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Bird cardiomyocytes are long, thin and lack transverse (t)-tubules,which is akin
to the cardiomyocyte morphology of ectothermic non-avian reptiles, who are
typified by lowmaximumheart rates and lowpressure development.However,
birds can achieve greater contractile rates and developed pressures than mam-
mals, whosewide cardiomyocytes contain a dense t-tubular network allowing
for uniform excitation–contraction coupling and strong contractile force. To
address this apparent paradox, this paper functionally links recent electro-
physiological studies on bird cardiomyocytes with decades of ultrastructure
measurements. It shows that it is the strong transsarcolemmal Ca2+ influx via
the L-type Ca2+ current (ICaL) and the high gain of Ca2+-induced Ca2+ release
from the sarcoplasmic reticulum (SR), coupled with an internal SR Ca2+ release
relay system, that facilitates the strong fast contractions in the long thin bird
cardiomyocytes, without the need for t-tubules. The maintenance of an
elongated myocyte morphology following the post-hatch transition from
ectothermy to endothermy in birds is discussed in relation to cardiac load,
myocyte ploidy, and cardiac regeneration potential in adult cardiomyocytes.
Overall, the paper shows how little we know about cellular Ca2+ dynamics
in the bird heart and suggests how increased research efforts in this area
would provide vital information in our quest to understand the role ofmyocyte
architecture in the evolution of the vertebrate heart.

This article is part of the theme issue ‘The cardiomyocyte: new revelations
on the interplay between architecture and function in growth, health, and dis-
ease’. Please see glossary at the end of the paper for definitions of specialized
terms.
1. Introduction
Birds and mammals evolved independently approximately 300 Ma from
reptile-like ancestors [1] (figure 1) and both classes have acquired high resting
metabolic rates and endothermy through convergent evolution. The evolution-
ary processes that have led to endothermy in birds and mammals are a matter
of active debate [6–9] including the recent suggestion that whole body
endothermy emerged across multiple and diverse taxa as by-product of
energy balance regulation [10]. Regardless of the evolutionary driver(s) for
endothermy in birds and mammals, a powerful heart is required to satisfy
the high metabolic rates dictated by endothermy [11]. A powerful heart can
deliver high volumes of oxygenated blood to the respiring tissues and provide
the pressure necessary to drive filtration at the kidneys, linking the convergent
evolution of the four-chambered heart and endothermy in birds and mammals.
The anatomical separation of left and right ventricles in birds and mammals
allows the elevation of systemic pressure significantly above pulmonary
pressure thereby providing the necessary convection for highly aerobic tissues,
whilst avoiding the rupture of thin respiratory surfaces [12–14]. The presence of
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Figure 1. Schematic of the vertebrate phylogeny with taxa from left to right as
follows: jawless fishes, cartilaginous fishes, teleost fishes, amphibians, mam-
mals, lizards, snakes, turtles, crocodilians, birds. Numbers are estimated the
time since last common ancestor; Ma is million years ago. Adapted from [2–5].

Table 1. Comparative morphometric data for vertebrate ventricular myocytes.

lampreya zebrafishb frog ratc turtled lizarde snakef alligatorg turkeyh quaili

cell length (μm) 323 100 300j 141.9 189.1 151.2 — 140 136 179.3

cell width (μm) 11.9 4.6 5j 32.0 7.2 5.9 — 5 8.7 8.3

cell depth (μm) — 6.0 — 13.3 5.4 5.6 — — — —

capacitance (pF) 220 26.6 75k 289.2 42.4 41.2 18.9 — 25.9 55.8

cell volume (pl) 22.6m 2.2m 2.9l 34.4 2.3m 2.3m 0.99m 1.4m 1.3m 2.9

SA/V ratio (pF/pl) 10 12 25.8l 8.44 18.3 18.2 19.1 — 19.9 19.2

t-tubular system no no nok yes no no no no no non

Data are means but s.e.m. (when known) has been left out for clarity. An example from each taxa provided in figure 1 is given here. A dash means no data
are available.
aLampetra fluviatilis [26].
bDanio reiro [27].
cRattus norvegicus [28].
dTrachemys scripta scripta [29].
eVaranus exanthematicus [30].
fPython bivittatus, D. Abramochkin 2021, unpublished observation.
gAlligator mississippiensis, B. Smith, D. Crossley and H. Shiels 2014, unpublished observations.
hMeleagris gallopavo domesticus [31].
iCoturnix japonica [32].
jRana esculenta [33].
kRana catesbiana [34].
lDerived from cell length and width assuming an elliptical cross-sectional area.
mDerived from cell capacitance (pF) following method of Vornanen [35].
nCoturnix japonica [16].
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a specialized conduction system [15] and a compact atrial and
ventricular wall architecture is important for the fast atrio-
ventricular conduction and rapid ventricular repolarization
[16,17] of avian and mammalian hearts compared with
those of ectothermic vertebrates (independent of tempera-
ture) [14,15,18]. Indeed, the convergent evolution of rapid/
early repolarization in birds (zebrafinch) and mammals
(mouse) is undoubtably important for achieving the fast
heart rates typical of endotherms [17].

Despite these similarities between mammalian and avian
hearts, there are also differences. When comparing animals of
similar body size, birds have a nearly twofold larger heart
mass than mammals [19–21]. This increases stroke volume
allowing birds to pump more blood per unit time than mam-
mals [22,23]. Birds also have elevated systolic and diastolic
blood pressures compared with similarly sized mammals
[20] meaning that stroke work (the product of stroke
volume and blood pressure) is higher in birds than mammals
[11,21]. Thus, within the two vertebrate groups demonstrat-
ing whole body endothermy, on average the bird heart is
capable of equal or greater output than the mammalian
heart, a feature which may be necessary to support their elev-
ated body temperature (average bird 41°C, average placental
mammal 37°C [22]) and the energetic costs of flight
[7,19,24,25].

Considering the robust cardiacperformanceof thebirdheart,
it is perhaps surprising that the gross morphology of the cardio-
myocytes from which is it comprised, more closely resemble
those of their non-avian reptilian ancestors than those of mam-
mals (table 1 and figure 2). Cardiomyocytes of adult bird
hearts are long (greater than 100 µm) and thin (less than
10 µm) with a small cross-sectional area (approx. 56 µm2) and
a small cell volume (approx. 10 pl), leading to a large surface-
area-to-volume ratio [31,32,36–38] (table 1). This morphology is
similar to the cardiomyocytes of non-avian reptiles, amphibians
and fish (table 1, and see [39]). This spindle/elongated myocyte
morphology (figure 2) is considered ‘sufficient’ for powering the
lowerheart rates and lowerbloodpressures associatedwith ecto-
thermic taxa [40]. The gross morphology of adult mammalian
ventricular cardiomyocytes is unique across vertebrates. They
are shorter (less than 100 µm) and wider (approx. 25 µm) and
contain a network of transverse (t)-tubules which coordinate
and synchronize excitation–contraction coupling across the
entire volume of these wider cells [41] (figure 2). This ‘brick-
like’ morphology develops postnatally with neonatal mamma-
lian ventricular myocytes conforming to the elongated
morphology of ectothermic taxa and then transitioning to the
hypertrophied adult form soon after birth [42] (also see the
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Figure 2. Images of freshly isolated ventricular myocytes from (a) Japanese quail Coturnix japonica as light microscope image (top) [32] and an immunofluorescent
image with sarcomeres delineated with a green probe to α-actinin and nucleus in red (bottom) [16], (b) varanid lizard Varanus exanthematicus light microscope
image, arrow is pointing to sarcomeric striations (top) and confocal image with the sarcolemmal membrane visible in red (bottom) [30], (c) yellow-bellied turtle
Trachemys scripta scripta light microscope image (top) and confocal image with the sarcolemmal membrane visible in red (bottom) [29]. Photomicrograph image of
a finch (d) and rat (e) cardiomyoctyte used with permission from [36]. In each image the vertical height of the image is 200 µm. Scale bar in all other images is
20 µm. (Online version in colour.)
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contribution by Birkedal et al. [43] in this special issue). The
hypertrophied adult ventricular myocyte morphology is
thought to underpin the fast and strong contractions required
to power the adult mammalian heart [44]. How then, do the
long, thin, non-tubulated myocytes, characteristic of the slow
and low-powered hearts of ectotherms, drive the enhanced car-
diac performance of birds? This paper will first review the
ultrastructure literature which predicts reconciliation of this
apparent paradox by the remodelling of the subcellular organiz-
ation of calcium (Ca2+) release units (CRUs) within the avian
compared with ectothermmyocyte. The paper will then discuss
the limited functional data on cellular Ca2+ dynamics fromadult
birds to form aworking structure–function schema for bird exci-
tation–contraction coupling. Finally, other traits associated with
myocyte architecture will be discussed including volume
regulation of cardiac output, and the apparent trade-off between
myocyte proliferation-potential and polyploidy with cardiac
growth. Rather than being definitive, the paper highlights how
little we know about cellular Ca2+ dynamics in the bird heart
and why research in this area is important to understand the
role of myocyte architecture in the evolution of the vertebrate
heart.
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Figure 3. Schematic of the ultrastructural organization of sarcolemmal and SR membrane systems and their couplings in (a) an ectotherm (fish, amphibian, non-
avian reptile) atrial or ventricular myocyte, (b) a bird ventricular myocyte, (c) a mammalian atrial myocyte (N.B. atrial myocytes from large mammals contain t-
tubules [51]), and (d), an adult mammalian ventricular myocyte. Schematic shows sarcolemmal membrane containing L-type Ca2+ channels (LTCC, red) coupled at
the periphery of the cell to the intracellular junctional SR ( jSR) membrane system containing ryanodine receptors (RyRs), which cluster to form calcium release units
(CRUs, pale green). CRUs are shown as a single RyRs for clarity but between 14 and 100 RyRs cluster together to form a CRU depending on the tissue and the
species [38,52]. In (b) and (c) CRUs can also exist in non-junctional SR, as corbular SR (cSR) or extended-junctional SR (ejSR). These central CRUs facilitate the
centripetal propagation of the peripheral Ca2+ signal. In (d) peripheral couplings (PCs) form at the surface sarcolemmal and dyadic couplings form along t-tubules
facilitating synchronous Ca2+ release throughout the wider myocyte. Ca2+ inside the SR is illustrated by blue dots. For clarity, all other organelles are omitted from
this schematic. Figure is adapted from [39] and amended with permission from Dr Gina Galli (original artist). (Online version in colour.)
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2. Myocyte morphology, architecture and
excitation–contraction coupling

The strength and rate of heart contraction is controlled by exci-
tation–contraction coupling and the cycling of Ca2+ at the level
of the cardiomyocyte. Excitation–contraction coupling in all
vertebrate myocytes proceeds from the action potential.
Atrial and ventricular action potential waveform and the cor-
responding repolarizing currents (IKr, IKs, Ito) have recently
been characterized together for the first time in an adult bird
(Japanese quail) [16]. Resting heart rates for these birds range
between 318 and 530 beatsmin−1 [45,46] which is comparable
to small rodents (mice/rats) and clearly depends on rapid/
early ventricular repolarization [17]. However, the shape of
the quail action potential demonstrates a plateau phase [16]
which is more characteristic of mammals with slower resting
heart rates (guinea pig/rabbit [47]) and fish [48]. The promi-
nent action potential plateau is owing in part to the large
influx of Ca2+ (ICa) through voltage-gated L-type Ca2+ chan-
nels (LTCCs) in mammals (e.g. rabbit [47]), the quail [32] and
other bird cardiomyocytes [36]. Indeed, a recent comparative
study of cardiomyocyte ionic conductance across vertebrates
shows bird ventricular myocytes have larger current densities
than mammals when measured under similar conditions [49].
In another comparative study, ventricular action potential
waveform across mammals of different sizes/heart rates
showed ICa amplitude increased with increased body size.
The authors suggested this reflects constraints imposed by
the maintenance of excitation–contraction coupling in larger
hearts [50]. Extending such studies to birds of different sizes,
and birds with fast heart rates but large amplitude ICa would
be very informative.

The Ca2+ that enters via LTCCs induces further Ca2+

release from the intracellular stores of the sarcoplasmic reticu-
lum (SR), in a process called Ca2+-induced Ca2+ release
(CICR). The degree of CICR varies across vertebrates, being
greater in birds and mammals than ectotherms [39]. Ca2+ is
released from the SR into the cytosol through ryanodine
receptors (RyRs), which cluster to form structures called
CRUs within junctional regions of the SR membrane ( jSR)
(figure 3). Transsarcolemmal Ca2+ influx and SR Ca2+ release
together form the rising phase of the cytosolic Ca2+ transient
which activates the contraction of the myofilaments. Myocyte
contraction ends when cytosolic Ca2+ levels fall owing to
Ca2+ being removed from the cell via the sarcolemmal Na+–
Ca2+ exchanger and being pumped back into the SR by
sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) pumps
located in the non-junctional or ‘free’(f ) regions of the SR
membrane.

The relative importance of transsarcolemmal-derived Ca2+

versus SR-derived Ca2+ in generating the Ca2+ transient varies
across vertebrates with the relative proportion of the former
generally dominating in ectotherms, and the latter generally
dominating in adult endotherms (see [39] for review). The
large surface-area-to-volume ratio of the bird cardiomyocyte
(table 1, figure 2 and [16,32]) means transsarcolemmal Ca2+

influx can rapidly raise intracellular Ca2+ levels in the periph-
ery of the thin cardiomyocyte, in-line with observations from
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ectothermic vertebrates [39,53]. However, unlike most ecto-
thermic vertebrates, excitation–contraction coupling in birds
also relies heavily on SR Ca2+ release [16,32] which amplifies
the transsarcolemmal Ca2+ signal through CICR leading to
stronger faster contractions [32].

Ca2+ diffusion is too slow to activate a coordinated and
synchronized release of SR Ca2+ across the wider mammalian
myocyte [54]. Adult mammalian ventricular myocytes get
around this problem by having a t-tubule network comprised
of invaginated surface sarcolemma which brings LTCCs into
apposition with more centrally located SR membranes con-
taining CRUs forming couplings called dyads [51,55–58].
The extent of the t-tubular network in mammalian atrial
and ventricular myocytes depends on myocyte width (or
cross-sectional area) reinforcing the role morphological archi-
tecture has on the organization of cellular Ca2+ cycling. The
t-tubular network is mostly absent in narrow spindle-
shaped sinoatrial nodal cells [59] and in narrow atrial cells
of rodents and small mammals, but it is present in the
wider atrial myocytes of larger mammals (e.g. horse, cow,
human [41,51,60]). Thus, it cannot be excluded that t-tubules
exist in very large bodied birds; however, they are not found
in the myocytes from the turkey [31]. T-tubules are present in
all adult mammalian ventricular myocytes where they
govern temporal and spatial properties of the ventricular
Ca2+ transient [41,51,57]. They are absent in developing and
neonatal mammalian hearts. As the size of the myocyte
grows postnatally to facilitate heart growth, t-tubules
appear coincident with increased SR complexity, forming
dyadic couplings and facilitating stronger contractility [61].
Bird cardiomyocytes do not hypertrophy during post-hatch
development, rather the narrow, elongated architecture per-
sists but is associated with changes in the intracellular
architecture of CRUs within the SR membrane. An increase
in the amount and structural organization of internal CRUs
has been documented via electron microscopy at hatch and
during post-hatch growth in sparrow [62] and chicken heart
[63] and is concomitant with an increased reliance on SR
cycling [64].

(a) Peripheral and non-peripheral couplings and Ca2+

release from the sarcoplasmic reticulum
CICR can only occur when LTCCs in the sarcolemmal mem-
brane and CRUs in the SR membrane are in close apposition
forming couplings [61,65] (figure 3). All vertebrate myocytes
have ‘peripheral couplings’ (PCs) (e.g. rabbit [66], chicken
[38,63], finch [65], anole lizard [67], frog [68] and fish [69])
comprised of CRUs in the peripheral jSR, directly opposed
to sarcolemmal LTCCs [61,65] (figure 3). Ca2+ released from
the SR at these PCs must diffuse centripetally to activate
the myofilaments and to initiate the release of more centrally
located CRUs. In ectotherm myocytes (i.e. fishes (rainbow
trout [70]) and anole lizard [65]), this occurs slowly despite
their thin morphology, as the peripheral Ca2+ signal falls
rapidly the further it travels from the periphery [70]. Here,
Ca2+ is taken up by peripherally located myofilaments
[35,69,71] and adjacent mitochondria (see the contribution
by Birkedal et al. [43] in this special issue), or can be buffered
in the cytosol [72]. Bird myocytes [73] and mammalian atrial
myocytes [60,74] limit this attrition of the Ca2+ signal by
having a large number of centrally located (i.e. non-periph-
eral) CRUs, formed in a region of the SR membrane known
as the corbular SR (cSR). These central cSR RyR clusters are
not associated with the surface sarcolemma [75], rather they
are associated with the z-line [38,55,73] and are activated
by Ca2+ released at the periphery or by Ca2+ released by
neighbouring cSR CRUs. These central CRUs contribute to
the global Ca2+ transient [55,61] and underpin excitation–
contraction coupling in the absence of a t-tubule network in
bird [38,65] and non-tubulated mammalian atrial myocytes
[60,74,76].

Myocytes from birds with fast heart rates like finch
and hummingbird have another type of SR membrane coup-
ling system called extended-junctional SR (ejSR) [73,77]
(figure 3b) that is not observed in chicken or mammalian
heart [78]. The ejSR extends centripetally either continuously
or discontinuously from PCs along the z-lines and contain
closely packed CRUs that are thought to serve as a fast con-
duit for intracellular Ca2+ release in a manner analogous to
the CRUs in the cSR [55,73,77]. The development of more
extensive CRU organization in birds with faster (finch, hum-
mingbird [73], sparrow [62]) compared with slower (chicken
[73], ratite [78]) heart rates clearly illustrates the importance
of architecture for function. Indeed, this point was eloquently
summarized by Sommer in 1995: ‘The geometry of the SR in
striated muscle is crucial for excitation–contraction coupling.
It determines the vectors and time course of effective calcium
displacements’ [62, p. 24]. An ultrastructure study of the tina-
mou cardiomyocyte would be fascinating in this regard.
Tinamous are a basal bird lineage with limited flapping-
flight capability, low aerobic capacity and the smallest
heart-mass-relative-to-body-mass of any bird [25,79].

(b) Importance of subcellular organization of Ca2+

release units
The idea that coupling of the Ca2+ signal from PCs to centrally
located CRUs are key to strong and fast contractions in birds
was first suggested by Jewett and Sommer more than 40
years ago [73] (and see [62]) and is supported by a host of com-
parative ultrastructure studies in birds (e.g. [63,65,73,77,78,80]).
The location and frequency of CRUs within the SR are key for
understanding the rate and strength of the propagating Ca2+

signal which determines the synchrony of excitation–contrac-
tion coupling [55,61,81]. The distance between PCs is
probably too great for lateral activation along the sarcolemmal
membrane of neighbouring PCs in most animals including
birds and large bodied mammals, meaning that the
peripheral Ca2+ signal moves centripetally (not laterally) to
activate CRUs [65,76]. Recent simulation showed that at dis-
tances of 250 nm or greater, there was no impact of changing
the distance between PCs on the activation of the cellular
Ca2+ signal [38]. A few measurements of distances less than
250 nm between PCs have been observed in finch but not in
the chicken heart [38,55,65] and thus perhaps at shorter dis-
tances, PC spacing in the sarcolemmal membrane could
influence rate and strength of excitation–contraction coupling.
Indeed, in rat atrial and ventricular myocytes PCs less than
100 nm apart have been documented to allow lateral propa-
gation of the Ca2+ signal [82].

The z-lines of the sarcomere form the backbone of
myofilament contraction and studies across birds show
ejSR/cSR and z-lines align [55,73,77,80]. In ectotherms, PCs
are also concentrated at the z-lines, ensuring Ca2+ diffusion
to the more loosely organized internal SR release sites
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situated along the z-lines [65,69]. The distance between cSR
CRUs along a z-line were shown to have a major impact on
the rate of rise of the Ca2+ transient in a two-dimensional
avian model. As the distance between CRUs was increased
from 100 to 600 nm, activation time was slowed by approxi-
mately fourfold [38].

The complement of ejSR and/or cSR and the number of
CRUs (assessed as RyR density) within the ejSR and/or
cSR in different bird species correlates with cardiac perform-
ance when assessed via electron microscopy. When measured
under the same conditions, the chicken left ventricle had a
lower complement of cSR (0.39 ± 0.11 µm of cSR per cardiac
muscle fibre cross section (µm−2), n = 78) and a lower density
of RyRs per cardiac muscle fibre volume (52 RyRs µm−3)
compared with finch left ventricle (0.6 ± 0.14 µm ejSR per
fibre cross section (µm−2), n = 231, and 144 RyRs per fibre
volume (µm3), respectively) [65]. Similarly, a high comp-
lement of ejSR and/or cSR was found in hummingbird
myocardium [73] compared with birds with slower hearts
such as chicken and pigeon [77]. Thus, structural and compu-
tational modelling studies emphasize the importance of
geometry and physical distances between CRUs within
non-tubulated myocytes for determining the amplitude and
time course of the intracellular Ca2+ transient, which regu-
lates the strength and rate cardiac pumping.
3. Functional studies of Ca2+ flux in the bird
cardiomyocyte

There are only four functional reports of excitation–
contraction coupling in adult bird cardiomyocytes [16,31,32,36]
to date, but all support the schema derived from ultrastructure
studies.Evidenceofa large transsarcolemmalCa2+ influx carried
by LTCCs comes from electrophysiological studies on isolated
cardiomyocytes from the turkey [31], finch [36] and quail [32].
In finch heart, the density of ICaL was more than twice that of
mammals (rat) when recorded under the same conditions [36]
and although comparing across studies can be difficult
(i.e. owing to differences in the intracellular andextracellular sol-
utions used in patch clamp studies, differences in acclimation or
experimental temperature, etc.), ICaL density measured in bird
studies is consistently greater than that reported for ectotherms
(e.g. fish [83]; turtle [29]; lizard [30], and see recent comparative
review [49]). The high-density ICaL also corresponds well with
reports of a large complement of LTCCs in the bird sarcolemma
assessedwith radio-liganddihydropyridine-binding [31]. Given
the greater surface area–volume ratio (table 1) and thus the large
contribution of sarcolemmal influx to cytosolic ionic compo-
sition, this large ICaL is set to prime the bird myocyte for a Ca2+

transient with a large amplitude and fast raising phase, which
underlie the strong and fast contractions observed by Kim et al.
[31] in turkey ventricle.

The L-type Ca2+ current (ICaL) is the trigger for CICR at
PCs and the greater the amplitude of ICaL, the greater the
release of Ca2+ from the SR [84]. In this way, ICaL amplitude
drives the gain of CICR in cardiomyocytes [85]. Thus, the
large density ICaL in birds will drive a large release of Ca2+

from the adjacent CRUs provided they are adequately
coupled. Tight coupling between LTCC and CRUs in PCs
has been reported in all structural studies of the bird myocar-
dium, but only recently was this confirmed functionally.
Using freshly isolated quail ventricular myocytes Filatova
et al. [32] showed that ICaL caused Ca2+ release from the SR
and further that Ca2+ release from the SR impacted the inacti-
vation kinetics of ICaL thus demonstrating for the first time: (i)
functional crosstalk in bird PCs and (ii) the high gain of CICR
in bird ventricular excitation–contraction coupling. These
functional studies confirm earlier reports from [3H]ryanodine
binding studieswhich showed the density andCa2+ sensitivity
of bird (pigeon and finch) RyRs are similar to those of mam-
mals (rat) [77]. Interestingly, crosstalk was not observed in
quail atrial myocytes where the amplitude of ICaL was con-
siderably smaller [32]. The study was conducted at room
temperature and because ICaL is temperature-dependent, the
authors point out that CICR would also occur in atrial myo-
cytes at the body temperature of the quail [32]. Additionally,
there may be a basal level of stimulation (e.g. adrenergic
tone) that exists in vivo but is absent ex vivo that enhances
atrial ICaL conductance in quail heart.

The presence of functional crosstalk and CICR in quail car-
diomyocytes align with ultrastructural and radio-ligand
binding studies to provide a clear mechanism for a strong and
rapid Ca2+ signal occurring in the periphery of the myocyte.
Presently we lack dynamic imaging studies which show the
propagation of the peripheral signal through ejSR/cSR to the
centre of the bird cardiomyocyte. However, such studies have
been performed on the elongated/spindle-shaped myocytes
from mammalian atrial cells [60,86]. Interestingly, in rat atrial
myocytes (which are not tubulated) the peripheral Ca2+ signal
is not effective at triggering CICR from centrally located non-
junctional RyRs under normal conditions. Enhancing the
amplitude of ICaL, RyR sensitivity to the cytosolic Ca2+ trigger,
or increasing the Ca2+ content of the SR, have each been shown
to be sufficient to trigger centripetal Ca2+ propagation and a
global Ca2+ transient in mammalian atrial myocytes [74,87].
This enhancement can be accomplished with sympathetic acti-
vation of the heart, and in fishmyocytes, adrenergic stimulation
has been shown to enable CICR (CICR is minimal in the unsti-
mulated state) [53]. The large amplitude ICaL and the large SR
Ca2+ content (discussed below), combined with the organiz-
ation of CRUs in the bird myocardium are all indicative of a
rapid and near-uniform global Ca2+ transient during routine
excitation–contraction coupling. However, this must be sub-
stantiated experimentally.

(a) Implications of high sarcoplasmic reticulum Ca2+

content in bird cardiomyocytes
Cytosolic Ca2+ is returned to the SR by the pumping activity of
SERCA which facilitates the strong and rapid contractions of
the bird heart. SR vesicles from adult turkey ventricular hom-
ogenates demonstrated robust SERCA activity [88] that
correlated with a rapid decay in the multicellular Ca2+ transi-
ent in turkey heart preparations [31]. Refilling of the quail SR
following depletion with caffeine follows a similar time course
as mammals [89,90] and was four times faster than fish [91]
when compared under similar experimental conditions.

Similar to ectotherms [39], the bird SR is able to hold a sub-
stantial amount of Ca2+ without spontaneously releasing it. SR
Ca2+ content grows during development in the chicken heart
with late-stage embryonic chicken myocytes having a steady-
state content of approximately 400 µmol l−1 Ca2+ [64]. This com-
pares with approximately 425 µmol l−1 Ca2+ steady-state
content assessed via caffeine application in adult quail ventricu-
lar myocytes [32]. These values are on par with steady-state
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ventricular SR Ca2+ content measured in ectotherms (200–
500 µmol l−1 Ca2+) [92,93] and greater than that in mammals
(60–100 µmol l−1 Ca2+) [39,94,95]. The maximal Ca2+ content
(greater than 1000 µmol l−1 Ca2+) of the fish SR [92,93] greatly
exceeds that of mammals (50–200 µmol l−1 Ca2+) when both
are assessed by the application of 10 mM caffeine [94,96]. Maxi-
mal SRcontenthasnot been specifically studied in the birdheart,
but levels reached greater than 750 µmol l−1 Ca2+ during 100
steady-state loading pulseswhen ICaLwas not of sufficientmag-
nitude to trigger CICR in the quail atrium [32]. Thus, it would
appear that cardiac SR Ca2+ storage capacity has been dramati-
cally reduced during the evolution of the mammalian myocyte.

There are many possible reasons why the bird (and
ectotherm) SR hold a larger quantity of Ca2+ than mammalian
SR (for review see [97]). On the cytosolic face, the opening of
the RyRs is triggered by cytosolic Ca2+ and despite similar
[3H]Ryanodine binding affinities in bird and mammal [77],
other (yet unknown) ligands may be important for sensitizing
RyR opening in response to cytosolic Ca2+ in birds. Indeed, the
activity of the RyR is regulated by many intracellular factors
such as Mg2+, nucleotides, proteins and reactive oxygen
species [98], none of which have been studied in the bird
heart to date. In ectotherms, but probably not adult birds, the
Ca2+ sensitivity of the RyRs [99], density of RyRs [100,101],
number of RyRs in a CRU and the distances between CRUs
also probably factor into CICR failure despite a large SR Ca2+

content [97]. However, as discussed above, a large enough
ICaL trigger should be sufficient to release SR Ca2+ in all
elongated myocytes, except maybe in amphibians [53,68,102].

Perhaps the most interesting aspect of the large Ca2+ con-
tent in bird heart is that it does not cause spontaneous
opening of the RyRs from the luminal side. In mammals,
RyR opening is triggered by luminal Ca2+ which can potenti-
ate the effects of cytosolic RyR activators [103–105]. In rat
myocytes, Ca2+ waves indicative of RyR opening occurs
when SR Ca2+ content exceeds a threshold of approximately
60–100 µmol l−1 Ca2+ [94]. The reason(s) why SR Ca2+ content
can reach nearly ten times this amount in bird (and
ectotherm) heart without spontaneous release is not known.
Luminal Ca2+ sensing is strongly dependent on the SR
Ca2+-buffering capacity (e.g. calsequestrin) and on inter-
actions with luminal proteins (e.g. triadin and junctin) [98].
However, nothing is known about these proteins and how
they might interact or how they might regulate RyRs in
non-mammalian hearts, but clearly having a high SR Ca2+

storage capacity must be coupled to a low release sensitivity
in birds and ectotherms. Release of the entire SR Ca2+ content
(which approaches mM levels at maximal loads [92,93])
would be catastrophic to excitation–contraction coupling
and induce toxicity (i.e. mitochondrial Ca2+ overload) and
dysfunction (i.e. arrhythmias) often associated with cytosolic
Ca2+ overload in ischemia–reperfusion scenarios [106,107].
As Ca2+ overload and errant SR Ca2+ release underlie many
human cardiomyopathies, understanding how bird cardio-
myocytes regulate SR Ca2+ storage and release could
provide novel avenues for therapeutics.
4. Cardiomyocyte morphology, endothermy and
regeneration

The narrow, elongated cardiomyocyte morphology dominates
the animal kingdom including cephalopods [108] (table 1 and
figure 2). In fishes and amphibians, this gross morphology has
been associated with the Frank–Starling law of the heart and
stretch regulation of cardiac output [109–111]. The sarcomeres
of fish [112] and amphibian [113,114] myocytes are able to
stretch further, and develop force at longer lengths than
those of mammalian myocytes. However, despite very large
stroke volumes, and thus large end-diastolic volumes [11], evi-
dence fromwhole hearts and single cells from turkeys suggest
bird active and passive length–tension properties are more
similar to mammals (stiff) than to fish (compliant) [115].
Indeed, birds are thought to predominately modulate cardiac
output via increases in heart rate with exercise [116], but this
may be owing to near maximal stroke volumes at rest. More-
over, changing sarcomeric spacing akin to myocardial stretch
had little effect on computed Ca2+ activation time in an
avian heart cell model [38]. Thus, elgonated myocyte mor-
phology does not appear related to enhanced length-
dependent activation in the bird heart.

The elongated myocyte morphology is also associated with
cardiac regeneration. Neonatal mammalian, embryonic bird,
fish, urodele amphibian and reptile hearts [1,117,118] are all
able to regenerate and all have an elongated myocyte mor-
phology. Thus, it would be tempting to suggest a causative
link. However, although hearts of 5-day chick embryos were
able to regenerate, this ability was lost in 18-day embryos and
in newly hatched chicks, indicating that despite maintained
myocyte morphology from late stage embryo to post-hatch
development, regeneration capability in birds is lost [118].
This loss of proliferation-potential in post-hatch bird myocytes
is interesting, as it is another trait associated with endothermy
[44,119]. Indeed, all birds are ectothermic in ovo and attain
endothermy post-hatch [11,120]. Different species of bird
attain endothermy at different time points during post-hatch
development [7,11]. Precocial species that hatch feathered,
active and able to find their own food, attain endothermic ther-
moregulatory capacity at hatch through the rapid development
of the aerobic capacity to support increased energy demands
[7,121]. In the precocial duck, heart mass almost doubles in
the last 24 h before hatch, and in duck and chicken embryos,
oxidative phosphorylation capacity of cardiac mitochondria
also significantly increases in the last 24 h before hatch, presum-
ably in preparation for endothermic energy demands [120,121].
In altricial species, endothermy develops post-hatch during
nesting [120]. Such changes in cardiovascular capacity are not
observed paranatally in closely related ectothermic species
such as the American alligator [122].

The mechanisms linking endothermy and non-
proliferating cardiomyocytes is an active area of research
that has recently been linked to another key feature of cardio-
myocyte architecture—polyploidy or genome duplication. By
and large, all bird and mammal embryonic and neonatal
cardiomyocytes, and most ectotherm cardiomyocytes (inde-
pendent of age) are mononuclear and diploid [44,123,124].
During development, the endotherm heart grows by the
expansion of cardiomyocyte number (hyperplasia). However,
postnatally/post-hatch a large proportion of endothermic (but
not ectothermic) cardiomyocytes that enter the cell cycle do
not complete it resulting in endoreplication [44,124]. This pro-
duces myocytes with more than one copy of their diploid
genome in a single nucleus or in multiple nuclei within a
single cell. For example, polyploidization of cardiomyocytes
in quail was shown to occur during the first 40 days post-
hatch, and end by the time body growth is completed at 60
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days [123]. This change in genome size and structure coincides
with other aspects of myocyte maturation including increased
SR complexity (CRUs in birds, t-tubules in mammals). Meta-
bolic and hormonal remodelling associated with postnatal
growth (mammals) or post-hatch endothermy and growth
(birds) [119] result in increased mitochondrial metabolism
and reactive oxygen species generation at the same develop-
mental timepoint [7,120,121]. Increased ploidy may provide
additional transcriptional output for protein biosynthesis in
endothermic cardiomyocytes with high metabolic activity
[44] in a trade-off with decreased capacity for proliferation
[44,124,125]. This accords with higher incidence of polyploid
in precocial species than in altricial birds of the same weight
post-hatch, owing to increased functional cardiac load
during development [123]. Additionally, in a comparative
study of 31 species of adult birds, cardiomyocyte polyploidy
is higher in species, and in cardiac chambers across species,
that have increased cardiac work-loads [125]. Polyploidy
does increase cell size by a small but significant amount in
both birds and mammals [123,126,127]. However, this slight
change in geometry is concordant with the structural changes
underlying excitation–contraction coupling in both hypertro-
phied mammalian ventricular myocytes and in narrow bird
myocytes. Thus, ploidy is not a function of myocyte size,
rather, a consequence of myocyte metabolism. Further work
is required to properly elucidate relationships between myo-
cyte morphology, ploidy, regeneration and endothermy.
However, birds have largely been ignored in this pursuit,
and the ectotherm–endotherm transition in bird development
may hold the key to understanding the balance between
resource allocation in polyploid cardiomyocytes and reduced
capacity to proliferate, compared withmononucleated diploid
cardiomyocytes and the preserved capacity to proliferate.
5. Summary and perspective
The elongated cardiomyocyte of ectothermic vertebrates is
internally remodelled with a superhighway of CRUs in
post-hatch birds to increase cardiac force and cardiac fre-
quency beyond that of their ectothermic ancestors. Clearly
this strategy is equally as successful as the hypertrophied
and t-tubulated myocytes of adult mammals for powering
the robust cardiac function necessitated by endothermy.
Indeed, the force generated per cross-sectional area of the
ventricular wall is similar in mammals and birds [20], empha-
sizing the point that despite differences in cellular
architecture the functional output of the bird and mammal
myocardium is very similar.

However, detailed functional studies of bird cellular Ca2+

flux during excitation–contraction coupling are scarce, and
knowledge of the spatial and temporal properties of the intra-
cellular Ca2+ transient is lacking. These are necessary to
improve our structural and functional understanding of the
hearts of this group of endothermic vertebrates. Birds also
comprise the only taxon that transitions from ectotherm to
endotherm during development. Studies of their elongated
myocytes throughout this transition are uniquely placed to
shed insight into a key area of human cardiac research—the
drivers of polyploidization at the expense of proliferation in
heart regeneration.

Currently, one-in-seven (14%) of the world’s bird species
are threatened with extinction (greater than 4000 species)
[128] and so cardiac diversity in this important group is
being lost to science at an astounding rate. Thus, structural,
physiological, and molecular/genomic studies of bird hearts
must be coupled with urgent conservation to ensure this pre-
cious resource to science and global biodiversity is not lost.
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endothermy
royal
ability to raise body temperature above
ambient while at rest through retention
of metabolically derived heat
society
extended-junctional
SR (ejSR)
 publishing.
specialized formof jSR found inbirdswith
rapid heart rates; ejSR extends from jSR at
the cell periphery into the centre of the
myocyte containing CRUs not associated
with the sarcolemmal membrane
org
free SR
/journa
non-junctional SR that contains SERCA
pumps and forms the bulk of the SR
membrane
l/rst
junctional SR ( jSR)
b
Ph
portion of the SR membrane containing
CRUs that forms couplings with the
sarcolemmal membrane
il.T
non-avian reptiles
rans.R.Soc.B
377:
themonophyleticgroup that includes rep-
tiles, also includes birds (figure 1); thus,
non-avian reptile is used in modern cla-
distics, in reference to the group of
animals traditionally described as reptiles
(such as turtles, lizards, snakes, croco-
diles) but not including birds
peripheral couplings
(PCs)
coupling of jSR and sarcolemmal mem-
branes at the cell surface where Ca2+-
induce Ca2+ release occurs
ploidy
 reference to the number of complete sets
of chromosomes contained within a cell;
typical cells are diploid with two
copies; polyploidy can occur owing to
multiple copies of the chromosome set
within a single nucleus or by havingmul-
tiple nuclei within a single cell
precocial
 birds that are hatched with feathers, an
established heat balance, and can pro-
cure food by themselves
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