osteogenesis. Both angiogenesis and osteogenesis in 
distraction osteogenesis were dependent on the ac-
tivity of both VEGF receptors 1 and 2.76

EFFECT OF DISTRACTION 
OSTEOGENESIS ON TOOTH 

DEVELOPMENT
Although dental injuries during the distraction 

phase are a minor disadvantage compared with the 
vast benefits offered by DO, there are injuries that 
need to be addressed and correcting these draw-
backs might lead to reconsideration of the type 
of the device and the timing of DO. The majority 
of injuries that can be seen during the distraction 
phase include root malformations, hindered tooth 
development, and the destruction of tooth follicles. 
Positional changes such as shifts or tilted teeth were 
also found.77

CONCLUSIONS
The distraction force applied to the craniofa-

cial skeleton creates a pool of undifferentiated 
 mesenchyme-like cells with osteogenic potential 
which in turn trigger the formation of new capillary 
to the area. New bone trabeculae begin to form be-
tween 5 and 10 days following the initiation of the 
distraction forces, and these trabeculae soon be-
come aligned with osteoblasts and continue to grow 
as long as the distraction force is applied. The bone 
formation is intimately dependent on formation of 
vascular tissue. Inadequate blood supply leads to 
many of the complications in various postsurgical 
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bone treatments. The distraction osteogenesis pro-
cess is driven by the activities of molecular mediators 
of inflammation, the TGF-β super family of morpho-
gens (BMPs), and mediators of angiogenesis. Under-
standing the biomolecular mechanisms that mediate 
membranous distraction osteogenesis may guide the 
development of targeted strategies that may improve 
distraction osteogenesis and accelerate the bone re-
generation. 

Yoav Leiser, DMD, PhD
Department of Oral and Maxillofacial Surgery

Rambam Medical Center
Haifa, Israel

E-mail: y_leiser@rambam.health.gov.il 
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