

ISSN 2056-9890

Received 4 December 2016 Accepted 16 January 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; polymeric structure; hydrogen bonds; copper(II); acetate; imidazole; π - π stacking.

CCDC reference: 1520352

Supporting information: this article has supporting information at journals.iucr.org/e

X

Crystal structure of *catena*-poly[[bis(acetato- κO)copper(II)]-bis[μ -4-(1*H*-imidazol-1-yl)phenol]- $\kappa^2 N^3$: $O; \kappa^2 O: N^3$]

Mehmet Poyraz^a* and Musa Sarı^b

^aDepartment of Chemistry, Faculty of Science and Arts, Afyon Kocatepe University, TR-03200 Afyonkarahisar, Turkey, and ^bDepartment of Physics Education, Gazi University, Beşevler, TR-06500 Ankara, Turkey. *Correspondence e-mail: poyraz@aku.edu.tr

In the title compound, $[Cu(CH_3COO)_2(C_9H_8N_2O)_2]_n$, the Cu^{II} ion resides on a centre of inversion, displaying a tetragonally distorted octahedral coordination environment defined by two pairs of N and O atoms of symmetry-related 4-(1*H*-imidazol-1-yl)phenol ligands and the O atoms of two symmetry-related acetate ligands. The bridging mode of the 4-(1*H*-imidazol-1-yl)phenol ligands is associated with a very long Cu···O interactions involving the phenol O atom of the heterocyclic ligand, which creates chains extending parallel to [100]. In the crystal, the chains are arranged in a distorted hexagonal rod packing and are linked *via* C–H···O hydrogen bonds and by π - π stacking interactions involving centrosymmetrically related pairs of imidazole and phenol rings.

1. Chemical context

Coordination polymers have been investigated as materials with interesting properties such as magnetism (Zhu *et al.*, 2010), luminescence (Cui *et al.*, 2012), catalysis (Wang *et al.*, 2011) or absorption (Zhang *et al.*, 2017). Some coordination polymers are also known to show photocatalytic activity with respect to the decomposition of organic dyes (Yang *et al.*, 2010; Yin *et al.*, 2015).

In the past few years, metal complexes with ligands derived from imidazole have attracted much attention, not only for their fascinating crystal structures, but also for their interesting applications related to antifungal (Rezaei *et al.*, 2011), pesticidal (Stenersen *et al.*, 2004) and plant-growth regulatory properties (Choi *et al.*, 2010), or drugs in general (Lednicer *et al.*, 1998; Adams *et al.*, 2001). Most of these compounds exhibit typical molecular structures whereas the number of imidazolebased coordination polymers (Martins *et al.*, 2010; Masciocchi *et al.*, 2001; Stamatatos *et al.*, 2009) is much lower, probably due to the difficulty of growing single crystals.

research communications

Table 1Selected geometri	c parameters (Å, °)		
N1-Cu1 Cu1-O2	2.003 (2) 1.9322 (18)	O3–Cu1 ⁱ	2.739 (2)
$\begin{array}{c} O2-Cu1-N1 \\ N1-Cu1-N1^{ii} \\ O2-Cu1-O3^{iii} \end{array}$	90.56 (8) 180.0 93.06 (7)	$N1-Cu1-O3^{iii}$ $O2-Cu1-O3^{iv}$ $N1-Cu1-O3^{iv}$	91.31 (7) 86.94 (7) 88.69 (7)

Symmetry codes: (i) x - 1, y, z; (ii) -x + 2, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) x + 1, y, z.

In this communication we report on the synthesis and crystal structure of a copper(II) coordination polymer, $[Cu(CH_3COO)_2(C_9H_8N_2O)_2]_n$, comprising 4-(1*H*-imidazol-1-yl)-phenol and acetate ligands.

2. Structural commentary

The asymmetric unit of the title compound comprises of one Cu^{II} atom, one 4-(1*H*-imidazol-1-yl)-phenol ligand and one acetate group, with the Cu^{II} atom situated on a crystallographic inversion centre. The distorted octahedral coordination environment of the Cu^{II} atom is defined by two symmetry-related pairs of imidazole N atoms and phenol O atoms from the heterocyclic ligands and by two O atoms of a symmetry-related pair of monodentate acetate ligands (Fig. 1). The Cu-O(acetate) [1.9322 (18) Å] and Cu-N(imidazole)[2.003 (2) Å] bonds are arranged in the equatorial plane and are within normal lengths (Ding et al., 2005; Song et al., 2008; Yun et al., 2008; Yu & Deng, 2011). The equatorial bond angles are in the range 86.94 (7)–93.06 (7)° in the Cu1N₂O₄ polyhedron (Table 1). The bond involving the phenolic O3 atom is very weak, with a distance of $Cu \cdot \cdot \cdot O = 2.739(2) \text{ Å}$, completing the tetragonally distorted octahedron. The N,Obridging character of the 4-(1H-imidazol-1-yl)-phenol ligand leads to the formation of chains extending parallel to [100],

Figure 1

The coordination environment of the Cu^{II} atom in the title compound. Displacement ellipsoids are drawn at the 30% probability level; non-labelled atoms are related to labelled atoms by (-x + 1, -y + 1, -z).

Table 2	
Hydrogen-bond geometry (Å, $^{\circ}$).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C5-H5\cdots O1^{v}$	0.95	2.44	3.356 (3)	161
$O3-H3A\cdots O1^{iii}$	0.84	1.80	2.637 (3)	172

Symmetry codes: (iii) -x + 1, -y + 1, -z + 1; (v) x, y, z + 1.

whereby the ligands are oriented in an antiparallel fashion within a chain. The dihedral angle between the imidazole group (N1,N2,C1–C3) and the phenyl ring (C4–C9) is 24.07 (2)°. An intrachain hydrogen bond between the phenol OH group (O3) and the non-coordinating carboxylate O atom (O1) of the acetate ligand is present (Table 2, Fig. 2).

3. Supramolecular features

In the crystal, the chains are aligned in a distorted hexagonal rod packing perpendicular to the chain direction. Chains are linked through intermolecular $C-H\cdots O$ interactions between a phenyl CH group and the non-coordinating carboxylate O atom (O1) that consequently acts as a double acceptor atom (Fig. 2, Table 2). Additional $\pi-\pi$ stacking interactions involving centrosymmetrically related pairs of imidazole and phenol rings, with the shortest distance between an N atom and a C atom being 3.372 (2) Å, are also present. The interplanar angle between the two rings is 24.1 (1)°.

4. Database survey

The literature about one-dimensional inorganic–organic coordination polymers based on copper(II) complexes with Cu^{II} either in a square-pyramidal or a distorted octahedral coordination environment is vast. Just to take very recent examples, three such structures have been reported (Hazra *et al.*, 2017; Puchoňová *et al.*, 2017; Shaabani *et al.*, 2017). Nevertheless, there is only limited research on 4-(1*H*-imidazol-1-yl)-phenol as a ligand (Maher *et al.*, 1994; Wei *et al.*, 2007; Yurdakul & Badoğlu, 2015). To the best of our know-

The crystal structure of the title compound showing the formation of chains extending parallel to [100]. Hydrogen-bonding interactions are shown as dashed lines.

Table 3	
Experimental	details.

Crystal data	
Chemical formula	$[Cu(C_2H_3O_2)_2(C_9H_8N_2O)_2]$
$M_{\rm r}$	501.99
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.2029 (15), 15.089 (2),
	7.7814 (11)
β (°)	111.545 (4)
$V(Å^3)$	1114.2 (3)
Ζ	2
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	1.03
Crystal size (mm)	$0.11\times0.09\times0.07$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker,
	2013)
T_{\min}, T_{\max}	0.895, 0.931
No. of measured, independent and	40729, 2784, 2156
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.051
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.667
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.100, 1.15
No. of reflections	2784
No. of parameters	153
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.26, -0.30
/	

Computer programs: *APEX2* and *SAINT* (Bruker, 2013), *SHELXS97* (Sheldrick, 2008), *SHELXL2014* (Sheldrick, 2015), *Mercury* (Macrae *et al.*, 2008) and *publCIF* (Westrip, 2010).

ledge, only one discrete copper(II) complex of 4-(1H-imidazol-1-yl)-phenol (Yu & Deng, 2011) has been reported. In this regard, the title compound is the first Cu^{II} coordination polymer with 4-(1H-imidazol-1-yl)-phenol.

5. Synthesis and crystallization

4-(1*H*-Imidazol-1-yl)phenol (0.0480 g, 0.3 mmol) was dissolved in 5 ml ethanol, a water solution (5 ml) of Na₂CO₃ (0.0318 g, 0.3 mmol) was slowly added, and an ethanol solution (5 ml) of Cu(NO₃)₂·2.5H₂O (0.0349 g, 0.15 mmol) was added slowly with stirring for 30 min. To the formed cloudy suspension, an aqueous solution of acetic acid (0.3 mmol) was added. The resulting solution turned to a transparent blue colour. After stirring for three h, the solution was allowed to evaporate at room temperature. A number of blue single crystals were obtained after a few days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. C-bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with distances in the range 0.93–0.96Å and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ for methyl atoms. The H atom of the phenol OH group was located in a difference map and was constrained at a distance of O-H = 0.84 Å and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Acknowledgements

The authors acknowledge Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker D8 QUEST diffractometer and Dr Onur Şahin for help and guidance.

References

- Adams, J. L., Boehm, J. C., Gallagher, T. F., Kassis, S., Webb, E. F., Hall, R., Sorenson, M., Garigipati, R., Griswold, D. E. & Lee, J. C. (2001). *Bioorg. Med. Chem. Lett.* **11**, 2867–2870.
- Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Choi, J. H., Abe, N., Tanaka, H., Fushimi, K., Nishina, Y., Morita, A., Kiriiwa, Y., Motohashi, R., Hashizume, D., Koshino, H. & Kawagishi, H. (2010). J. Agric. Food Chem. 58, 9956–9959.
- Cui, Y. J., Yue, Y. F., Qian, G. D. & Chen, B. L. (2012). *Chem. Rev.* **112**, 1126–1162.
- Ding, C.-F., Zhang, S.-S., Tian, B.-Q., Li, X.-M., Xu, H. & Ouyang, P.-K. (2005). Acta Cryst. E61, m235–m236.
- Hazra, S., Martins, L. M. D. R. S., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017). *Inorg. Chim. Acta*, **455**, 549–556.
- Lednicer, D. (1998). Drugs Based on Five-Membered Heterocycles, in Strategies for Organic Drug Synthesis and Design. New York: Wiley.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Maher, J. P., McCleverty, J. A., Ward, M. D. & Wlodarczyk, A. (1994). J. Chem. Soc. Dalton Trans. pp. 143–147.
- Martins, G. A. V., Byrne, P. J., Allan, P., Teat, S. J., Slawin, A. M. Z., Li, Y. & Morris, R. E. (2010). *Dalton Trans.* 39, 1758–1762.
- Masciocchi, N., Bruni, S., Cariati, E., Cariati, F., Galli, S. & Sironi, A. (2001). *Inorg. Chem.* 40, 5897–5905.
- Puchoňová, M., Švorec, J., Švore, Ľ., Pavlik, J., Mazúr, M., Dlháň, Ľ., Růžičková, Z., Moncol, J. & Valigura, D. (2017). *Inorg. Chim. Acta*, 455, 298–306.
- Rezaei, Z., Khabnadideh, S., Zomorodian, K., Pakshir, K., Kashi, G., Sanagoei, N. & Gholami, S. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 658–665.
- Shaabani, B., Rad-Yousefnia, N., Zahedi, M., Ertan, Ş., Blake, G. R. & Zakerhamidi, M. S. (2017). *Inorg. Chim. Acta*, **455**, 158–165.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Song, W.-D., Huang, X.-H. & Wang, H. (2008). Acta Cryst. E64, m764.
- Stamatatos, T. C., Perlepes, S. P., Raptopoulou, C. P., Terzis, A., Patrickios, C. S., Tasiopoulos, A. J. & Boudalis, A. K. (2009). *Dalton Trans.* pp. 3354–3362.
- Stenersen, J. (2004). In *Chemical Pesticides Mode of Action and Toxicology*. Boca Raton: CRC Press.
- Wang, S. J., Li, L., Zhang, J. Y., Yuan, X. C. & Su, C. Y. (2011). J. Mater. Chem. 21, 7098–7104.
- Wei, R. G., Adler, M., Davey, D., Ho, E., Mohan, R., Polokoff, R., Tseng, J.-L., Whitlow, M., Xu, W., Yuan, S. & Phillips, G. (2007). *Bioorg. Med. Chem. Lett.* **17**, 2499–2504.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yang, H. X., Liu, T. F., Cao, M. N., Li, H. F., Gao, S. Y. & Cao, R. (2010). Chem. Commun. 46, 2429–2431.
- Yin, W.-Y., Huang, Z.-L., Tang, X.-Y., Wang, J., Cheng, H.-J., Ma, Y.-S., Yuan, R.-X. & Liu, D. (2015). New J. Chem. 39, 7130–7139.
- Yu, R.-J. & Deng, B. (2011). Acta Cryst. E67, m1253.
- Yun, R., Ying, W., Qi, B., Fan, X. & Wu, H. (2008). Acta Cryst. E64, m1529.

Yurdakul, S. & Badoğlu, S. (2015). Spectrochim. Acta Part A, 150, 614–622.

Zhang, X., Wu, X. X., Guo, J. Z., Huo, J. H. & Ding, B. (2017). J. Mol. Struct. **1127**, 183–190.

Zhu, X., Zhao, J. W., Li, B. L., Song, Y., Zhang, Y. M. & Zhang, Y. (2010). *Inorg. Chem.* **49**, 1266–1270.

supporting information

Acta Cryst. (2017). E73, 209-212 [https://doi.org/10.1107/S2056989017000780]

Crystal structure of *catena*-poly[[bis(acetato- κO)copper(II)]-bis[μ -4-(1*H*-imidazol-1-yl)phenol]- $\kappa^2 N^3$: $O; \kappa^2 O: N^3$]

Mehmet Poyraz and Musa Sarı

Computing details

Data collection: *APEX2* (Bruker, 2013); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT* (Bruker, 2013); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

catena-Poly[[bis(acetato- κO)copper(II)]-bis[μ -4-(1H-imidazol-1-yl)phenol]- $\kappa^2 N^3$:O; $\kappa^2 O$: N^3]

Crystal data	
$[Cu(C_2H_3O_2)_2(C_9H_8N_2O)_2]$ $M_r = 501.99$ Monoclinic, $P2_1/c$ a = 10.2029 (15) Å b = 15.089 (2) Å	F(000) = 518 $D_x = 1.496 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9911 reflections $\theta = 3.2-28.0^{\circ}$
c = 7.7814(11) Å	$\mu = 1.03 \text{ mm}^{-1}$
$\beta = 111.545 \ (4)^{\circ}$	T = 296 K
V = 1114.2 (3) Å ³	Block, blue
Z = 2	$0.11 \times 0.09 \times 0.07 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer	2784 independent reflections 2156 reflections with $I > 2\sigma(I)$ $R_{12} = 0.051$
Absorption correction: multi-scan	$\theta_{\text{max}} = 28.3^{\circ}$ $\theta_{\text{max}} = 3.1^{\circ}$
(SADABS: Bruker, 2013)	$h = -13 \rightarrow 13$
$T_{\rm min} = 0.895, T_{\rm max} = 0.931$	$k = -20 \rightarrow 20$
40729 measured reflections	$l = -10 \rightarrow 10$
Refinement	
Refinement on F^2 Least-squares matrix: full	Hydrogen site location: inferred from
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.100$	$w = 1/[\sigma^2(F_0^2) + (0.0249P)^2 + 1.2448P]$
S = 1.15	where $P = (F_o^2 + 2F_c^2)/3$
2784 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.30 \ {\rm e} \ {\rm \AA}^{-3}$

153 parameters 0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.7431 (2)	0.55700 (18)	0.5692 (3)	0.0350 (5)
H1	0.7461	0.5059	0.6420	0.042*
C2	0.7933 (4)	0.6526 (2)	0.4009 (5)	0.0601 (9)
H2	0.8394	0.6819	0.3308	0.072*
C3	0.6778 (4)	0.6824 (2)	0.4266 (5)	0.0656 (10)
Н3	0.6285	0.7359	0.3794	0.079*
C4	0.5265 (2)	0.62360 (16)	0.5918 (3)	0.0333 (5)
C5	0.5302 (3)	0.57796 (19)	0.7472 (4)	0.0408 (6)
Н5	0.6125	0.5463	0.8195	0.049*
C6	0.4129 (3)	0.5787 (2)	0.7968 (4)	0.0430 (6)
H6	0.4149	0.5470	0.9033	0.052*
C7	0.2929 (2)	0.62494 (18)	0.6930 (3)	0.0370 (6)
C8	0.2926 (3)	0.67390 (18)	0.5434 (4)	0.0419 (6)
H8	0.2126	0.7087	0.4760	0.050*
C9	0.4084 (3)	0.67258 (18)	0.4912 (4)	0.0403 (6)
Н9	0.4069	0.7053	0.3861	0.048*
C10	0.9356 (3)	0.56669 (19)	0.1300 (3)	0.0402 (6)
C11	0.9592 (4)	0.6405 (2)	0.0154 (4)	0.0617 (9)
H11A	0.9094	0.6273	-0.1159	0.093*
H11B	1.0603	0.6463	0.0408	0.093*
H11C	0.9234	0.6961	0.0464	0.093*
N1	0.8345 (2)	0.57396 (15)	0.4905 (3)	0.0368 (5)
N2	0.6450 (2)	0.62096 (14)	0.5338 (3)	0.0362 (5)
Cu1	1.0000	0.5000	0.5000	0.03750 (14)
01	0.8401 (2)	0.51168 (15)	0.0597 (3)	0.0528 (5)
O2	1.01849 (18)	0.56716 (14)	0.2987 (2)	0.0455 (5)
O3	0.17326 (19)	0.62330 (15)	0.7320 (3)	0.0502 (5)
H3A	0.1775	0.5811	0.8043	0.075*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0274 (11)	0.0431 (14)	0.0347 (12)	-0.0002 (10)	0.0115 (9)	0.0037 (10)
C2	0.073 (2)	0.0432 (17)	0.089 (2)	0.0039 (15)	0.060(2)	0.0134 (16)
C3	0.079 (2)	0.0395 (17)	0.104 (3)	0.0157 (16)	0.064 (2)	0.0252 (17)
C4	0.0288 (11)	0.0337 (12)	0.0384 (13)	-0.0008 (9)	0.0135 (10)	-0.0017 (10)
C5	0.0271 (12)	0.0540 (17)	0.0403 (13)	0.0071 (11)	0.0111 (10)	0.0107 (12)
C6	0.0345 (13)	0.0601 (18)	0.0369 (13)	0.0048 (12)	0.0161 (11)	0.0117 (12)
C7	0.0282 (11)	0.0441 (14)	0.0403 (13)	0.0003 (10)	0.0144 (10)	-0.0056 (11)

supporting information

C8	0.0333 (13)	0.0411 (15)	0.0494 (15)	0.0096 (11)	0.0129 (11)	0.0067 (12)
C9	0.0380 (13)	0.0397 (14)	0.0440 (14)	0.0047 (11)	0.0159 (11)	0.0092 (11)
C10	0.0364 (13)	0.0524 (16)	0.0369 (13)	0.0142 (12)	0.0195 (11)	0.0071 (12)
C11	0.082 (2)	0.056 (2)	0.0539 (18)	0.0127 (17)	0.0328 (17)	0.0158 (15)
N1	0.0313 (10)	0.0428 (12)	0.0393 (11)	-0.0035 (9)	0.0165 (9)	-0.0029 (9)
N2	0.0333 (10)	0.0357 (11)	0.0435 (11)	0.0015 (9)	0.0187 (9)	0.0027 (9)
Cu1	0.0246 (2)	0.0589 (3)	0.0293 (2)	0.0002 (2)	0.01022 (15)	0.0018 (2)
01	0.0430 (10)	0.0701 (14)	0.0416 (10)	0.0012 (10)	0.0112 (8)	0.0052 (10)
O2	0.0316 (9)	0.0717 (14)	0.0350 (9)	0.0000 (9)	0.0141 (8)	0.0087 (9)
O3	0.0339 (9)	0.0667 (14)	0.0571 (12)	0.0073 (9)	0.0253 (9)	0.0065 (10)

Geometric parameters (Å, °)

C1—N1	1.315 (3)	C8—C9	1.383 (4)	
C1—N2	1.345 (3)	C8—Cu1 ⁱ	3.895 (3)	
C1—Cu1	2.989 (2)	C8—H8	0.9500	
C1—H1	0.9500	С9—Н9	0.9500	
C2—C3	1.343 (4)	C10—O1	1.244 (3)	
C2—N1	1.361 (4)	C10—O2	1.274 (3)	
C2—Cu1	3.024 (3)	C10—C11	1.501 (4)	
С2—Н2	0.9500	C10—Cu1	2.888 (3)	
C3—N2	1.369 (4)	C11—H11A	0.9800	
С3—Н3	0.9500	C11—H11B	0.9800	
C4—C5	1.380 (3)	C11—H11C	0.9800	
C4—C9	1.385 (3)	N1—Cu1	2.003 (2)	
C4—N2	1.438 (3)	Cu1—O2 ⁱⁱ	1.9322 (18)	
C5—C6	1.386 (3)	Cu1—O2	1.9322 (18)	
С5—Н5	0.9500	Cu1—N1 ⁱⁱ	2.003 (2)	
C6—C7	1.383 (4)	Cu1—O3 ⁱⁱⁱ	2.739 (2)	
С6—Н6	0.9500	Cu1—O3 ^{iv}	2.739 (2)	
С7—ОЗ	1.363 (3)	O3—Cu1 ⁱ	2.739 (2)	
С7—С8	1.377 (4)	O3—H3A	0.8400	
C7—Cu1 ⁱ	3.383 (2)			
N1—C1—N2	111.5 (2)	O1—C10—O2	125.0 (3)	
N2—C1—Cu1	143.71 (17)	O1-C10-C11	120.3 (3)	
N1-C1-H1	124.2	O2-C10-C11	114.7 (3)	
N2-C1-H1	124.2	O1-C10-Cu1	93.50 (16)	
Cu1—C1—H1	92.1	C11—C10—Cu1	145.5 (2)	
C3—C2—N1	109.8 (3)	C10-C11-H11A	109.5	
C3—C2—Cu1	141.7 (2)	C10-C11-H11B	109.5	
С3—С2—Н2	125.1	H11A—C11—H11B	109.5	
N1-C2-H2	125.1	C10—C11—H11C	109.5	
Cu1—C2—H2	93.2	H11A—C11—H11C	109.5	
C2—C3—N2	106.8 (3)	H11B—C11—H11C	109.5	
С2—С3—Н3	126.6	C1—N1—C2	105.7 (2)	
N2—C3—H3	126.6	C1—N1—Cu1	127.34 (18)	
C5—C4—C9	120.0 (2)	C2—N1—Cu1	127.00 (18)	

C5—C4—N2	120.4 (2)	C1—N2—C3	106.3 (2)
C9—C4—N2	119.6 (2)	C1—N2—C4	127.2 (2)
C4—C5—C6	119.4 (2)	C3—N2—C4	126.5 (2)
С4—С5—Н5	120.3	O2 ⁱⁱ —Cu1—O2	180.0
С6—С5—Н5	120.3	O2 ⁱⁱ —Cu1—N1	89.44 (8)
C7—C6—C5	120.7 (2)	O2—Cu1—N1	90.56 (8)
С7—С6—Н6	119.6	$O2^{ii}$ —Cu1—N1 ⁱⁱ	90.56 (8)
С5—С6—Н6	119.6	O2—Cu1—N1 ⁱⁱ	89.44 (8)
O3—C7—C8	118.3 (2)	N1—Cu1—N1 ⁱⁱ	180.0
O3—C7—C6	122.3 (2)	O2 ⁱⁱ —Cu1—O3 ⁱⁱⁱ	86.94 (7)
C8—C7—C6	119.4 (2)	O2—Cu1—O3 ⁱⁱⁱ	93.06 (7)
O3—C7—Cu1 ⁱ	51.02 (13)	N1—Cu1—O3 ⁱⁱⁱ	91.31 (7)
C8—C7—Cu1 ⁱ	101.33 (16)	N1 ⁱⁱ —Cu1—O3 ⁱⁱⁱ	88.69 (7)
C6—C7—Cul ⁱ	115.23 (18)	O2 ⁱⁱ —Cu1—O3 ^{iv}	93.06 (7)
С7—С8—С9	120.2 (2)	O2—Cu1—O3 ^{iv}	86.94 (7)
C7C8Cu1 ⁱ	58.39 (14)	N1—Cu1—O3 ^{iv}	88.69 (7)
C9—C8—Cu1 ⁱ	132.43 (19)	$N1^{ii}$ —Cu1—O3 ^{iv}	91.31 (7)
С7—С8—Н8	119.9	O3 ⁱⁱⁱ —Cu1—O3 ^{iv}	180.00 (7)
С9—С8—Н8	119.9	C10—O1—Cu1	63.78 (14)
Cu1 ⁱ —C8—H8	81.3	C10—O2—Cu1	127.36 (18)
C8—C9—C4	120.1 (2)	C7—O3—Cu1 ⁱ	106.23 (16)
С8—С9—Н9	120.0	С7—О3—НЗА	109.5
С4—С9—Н9	120.0	Cu1 ⁱ —O3—H3A	77.8
N1—C2—C3—N2	-0.4 (4)	C3—C2—N1—C1	0.1 (4)
Cu1—C2—C3—N2	-0.5 (6)	Cu1—C2—N1—C1	179.9 (3)
C9—C4—C5—C6	2.6 (4)	C3—C2—N1—Cu1	-179.8(2)
N2-C4-C5-C6	-177.6 (3)	N1—C1—N2—C3	-0.4 (3)
C4—C5—C6—C7	-0.3 (4)	Cu1—C1—N2—C3	-0.5 (4)
C5—C6—C7—O3	176.5 (3)	N1-C1-N2-C4	177.9 (2)
C5—C6—C7—C8	-2.9 (4)	Cu1—C1—N2—C4	177.83 (19)
C5-C6-C7-Cu1 ⁱ	118.1 (3)	C2-C3-N2-C1	0.5 (4)
O3—C7—C8—C9	-175.6 (3)	C2—C3—N2—C4	-177.9 (3)
C6—C7—C8—C9	3.8 (4)	C5-C4-N2-C1	25.2 (4)
Cu1 ⁱ C7C8C9	-123.9 (2)	C9—C4—N2—C1	-155.1 (3)
O3-C7-C8-Cu1 ⁱ	-51.63 (19)	C5—C4—N2—C3	-156.8 (3)
C6C7C8Cu1 ⁱ	127.7 (3)	C9—C4—N2—C3	23.0 (4)
C7—C8—C9—C4	-1.5 (4)	O2-C10-O1-Cu1	6.7 (2)
Cu1 ⁱ C8C4	-74.7 (3)	C11-C10-O1-Cu1	-172.5 (3)
C5—C4—C9—C8	-1.7 (4)	O1—C10—O2—Cu1	-12.6 (4)
N2—C4—C9—C8	178.5 (2)	C11—C10—O2—Cu1	166.60 (19)
N2—C1—N1—C2	0.2 (3)	C8—C7—O3—Cu1 ⁱ	81.4 (3)
Cu1—C1—N1—C2	-179.9 (3)	C6—C7—O3—Cu1 ⁱ	-97.9 (3)
N2—C1—N1—Cu1	-179.88 (16)		~ /

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+2, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) *x*+1, *y*, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C5—H5…O1 ^v	0.95	2.44	3.356 (3)	161
O3—H3A···O1 ⁱⁱⁱ	0.84	1.80	2.637 (3)	172

Symmetry codes: (iii) -x+1, -y+1, -z+1; (v) x, y, z+1.