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Abstract: Diabetic retinopathy (DR) is a leading complication in type 1 and type 2 diabetes and
has emerged as a significant health problem. Currently, there are no effective therapeutic strategies
owing to its inconspicuous early lesions and complex pathological mechanisms. Therefore, the
mechanism of molecular pathogenesis requires further elucidation to identify potential targets
that can aid in the prevention of DR. As a type of protein translational modification, O-linked
β-N-acetylglucosamine (O-GlcNAc) modification is involved in many diseases, and increasing
evidence suggests that dysregulated O-GlcNAc modification is associated with DR. The present
review discusses O-GlcNAc modification and its molecular mechanisms involved in DR. O-GlcNAc
modification might represent a novel alternative therapeutic target for DR in the future.

Keywords: O-linkedβ-N-acetylglucosamine modification; diabetic retinopathy; hexosamine biosynthetic
pathway; retinal microvascular lesions; neurodegeneration

1. Introduction

Diabetic retinopathy (DR) is a common chronic complication of diabetes world-
wide and the leading cause of visual impairment and blindness among adults aged
20–74 years [1]. The global prevalence of DR from 2015 to 2019 was 27.0% in patients
with diabetes, owing to the dramatic increase in the incidence of diabetes. This trajectory
is predicted to continue in the forthcoming decades. Inconspicuous lesions in the early
stage of DR make it challenging to explore effective therapeutic strategies [2].

Currently, intraocular treatment strategies for diabetic eye diseases include laser pho-
tocoagulation [3], intravitreous injections of Antagonists of Vascular Endothelial Growth
Factor (Anti-VEGF) [4], steroid agents [5], and vitreoretinal surgery [6]. However, each
has its limitations and side-effects, such as visual impairment and discomfort, cataract,
and glaucoma. Approximately 20–30% of patients who undergo vitreoretinal surgery
experience substantial vision loss after surgery and are at a higher risk of ocular venous air
embolism [7]. These therapies are designed to treat advanced disease conditions, have a
detrimental effect on patients’ quality of life, and impose a financial burden [8]. Therefore,
exploring novel clinical diagnostic modalities and treatments is essential in the early stages
of DR.

Multiple factors can lead to the occurrence and development of DR, including in-
creased polyol-pathway activity [9], protein kinase C activation [10], oxidative stress [11],
and inflammatory response [12]. O-linked N-acetylglucosamine (O-GlcNAc) modification
is a unique form of post-translational protein modification (PTM). Recently, studies on
O-GlcNAc modification have gained traction in various diseases, such as Alzheimer’s
disease [13], Parkinson’s [14], cancer [15], and diabetes mellitus [16]. O-GlcNAc mod-
ification reportedly displays a strong correlation with DR [17,18]. However, the effect
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of O-GlcNAc modification on DR has not yet been fully elucidated. In this review, we
summarize O-GlcNAc modification and its role in DR.

2. O-GlcNAc Modification

Protein translational modifications include changes such as phosphorylation, acetyla-
tion, ubiquitination, and glycosylation. After the discovery of O-linked N-acetylglucosamine
by Torres and Hart in 1984, more than 5000 O-GlcNAcylated human proteins were iden-
tified [19,20]. O-GlcNAc modification is a critical and inducible PTM that involves the
synthesis and addition of a single O-GlcNAc moiety to the hydroxyl groups of serine and/or
threonine residues of proteins. It modulates biological processes such as cell-cycle progres-
sion [21], translation, transcription [22], nutrient sensing [23], and stress responses [24].
O-GlcNAc modification is required for normal physiological activities in mammals and
plays a prominent role in embryonic stem-cell viability and embryonic development [25].
Altered GlcNAc concentrations disrupt the O-GlcNAc pathway and influence diverse
aspects of cellular physiology [26].

2.1. Synthesis of UDP-GlcNAc via Hexosamine Biosynthesis Pathway

UDP-N-acetylglucosamine (UDP-GlcNAc), which is synthesized via the hexosamine
biosynthesis pathway (HBP), acts as a substrate for β-N-acetylglucosaminyltransferase
(OGT) and forms the O-GlcNAc modification [27]. HBP, a relatively minor branch of
glycolysis, utilizes approximately 2–3% of all cellular glucose [28]. Therefore, O-linked-
N-acetylglucosaminylation (O-GlcNAcylation) functions as a vital regulator of glucose
metabolism [29]. The first two steps of the hexosamine biosynthesis pathway involve the
hexokinase-catalyzed phosphorylation of glucose to glucose-6-phosphate and the phospho-
glucose isomerase-mediated transformation into fructose-6-phosphate, which are similar
to the glycolysis pathway. The HBP pathway then diverges from the glycolysis pathway. A
small amount of F-6P is converted into glucosamine-6-phosphate (GlcN-6P) catalyzed by
glutamine: fructose-6-phosphate amidotransferase (GFAT), which is the rate-limiting step of
HBP and is regulated by feedback mechanisms [30]. GFAT has two isoforms: GFAT1, which
is abundantly expressed in the skeletal muscle and heart [31], and GFAT2, mainly expressed
in the central nervous system, including retinal neurons [32]. Subsequently, through a
series of complicated chemical reactions, UDP-GlcNAc is synthesized and subsequently
added to the serine and/or threonine residues of proteins (Figure 1).

2.2. Regulation of O-GlcNAc Modification by OGT and OGA

As the substrate of O-GlcNAc modification, changes in UDP-GlcNAc levels have an
impact on the O-GlcNAc modification of many proteins [33]. The reversible and cyclic
addition and deletion of UDP-GlcNAc are performed by OGT and O-GlcNAc hydrolase
(OGA), respectively [34,35].

OGT, which is responsible for adding GlcNAc to serine and threonine residues, is
encoded by the OGT gene residing on Xq13 [36]. It is ubiquitously expressed and was
shown to exist in all metazoans, including humans, C. elegans, and rats [37]. The open
reading frames of OGT genes are highly conserved in all these organisms [27]. Furthermore,
OGT activity in the brain is ten times higher than that in muscle, adipose tissue, heart,
and liver [28]. The enzyme has two major functional domains: the N-terminal domain,
which consists of several tetra tripeptide repeats (TPR), and the C-terminal domain, which
shows glycosyltransferase activity and binds UDP-GlcNAc [38]. Based on the number of
TPRs, OGT isoforms can be divided into three types: full-length OGT (ncOGT; 13.5 TPRs),
mitochondrial isoform (mOGT; 9 TPRs), and short isoform (sOGT; 2.5 TPRs) [29]. Unlike
the other two isoforms, which accumulate in the nucleus and cytoplasm, mOGT tends to be
present in the inner mitochondrial membrane [39]. The TPR domain directs the polypeptide
sequence to the catalytic domain by binding to asparagine and aspartic acid [40]. In the
retina, OGT-positive cells are primarily located in the inner nuclear and plexiform layers,
ganglion cell layer and, in a later stage, photoreceptor inner segment [41,42].
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Figure 1. Hexosamine biosynthesis pathway and protein O-GlcNAcylation process. Glutamine:
fructose-6-phosphate amidotransferase (GFAT) is the rate-limiting enzyme in the hexosamine biosyn-
thesis pathway (HBP) and is responsible for converting F-6-P into GlcN-6P. The end product of HBP,
UDP-GlcNAc, acts as a substrate for O-GlcNAcylation. Abbreviations: G-6P, glucose to glucose-6-
phosphate; F-6P, fructose-6-phosphate; GFAT, glutamine: fructose-6-phosphate amidotransferase;
GlcN-6P, glucosamine-6-phosphate; GlcNAc-6P, N-acetylglucosamine-6-phosphate; GlcNAc-1P, N-
acetylglucosamine-1-phosphate; UTP, uridine triphosphate; PPi, pyrophosphoric acid; UDP-GlcNAc,
UDP-N-acetylglucosamine; UDP, uridine diphosphate; OGT, β-N-acetylglucosaminyltransferase;
OGA, O-GlcNAc hydrolase.

OGA is responsible for removing GlcNAc from serine and threonine residues and is
mainly enriched in the cytoplasm [35]. The OGA gene, which is also highly conserved, is
located on the long arm of chromosome 10 (10q24). OGA has two isoforms: nucleocyto-
plasmic OGA (OGA-L), located in the cytoplasm and nucleus, and short OGA (OGA-S),
located in the endoplasmic reticulum and lipid droplets [43].

2.3. Characteristics of O-GlcNAc Modification Compared with Other PTMs

O-GlcNAc modification has many characteristics compared with classical N-linked
glycosylation. N-linked glycosylation is a diverse process that adds canonical multimeric
long-chain glycan structures to extracellular proteins. In contrast, O-GlcNAc addition to
serine and/or threonine residues mainly occurs on nuclear and cytosolic proteins. This
modification is reversible through the cyclic action of OGT and OGA.

Increasing evidence demonstrates that O-GlcNAcylation is more similar to phospho-
rylation than to classical glycosylation [44]; both are rapidly cycling post-translational
modifications. Their amino-acid modification sites include serine and threonine, leading to
extensive interactions between the O-GlcNAcylation and phosphorylation mechanisms.
O-GlcNAcylation and phosphorylation are frequently mutually exclusive, referred to as the
“Yin–Yang” model [45]. However, the specificity of phosphorylation sites increases with
increased O-GlcNAcylation levels [46]. They are also susceptible to nutrients because their
donor substrates are high-energy products of cellular metabolism.
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3. Relationship between O-GlcNAc Modification and Diabetes

Diabetes, a metabolic disorder, is characterized by hyperglycemia, insulin secretion defects,
and insulin insensitivity. Diabetic hyperglycemia is caused by defective biological effects of
insulin (type 2 diabetes mellitus) resulting from obesity [47] or decreased insulin secretion
(type 1 diabetes mellitus) [48]. OGT, a recognized cellular nutrient sensor of the systemic
metabolic state, is abundant in the pancreas [49]. The deletion of the OGT gene in the pancreatic
epithelium can lead to pancreatic hypoplasia [50]. O-GlcNAcylation regulates β-pancreatic-cell
survival as well as insulin secretion and β-cell capacity under physiological conditions [51]. As
mentioned in this review, OGT is highly expressed under high-glucose conditions. Furthermore,
insulin can phosphorylate OGT via its receptor, contributing to increased OGT activity [52].
OGT overexpression is related to type 1 and type 2 diabetes mellitus.

3.1. Type 2 Diabetes Mellitus and O-GlcNAc Modification

Type 2 diabetes mellitus is characterized by impaired biological effects of insulin and is
prevalent in more than 90% of the reported cases. Insulin resistance is a primary reason charac-
terized by reduced insulin activity despite its excessive levels in the blood, eventually leading
to sustained hyperglycemia. In other words, when the body is in a state of insulin resistance,
higher insulin concentrations are required to activate its receptors for normal physiological
functions owing to reduced insulin sensitivity. The hexosamine biosynthesis pathway and
O-GlcNAc modifications may play crucial roles in this process (Figure 2). In 1991, Marshall
et al. first suggested that excessive glucose flux via HBP contributes to insulin resistance [28].
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Figure 2. Schematic representation of the O-GlcNAcylation pathway contributing to type 2 diabetes.
In islet cells, high glucose and insulin contribute to OGT overexpression, which leads to insulin
resistance by reducing the phosphorylation of insulin receptor substrate (IRS), protein kinase B (Akt),
and the interaction between IRS and phosphoinositide 3-kinase (PI3K). Abbreviations: IRS, insulin
receptor substrate; Grb2, growth factor receptor-bound protein 2; Sos, salt overly sensitive; Erk, extra-
cellular regulated protein kinases; UDP-GlcNAc, UDP-N-acetylglucosamine; PI3K, phosphoinositide
3-kinase; PIP3, phosphatidylinositol (3,4,5)-triphosphate; Glut4, glucose transporter-4; Gsk3, glycogen
synthase kinase 3; mTORC1, mechanistic target of rapamycin complex 1; SREBP, sterol regulatory
element-binding protein; FoxO, Forkhead box O; PGC1a, peroxisome proliferator-activated receptor-γ
coactivator 1-α; AS160, Akt substrate of 160 kDa; Pdx-1, pancreas-duodenum homeobox-1; GPR40, G
protein-coupled receptor 40.
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Activated-insulin-receptor signal transduction has two main branches: the insulin
receptor substrate (IRS)–phosphoinositide 3-kinase (PI3K)–protein kinase B (Akt/PKB)
pathway and the IRS–growth factor receptor-bound protein 2 (Grb2)–salt overly sensi-
tive (Sos)–Ras–mitogen-activated protein kinase (MAPK) pathway [53]. The Akt/PKB
serine/threonine kinase is a significant intracellular second messenger that phosphorylates
and activates basic downstream kinases, such as glycogen synthase kinase 3, mammalian
target of rapamycin complex 1, ribosomal protein S6 kinase, and transcriptional regulators
such as Forkhead box O (FoxO) family members, sterol regulatory element-binding protein,
peroxisome proliferator-activated receptor γ coactivator 1, and GTPase-activating protein
Akt substrate 160 kDa [54]. In addition, glucose transporter-4 (GLUT4) is predominantly
located in the cytoplasm, and Akt phosphorylation translocates the transporter to the
plasma membrane for insulin-stimulated glucose uptake [55].

HBP contributes to insulin resistance mainly through the increased O-GlcNAc mod-
ification of insulin-signaling-pathway intermediates, which can be reversed with GFAT
inhibitor treatment [56]. Therefore, we hypothesize that this phenomenon might result
from an increased O-GlcNAc modification of intermediates, including IRS, Akt, FoxO, and
other molecules, attenuating the insulin signaling cascade. Under physiological conditions,
the normal signaling activities of certain intracellular proteins in pancreatic β cells are
dynamically regulated via phosphorylation and O-GlcNAcylation in response to extra-
cellular signals, which could cause diabetes. In animal models of insulin resistance and
type 2 diabetes, reduced glucose uptake was associated with decreased phosphorylation
of IRS-1 tyrosine [57]. Seung et al. treated primary rat adipocytes with an OGA inhibitor,
O-(2-acetamido-2deoxy-D-glucopyranosylidene) amino-N-phenylcarbamate (PUGNAc),
to increase O-GlcNAc modification. They observed that the increased O-GlcNAc modi-
fication of IRS-1 and Akt2 reduced the insulin-stimulated phosphorylation of IRS-1 and
Akt2, which induced insulin resistance characterized by prominently decreased GLUT4
translocation in adipocytes [58]. Kaleem et al. discovered that the site modifications existed
in both IRS-1 and IRS-2 (Ser1101 in IRS-1 and Ser1149 in IRS-2) [59] and that the excessive
O-GlcNAcylation of these sites led to insulin resistance. The O-GlcNAcylation of IRS-1/2
can reduce the interaction with its downstream molecule, phosphoinositide 3-kinase (PI3K),
which may be a reason for the attenuation of the insulin signaling cascade [60].

Phosphatidylinositol (3,4,5)-trisphosphate (PIP3), one of the molecules in the insulin
pathway, recruits Akt to initiate signaling cascades during the early stages. OGT can also be
recruited to the plasma membrane through the phosphoinositide-binding domain of OGT,
which may induce insulin resistance [61]. In addition, the interactions between OGT and
PIP3 also promote the O-GlcNAcylation of nuclear proteins, such as pancreas-duodenum
homeobox-1 (Pdx-1). The O-GlcNAcylation of the Pdx-1 protein is positively correlated with
the increase in its DNA binding activity [62]. Glucose stimulates the expression of G protein-
coupled receptor 40 (GPR40) in the pancreas by increasing the binding between Pdx-1 and A-
box in the HR2 region of the GPR40 promoter [63]. GPR40 activation, which leads to insulin
secretion, has become an attractive target for type 2 diabetes treatment [64]. Collectively,
the O-GlcNAc modification might play a conducive role in alleviating insulin resistance.

3.2. Type 1 Diabetes Mellitus and O-GlcNAc Modification

Type 1 diabetes is a complex disease involving multiple factors, such as genetic suscep-
tibility, immune dysfunction, and inflammation, and is characterized by the destruction of
insulin-producing β cells. In this review, we found that persistent hyperglycemia induces
glucose toxicity through O-GlcNAc modification.

Thioredoxin-interacting protein (TXNIP), one of the primary mediators of β-cell dys-
function, inhibits glucose uptake by reducing GLUT1 mRNA expression [65], promoting
the activation of the NOD-like receptor protein-3 (NLRP3) inflammasome, and promoting
programmed cell death [66]. This protein is persistently elevated in diabetes [67] and sub-
jected to O-GlcNAcylation. The interaction between TXNIP and its binding partner NLRP3
was quantitatively analyzed using the immunoblotting technique. A plasmid encoding a



Metabolites 2022, 12, 725 6 of 16

bioluminescence-resonance-energy-transfer biosensor comprising the pro-IL-1β sequence
was used to quantitatively analyze its cleavage. OGT expression induced by PUGNAc and
high glucose concentration reportedly contribute to the interaction between TXNIP and
NLRP3 proteins, promoting pro-IL1β-cleavage-mediated inflammasome activation [68].

O-GlcNAcylation also induces β-pancreatic-cell death by interfering with Akt phos-
phorylation. Kang et al. treated rat pancreatic cells with glucosamine and discovered an
increased O-GlcNAcylation of Akt Ser473; consecutively, the phosphorylation of this site
was decreased. This competitive inhibition between phosphorylation and O-GlcNAcylation
is associated with the apoptosis of murine β-pancreatic cells, leading to insufficient insulin
secretion [69]. This observation could be attributed to the overexpression of pro-apoptotic
protein Bim induced by impaired Forkhead box protein O1 (FOXO1) inactivation [70].

4. Relationship between O-GlcNAc Modification and Diabetic Retinopathy

DR is characterized by progressive and irreversible damage. It can be divided
into two phases based on the occurrence of neovascularization in microvascular lesions:
early (non-proliferative diabetic retinopathy (NPDR)) and advanced stages (PDR). NPDR
has no apparent symptoms, including the blood–retinal barrier (BRB) breakdown [71],
vascular-endothelial-cell and pericyte apoptosis, macular edema, microaneurysm, vascular-
basement-membrane thickening, and capillary occlusion. It can go undetected in patients
owing to the asymptomatic characteristics in the early stage. Patients experience vision loss
during the advanced stage of PDR, which includes neovascularization usually accompanied
by vitreous hemorrhage, traction retinal detachment, iris neovascularization, and angular
neovascularization with elevated intraocular pressure (neovascular glaucoma) [72].

Recent research confirmed that DR is not just a microvascular disease but a combina-
tion of neurovascular diseases. In addition, retinal neurodegenerative changes in DR may
emerge earlier than microvascular lesions, characterized by reactive gliosis and damage to
photoreceptors [73,74]. Retinal angiopathy occurs in retinal arterioles in the initial stage,
which further leads to the increase in retinal microvascular pressure, leading to a series of
microvascular lesions. Previous studies focused on the microvascular lesions of DR. Since
retinal neurodegenerative changes occur earlier, targeting retinal neurodegeneration is
more conducive to the early detection and treatment of DR. We summarize that increased
O-GlcNAc modification caused by diabetes-induced hyperglycemia involves microvascular
lesions and neurodegeneration.

4.1. O-GlcNAc Modification and Retinal Microvascular Lesions

Neovascularization (proliferation of new retinal blood vessels) and macular edema (in-
creased permeability of retinal vessels) are two significant pathological characteristics of reti-
nal microvascular lesions and the leading causes of vision loss in DR. Increased O-GlcNAc
modification induces retinal microvascular lesions, including specialized-vasculature-cell
death, the destruction of endothelial-cell-junction integrity, and neovascularization through
various mechanisms. In this section, we summarize these three major processes and the
mechanisms underlying the increased O-GlcNAc modification involved in these processes.

4.1.1. O-GlcNAc Modification and Specialized-Vasculature-Cell Death

Specialized vasculature cells include non-fenestrated endothelial cells (ECs) and per-
icytes. ECs constitute the main structure of retinal capillaries. Pericytes wrap around
capillaries to ensure their integrity, control blood flow, and secrete various cytokines to
regulate the surrounding internal environment [75]. In the human retina, the ratio of
pericytes to endothelial cells in retinal vessels is approximately 1:1, which is higher than
that in the cerebrum and other organs [76].

Pericyte apoptosis is a characteristic lesion in the early stages of DR. The O-GlcNAc-
modification levels significantly increase in pericytes, moderately increase in astrocytes,
and do not increase in endothelial cells under hyperglycemic conditions [77]. Gurel et al.
identified 431 O-GlcNAc-modified target proteins in retinal pericytes using biotin affin-
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ity tags. They further discovered that the phosphorylation of Thr155 of p53 promoted
the interaction between mouse double minute 2 homolog and p53, thereby increasing
the degradation of p53. O-GlcNAcylated Ser149 improved p53 stability by preventing
the phosphorylation of Thr155, which mediates the hyperglycemia-induced apoptosis of
pericytes [78,79].

Nitric oxide (NO) functions as a vasodilator by binding to soluble guanylate cyclase
to elevate cGMP production and plays a vital role in suppressing cell inflammation and
adhesion [80]. Endothelial nitric oxide synthase (eNOS) is a constitutive Ca2+/calmodulin-
dependent enzyme that functions as the key enzyme in NO synthesis. Aulak et al. estab-
lished that the increased O-GlcNAc modification of Ser615 can inhibit Ser1177 phospho-
rylation, which results in reduced eNOS activity and endothelial dysfunction in human
coronary artery ECs [81], which accelerates EC death.

The O-GlcNAcylation of FoxO1 mediates the positive feedback loop of gluconeoge-
nesis and elevates blood glucose. In a study by Shan et al., hyperglycemia or nucleoside
diphosphate kinase-B (NDPK-B) deficiency led to the O-GlcNAcylation of FoxO1, which
contributed to the upregulation of Angiopoietin 2 (Ang-2). Hyperglycemia can also increase
Ang-2 expression through the methylglyoxal modification of mSin3A [82]. Perivascular
cells secrete Ang-1, which can bind to and activate Tie-2 to increase EC survival, adhesion,
and stability of cell junctions. Ang-2 can promote the initiation of new-vessel formation in
retinas and suppress the ability of Ang-1 to phosphorylate the Tie-2 receptor, causing vas-
cular damage and endothelial-cell apoptosis [83]. Notably, Ang-2 itself is O-GlcNAcylated,
but the removal of NDPK-B does not affect the O-GlcNAc modification of Ang-2 [84].

Many translation initiation factors can be modified by O-GlcNAc, including eukary-
otic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1). In the retinas of
diabetic mice, hyperglycemia promotes 4E-BP1 O-GlcNAcylation and binding to eIF4E,
which represses cap-dependent translation [85]. It alters the translation of mRNA molec-
ular networks related to mitochondrial function and oxidative stress, thereby enhancing
cell respiration and mitochondrial superoxide production, destroying the mitochondrial
ultrastructure, and supplying energy from oxidative phosphorylation [41]. This can re-
sult in increased capillary cell apoptosis owing to increased reactive oxygen species and
insufficient energy supply.

However, the overexpression of O-GlcNAc modification does not permanently injure
the vascular endothelial cells. O-GlcNAcylation plays a protective role in the early stages
of DR by reducing reactive oxygen species (ROS) production, increasing antioxidant gene
expression, preventing the dissipation of mitochondrial membrane potential, and pre-
venting human retinal microvascular endothelial cell (HRVEC) apoptosis [42]. O-GlcNAc
modification can alleviate endothelial dysfunction. Signal transducer and activator of
transcription 3 (STAT3) participates in many biological processes, including inflamma-
tion, angiogenesis, and immune regulatory processes [86] and can also be modified by
O-GlcNAc [87]. O-GlcNAcylation upregulates p705 STAT3 expression to relatively higher
levels and inhibits p727 STAT3 expression under high-glucose conditions. The upregulation
of p705 STAT3 can promote the expression of the downstream vascular endothelial growth
factor (VEGF) molecule. Although VEGF has always been considered a risk factor for DR, it
is required for the survival of endothelial cells under pressure. Xu et al. demonstrated that
O-GlcNAcylation might partially mitigate HRVEC apoptosis mediated by the JAK2–Tyr705
STAT3–VEGF pathway [88].

4.1.2. O-GlcNAc Modification and Destruction of Endothelial-Cell-Junction Integrity

The destruction of endothelial-cell-junction integrity is the immediate cause of in-
creased retinal vessel permeability. This results in the development of macular edema
and changes in the response of endothelial cells to the environment and surrounding cells.
Increased O-GlcNAcylation can destroy endothelial-cell-junction integrity via structural
damage and abnormal intercellular communication.
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Vascular endothelial cadherin (VE-cadherin) is a component of endothelial-cell adhe-
sion and plays a crucial role in maintaining vascular integrity. Glucose-regulated protein 78
(GRP78) resides in the endoplasmic reticulum (ER) under normal circumstances. Lenin et al.
discovered the GRP78 translocation from the ER to the membrane detected using immuno-
cytochemistry and confocal microscopy. They also observed increased O-GlcNAcylation,
particularly in VE-cadherin, under ER stress, which resulted in VE-cadherin structural
changes. They applied the transmigration of activated leukocytes across endothelial cells to
assess the degree of endothelial injury. They observed that increased O-GlcNAcylation of
VE-cadherin promoted the loss of retinal-endothelial-barrier integrity and BRB breakdown,
ultimately increasing endothelial permeability [89].

4.1.3. O-GlcNAc Modification and Neovascularization

Under physiological conditions, a balance is maintained between vascular growth
factors and antiangiogenic factors in the eye. This minimizes the obstruction by blood
vessels of the line of sight while ensuring adequate nutrient supply to blood vessels, such
as the foveal avascular zone of the macula. Abnormal neovascularization can be activated
when retinal capillaries are exposed to certain adverse conditions, including inflammation.
These new blood vessels usually grow on the retinal surface and penetrate the inner limiting
membrane of the vitreous body. In addition, these vessels are typically porous, fragile,
and leaky.

Vascular endothelial growth factor-A (VEGF-A) stimulates angiogenesis, which di-
rectly triggers the damage, infiltration, and proliferation of blood vessels, and plays a vital
role in the progression of the proliferative stage in DR [90]. Anti-VEGF is widely used as a
target molecule in clinical therapeutics for DR [91]. Donovan found that transcription factor
specificity protein 1 (Sp1) interacts with VEGF-A promoters and stimulates the secretion
of VEGF-A before retinal ischemic injury, which occurs in different types of retinal cells,
including retinal pigment epithelial cells, endothelial cells, pericytes, and Müller cells.
VEGF concentration is positively correlated with the O-glycosylation level of Sp1 [92]. This
may be one of the mechanisms of microangiopathy in non-proliferative DR.

Runt-related transcription factor 1 (Runx1), a member of the Runx family of transcrip-
tion factors, plays a vital role in determining the direction of cell-line differentiation, normal
hematopoietic-cell formation, and stem-cell proliferation. In human retinal microvascular
endothelial cells, the downregulation of the Runx1 gene can reduce the ability of cells to
form tubes [93], which shows the importance of Runx1 in neovascularization. Xing et al.
observed that O-GlcNAc could modify Runx1, and the modification effect was stronger
in the case of hyperglycemia [94]. They speculated that Runx1 activity was related to
the O-GlcNAc modification level. However, their research study had limitations, such as
failing to locate the O-GlcNAc modification site in Runx1. Therefore, the regulation of
the O-GlcNAc modification of Runx1 and its impact on retinal neovascularization require
further elucidation.

Connexins, including Cx40, Cx37, and Cx43, are the main components of gap junctions
and are highly expressed in ECs. Cx40 promotes EC proliferation and neovascularization
maturation, probably by mediating the increased secretion of platelet-derived growth
factors [95]. In patients with diabetes, Cx40 protein levels decrease, but O-GlcNAcylation
increases [96]. A decrease in Cx40 protein is one of the causes of endothelial dysfunction in
diabetes. This change is detrimental to coronary ECs [97]. However, a decrease in Cx40
appears to be beneficial for delaying neovascularization in PDR, suggesting that Cx40 may
be a new therapeutic target for DR [95]. However, further studies are required to elucidate
the relationship between the increased O-GlcNAc modification of Cx40 and DR.

4.2. O-GlcNAc Modification and Retinal Neurodegeneration

In the advanced stages of DR, increased O-GlcNAc modification fails to induce per-
fusion in the local capillaries and indirectly leads to local ischemia and the impaired
oxygenation of retinal neurons required by metabolism, which is the most apparent lesion
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of retinal nerve cells. However, recent studies indicate that neuronal apoptosis and reac-
tive gliosis exist in the early stages of DR and not entirely owing to abnormal capillary
function [98]. This O-GlcNAcylation-dependent neurodegeneration is characterized by
neuronal dysfunction, retinal thinning [99], and retinal neuronal apoptosis [100]. A high-fat
diet can increase retinal protein O-GlcNAcylation by promoting NR4A1-dependent GFAT2
expression [101].

The retinal ganglion cell (RGC) is a type of multipolar nerve cell. This fundamental
cell transmits visual impulses and light-independent information, reflecting the functional
states of the retina, the anterior eye, and the body [102]. RGCs are the earliest affected
cells in DR [103]. RGC death in DR is activated by hyperglycemia-induced O-GlcNAc
modification of nuclear factor kappa B (NF-κB) p65 (RelA). NF-κB is a multifunctional
transcription factor that can be activated by proinflammatory cytokines and plays a complex
role in inflammation. O-GlcNAc modification increases, especially in the ganglion cell
layer and inner nuclear layer, leading to increased nuclear translocation of RelA and NF-κB
transcriptional activity. This could be an important factor resulting in the apoptosis of
RGCs [104] (Figure 3).
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creased O-GlcNAc modification promotes NF-κB transcriptional activity via its nuclear translocation,
leading to RGC death. Abbreviations: NF-κB, nuclear factor kappa B; RelA, nuclear factor kappa
B p65.

Carbohydrate-responsive element-binding protein (ChREBP) is a transcriptional regu-
lator of glucose metabolism that can also be O-GlcNAcylated and promotes TXNIP levels
by binding to the thioredoxin-interacting protein (TXNIP) promoter, which contains two
carbohydrate-response elements [105]. The damage of TXNIP to retinal cells involves
multiple pathological processes, including inflammation [106], mitophagy [107], and glu-
tamate toxicity [108], and is not limited to specific retinal cell types. However, TXNIP
sensitivity differs among various cells. Therefore, some cells may be more susceptible to
TXNIP-induced damage than others [109]. High glucose induces TXNIP colocalization with
terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive ganglion
cells in the ganglion cell layer [105]. Other retinal-cell deaths, including that of Müller
cells [110] and pericytes [111], are also reportedly induced by TXNIP.
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5. Future Directions

O-GlcNAcylation has the potential of becoming a novel biomarker for the early-stage
diagnosis and detection of DR, thereby reducing its incidence. For example, Wang et al.
found differences in site-specific GlcNAcylation on erythrocyte proteins between patients
with diabetes and healthy individuals [112]. Moreover, O-GlcNAc is more sensitive to the
metabolic status than hemoglobin A1c levels [113].

Given the strong correlation between DR and O-GlcNAcylation, interventions for
HBP flux and O-GlcNAcylation are expected to become new therapeutic targets for DR.
Kim et al. observed that metformin, a well-known anti-diabetic drug, can alleviate retinal
degeneration by reducing O-GlcNAcylation levels in DR models, which is highly likely
to be associated with the activation of AMP-activated protein kinase (AMPK) [105]. Addi-
tionally, angiotensin (1–7) (Ang1–7), an AngII degradation product, decreases O-GlcNAc
modification via the exchange factor directly activated by the cAMP/Rap1/OGT signaling
axis [114]. The intraocular administration of Ang1–7 and angiotensin-converting enzyme 2,
which catalyzes AngII to Ang1–7, can alleviate DR progression [115]. Although this is an
exciting direction for future research, the degree of O-GlcNAcylation regulation should
also be considered, owing to its diverse roles in multiple physiological processes within the
body. The excessive downregulation of O-GlcNAcylation may cause more deleterious than
beneficial effects, as evidenced by the OGT- or OGA-knockout-mediated lethality to cell sur-
vival [116]. Moreover, the complexity of O-GlcNAcylation in DR and tissue-specific retinal
expression necessitates tissue- and protein-targeted O-GlcNAcylation regulation. Further
research is required to elucidate the treatment of DR via the targeting of O-GlcNAcylation.

6. Conclusions

In recent years, researchers have made continuous and remarkable progress in the
field of O-GlcNAcylation. This has improved our knowledge of the O-GlcNAcylation
mechanism and its participation in various biological processes. Increased O-GlcNAc
modification can both positively and negatively affect DR. In this review, we summarize
the current knowledge on O-GlcNAc modification and its role in DR (Figure 4). Excessive
O-GlcNAc modification mediates insulin resistance, vasculature cell death, the destruction
of endothelial-cell integrity, neovascularization, and neurodegeneration; all these factors
promote DR development. However, it also exerts a protective effect in early-stage DR.
Collectively, increased O-GlcNAc modification, which is involved in various stages of
DR, provides a comprehensive overview of the adverse effects of diabetes on the retina.
Current treatments are only suited for diagnosing and treating advanced DR, such as PDR
and diabetic macular edema. Therefore, further elucidation of O-GlcNAc modification
and its role in DR can significantly contribute to the prospect of early diagnosis and the
development of novel precision therapies against DR.
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