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Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) offers the possibility to assess brain

function independent of explicit tasks and individual performance. This absence of explicit stimuli

in rs-fMRI makes analyses more susceptible to nonneural signal fluctuations than task-based fMRI.

Data preprocessing is a critical procedure to minimise contamination by artefacts related to motion

and physiology. We herein investigate the effects of different preprocessing strategies on the

amplitude of low-frequency fluctuations (ALFFs) and its fractional counterpart, fractional ALFF

(fALFF). Sixteen artefact reduction schemes based on nuisance regression are applied to data from

82 subjects acquired at 1.5 T, 30 subjects at 3 T, and 23 subjects at 7 T, respectively. In addition,

we examine test–retest variance and effects of bias correction. In total, 569 data sets are included

in this study. Our results show that full artefact reduction reduced test–retest variance by up to

50%. Polynomial detrending of rs-fMRI data has a positive effect on group-level t-values for ALFF

but, importantly, a negative effect for fALFF. We show that the normalisation process intrinsic to

fALFF calculation causes the observed reduction and introduce a novel measure for low-frequency

fluctuations denoted as high-frequency ALFF (hfALFF). We demonstrate that hfALFF values are

not affected by the negative detrending effects seen in fALFF data. Still, highest grey matter

(GM) group-level t-values were obtained for fALFF data without detrending, even when compared

to an exploratory detrending approach based on autocorrelation measures. From our results, we

recommend the use of full nuisance regression including polynomial detrending in ALFF data, but

to refrain from using polynomial detrending in fALFF data. Such optimised preprocessing increases

GM group-level t-values by up to 60%.
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1 | INTRODUCTION

Within the field of neuroimaging, resting-state functional magnetic

resonance imaging (rs-fMRI) has recently emerged as an attractive

research method for studying brain function. Rs-fMRI is based on the

analysis of low-frequency fluctuations (LFFs) present in the blood-

oxygen-level-dependent (BOLD) signal which has been shown to be

closely related to functional networks (Biswal, Yetkin, Haughton, &

Hyde, 1995). Most of these approaches use frequency-filtered time

series for finding similarities across different brain regions. In seed-

voxel analyses, the correlation coefficient or its Fisher-transformed

counterpart are usually interpreted as representing the coupling

strength between network nodes (Friston, 2011). Exploratory analysis

methods such as independent component analysis (Biswal et al.,

2010; Smith et al., 2013) represent important alternative approaches

in the assessment of functional networks in resting-state data.

Analysis strategies based on the amplitude of LFF (ALFF) have

been proposed as means to estimate the base activity in a given
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region by examining the power in low-frequency bands (Deco, Jirsa, &

McIntosh, 2011). The averaged square root of power in this frequency

band is called the ALFF (Zang et al., 2007). A derived quantity is its

fractional counterpart, fractional ALFF (fALFF); the ALFF value divided

by the sum of the square root of the power in the whole spectrum

(Zou et al., 2008). Differences in both measures across patient groups

have been observed (Guo et al., 2012; Han et al., 2011; Hou et al.,

2012) and have even been considered as possible biomarkers for a

number of diseases (Liu et al., 2013; Turner et al., 2013).

While (f)ALFF maps have been shown to be highly stable between

sessions (Zuo et al., 2010), over 1 hr scans and after infusion of saline

(Küblböck et al., 2014), other multisite studies have reported signifi-

cant (f)ALFF variability across sites and scanner vendors, especially

affecting the frontal cortex (Turner et al., 2013). Different standardisa-

tion schemes have also been shown to change (f)ALFF value distribu-

tions in the brain, particularly within regions most affected by motion

(Yan, Craddock, Zuo, Zang, & Milham, 2013).

Taken together, these studies suggest that variations in the fMRI

signal arising from subject motion or physiological artefacts may

change LFFs in fMRI data sets, thus modifying ALFF and fALFF values.

Robustness against such effects is obviously a key requirement for

any application of (f)ALFF values as possible biomarkers.

Nuisance regression refers to a common approach for reducing

noise from fMRI data based on linear regression. Nuisance regressors are

generally obtained from either physiological recordings or the fMRI data

set itself. These time courses are fitted to the data using a simple linear

least-squares algorithm and subsequently subtracted (Birn, Diamond,

Smith, & Bandettini, 2006; Lund, Madsen, Sidaros, Luo, & Nichols, 2006;

Weissenbacher et al., 2009). Some studies even used voxel-specific

regressors to allow for removing local nuisance estimates, for example,

fluctuation artefacts that affect only some coils within a multichannel

receive array (Jo, Saad, Simmons, Milbury, & Cox, 2010).

A particularly appealing option for separating neural from non-

neural fluctuations is based on multiecho scanning where several

images are acquired within each repetition time (TR) (Evans, Kundu,

Horovitz, & Bandettini, 2015; Kundu, Inati, Evans, Luh, & Bandettini,

2012). As the BOLD contrast critically depends on the echo time (TE),

fluctuations in short-TE image signal are not (directly) related to neural

processes and can thus be removed from the data set without

compromising neural information.

Even without multiecho data acquisition, preprocessing can have

profound effects on the final rs-fMRI connectivity map (Murphy, Birn,

Handwerker, Jones, & Bandettini, 2009; Shirer, Jiang, Price, Ng, & Grei-

cius, 2015; Weissenbacher et al., 2009). Remarkably, only a single study

has examined (f)ALFF preprocessing effects so far (Turner et al., 2013). In

their sample of schizophrenic patients and controls, Turner and col-

leagues have shown statistically significant changes to (f)ALFF after

regressing out motion and non-grey matter (GM) signals. This highlights

the importance of proper preprocessing strategies and their evaluation.

In this study, we extend their approach by adopting a sophisti-

cated method based on principal component analysis (PCA) and exam-

ine, in unprecedented detail, the consequences of preprocessing

options on ALFF and fALFF. Using resting-state data sets obtained at

3 and 7 T, the following preprocessing options and combinations

thereof are examined herein:

1. bias-field correction

2. polynomial detrending (first and second orders)

3. white matter (WM) signal regression

4. cerebrospinal fluid (CSF) signal regression

5. realignment parameter (RP) regression

Based on the results obtained, we also introduce a novel measure

for LFFs denoted as high-frequency ALFF (hfALFF) in which normali-

sation is restricted to the high-frequency spectrum only.

2 | METHODS

2.1 | Subjects

In order to ensure the broadest relevance of this study's results, we

examined resting-state data sets acquired at three magnetic field

strengths (1.5, 3, 7 T) and with subjects over a wide range of ages.

Group 1 comprised 82 subjects (42 female, age range 19–

79 years, mean/SD 43.3/17.0 years) scanned at 1.5 T taken from the

International Consortium for Brain Mapping, (Montreal, Canada) data

sets as part of the 1,000 Functional Connectomes repository (http://

fcon_1000.projects.nitrc.org). Each subject was scanned three times

within one session. Total of 4 out of the original 86 subjects were not

included in the analysis (sub53801, sub63280, sub87217, and

sub93262) due to problems in mask generation and coregistration.

Group 2 included data of 30 healthy volunteers (15 female, age

range 20–30 years, mean/SD 24.4/2.4 years) acquired at 3 T available

in the HNU1 data set from the Hangzhou Normal University, China,

via the Consortium for Reliability and Reproducibility (CoRR) as part

of the 1,000 Functional Connectomes repository (http://fcon_1000.

projects.nitrc.org/indi/CoRR/html/hnu_1.html)(Zuo et al., 2014). For

this data set, 10 resting-state scans were acquired per subject over

the duration of about 1 month (mean time between measurements

3.7 � 1.2 days).

Group 3 contained 23 healthy, right-handed subjects (10 female,

age range 22–32 years, mean/SD 25.9/2.7 years) scanned at 7 T at

the Medical University of Vienna, Austria. Subjects had no history of

neurological or psychiatric disorders and conformed with regular

exclusion criteria for MRI assessments. They were recruited via flyers

and online platforms from the local population. All subjects gave writ-

ten informed consent prior to the experiment and received financial

reimbursement for their participation. The study was approved by the

ethics committee of the Medical University of Vienna and procedures

were performed according to the Declaration of Helsinki.

2.2 | Data acquisition

Each data set in Group 1 consisted of a resting-state acquisition with

128 time instances of 23 slices (matrix size: 64 × 64 voxels; in-plane

voxel size: 4 × 4 mm2; slice thickness: 5 mm) acquired at a TR of 2 s

and an MPRAGE anatomical acquisition with 1 mm isotropic resolu-

tion (http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html).

Data sets in Group 2 were acquired on a GE Discovery MR750

scanner (General Electric, Boston, MA) with an eight-channel head

coil. Functional echo planar imaging (EPI) images were acquired in
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axial orientation with TR = 2 s, TE = 30 ms with 3.4 mm isotropic res-

olution for 10 min in an eyes-open resting-state paradigm.

For Group 3, subjects were instructed to relax, think of nothing in

particular and let their minds wander while visually fixating a cross

presented on a screen via a digital projector. These measurements

were performed on a 7T Siemens MAGNETOM scanner (Siemens

Medical, Erlangen, Germany) with a 32-channel head coil (Nova Medi-

cal, Wilmington, MA). Functional images were acquired for 6 min

using the Center for Magnetic Resonance Research (University of

Minnesota) multiband gradient-echo EPI sequence (128 × 128 px2,

78 slices, voxel size 1.5 × 1.5 × 1 mm3, 25% slice gap, multiband fac-

tor 3, 1/4 field of view shift) with TR = 1.4 s, TE = 23 ms, FA = 62�,

and a GRAPPA factor of 2 (Moeller et al., 2010). For EPI distortion

correction, a B0 field map was acquired using a 2D multigradient-echo

sequence with TR = 0.67 s, TE = 4.5/8/12.5 ms, 1.72 × 1.72 mm2 in-

plane resolution, 33 slices, 3 mm slice thickness (20% slice gap). Tem-

poral phase unwrapping was performed by applying the UMPIRE algo-

rithm (Robinson, Schodl, & Trattnig, 2014). For anatomical

measurements, MPRAGE data (0.7 mm isotropic resolution) were

acquired with TR = 1.98 s and TE = 3.66 ms.

2.3 | Data preprocessing

Preprocessing for all data sets (Groups 1–3) was performed using

SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) and

included motion correction and nonlinear normalisation to MNI152

space. Note that correction for geometric distortion was limited to

Group 3 data (7 T) as the other data sets did not include field maps.

For Group 2 data (3 T), the first five time points were removed to

avoid relaxation effects; Groups 1 and 2 data sets were acquired

after dummy scans. As nuisance regression cannot be used for com-

pensating biases due to inhomogeneities in coil sensitivity or exci-

tation fields, we employed bias correction as a separate step in or

preprocessing pipeline in order to determine the influence of bias-

field correction on ALFF maps. Bias fields were estimated using the

N4 bias-field correction algorithm as implemented in ANTs

(Tustison et al., 2010), while limiting the estimation process to a

WM mask based on individual WM probability maps, estimated by

segmenting the anatomical scans of each subject. All further analy-

sis was repeated with and without removing the estimated bias

field after the final interpolation step.

2.4 | Nuisance regression

Each data set was processed in 16 different pipelines, using a different

combination of the four nuisance regressor blocks:

• detrending (Detr)

• WM time courses

• CSF time courses

• RPs

The set of detrending nuisance regressors was intended to model

any system-related fluctuations and comprised constant, linear, and

quadratic trends.

Masks for WM and CSF were generated by thresholding and

eroding the respective individual tissue probability maps estimated by

segmenting the anatomical scans using SPM's “New Segment” func-

tion. Time courses from all voxels within WM and CSF masks were

extracted and PCA using GSL (GNU Scientific Library, https://www.

gnu.org/software/gsl/) was then performed for each subject sepa-

rately for WM and CSF time courses using in-house written software.

Mean and first five principal components were then computed to

form the WM and CSF nuisance regression blocks, that is, six WM

and six CSF regressors for each subject. WM and CSF were included

since these regions can be assumed not to contain any neuronal signal

of interest. In addition, WM and CSF time courses have been shown

to reflect physiological artefacts from respiration and cardiac action

(Behzadi, Restom, Liau, & Liu, 2007; Windischberger et al., 2002). The

six RPs obtained from motion correction represented the final nui-

sance regression block.

All 16 combinations of these nuisance regressor blocks were

used in order to determine the optimal combination. All regressors

were orthogonalised prior to regression with respect to the con-

stant, linear, and quadratic regressors using a QR decomposition

(Householder, 1958) as implemented in MATLAB. The final, cleaned

time courses were created by subtracting the fitted regressors from

the data, thereby making the residual time series orthogonal to the

regressors.

Randomised versions of all regressors were created by computing

the fast Fourier transform (FFT) of each regressor, adding different

random values to the phase of each frequency component followed

by a subsequent inverse FFT. This was repeated 25 times, in order to

get a more reliable estimate of the effects in the following analysis.

For each subject and iteration, the randomised phase was kept con-

stant for all regressors. This procedure (Prichard & Theiler, 1994)

ensures that the correlation between the regressors is constant after

randomisation, thereby helping to create a maximally similar set of

regressors without retaining any information on the temporal location

of the signals. t-Values for the randomised phase data set are reported

as mean over 25 repetitions.

2.5 | Calculation of (f)ALFF

All (f)ALFF maps were calculated using an in-house MATLAB script.

Time courses were Fourier transformed using the FFT, and ALFF

values were computed as the sum of the magnitudes of the low-

frequency part of the spectrum (0.01–0.1 Hz). fALFF maps were com-

puted by dividing ALFF maps by the sum of the magnitudes of all fre-

quencies up to the Nyquist frequency (0.25 Hz at 1.5 and 3 T and

0.36 Hz at 7 T).

All (f)ALFF maps were furthermore standardised by subject-wise

division by the mean (f)ALFF value across all in-brain voxels. This

method was proposed by Zang et al. (2007) to account for a subject-

specific baselines, similar to the methods used in positron emission

tomography, and was shown to compensate the dependence of

(f)ALFF on the extent of subject-specific motion (Küblböck et al.,

2014). Smoothing using a Gaussian filter with a full width at half maxi-

mum of 6 mm was applied to all maps using SPM12.
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2.6 | Group analysis

For the first assessment, paired t tests were performed between

(f)ALFF maps with and without full nuisance regression, as imple-

mented in SPM12, that is, linear regression at each voxel, using

ordinary least squares. These paired t tests were calculated for data

with and without bias-field correction (ALFF maps only, fALFF

maps are intrinsically bias-field corrected). All results are reported

at a family-wise error corrected threshold significance level of 0.05

(p < .05, FWEwhole-brain).

In order to assess the optimal combination of nuisance regressors,

we calculated one-sample t tests for (f)ALFF maps across subjects,

that is, voxelwise (f)ALFF values were averaged over the group and

divided by the SE. We used this particular measure as it allows for

straightforward assessment of intersubject variability relative to the

group average. It was assumed that a successful correction increases

this statistic (t-values), that is, it reduces variability across subjects rel-

ative to the mean amplitude. This ratio is only meaningful for nonneg-

ative values, a condition fulfilled by all types of (f)ALFF maps that

were included in this study.

To improve the interpretability of the results, voxelwise t-values

of each preprocessing pipeline were transformed to percent changes

relative to t-values without nuisance regression. Summative analyses

were limited to GM using a GM mask constructed based on the MNI

template's GM probability map. For ALFF, maps without bias-field

correction were used in this kind of analysis.

An increase in the number of arbitrary, independent regressors

could potentially also increase the t-values. To test for this effect, we

additionally performed all analyses using phase-randomised regres-

sors, as described above (i.e., original regressors were Fourier trans-

formed, their phases randomised and transformed back to the

temporal domain).

2.7 | Additional low frequency correction

Preliminary results of our analysis showed marked effects of detrend-

ing, especially for fALFF maps. We therefore analysed our data sets

with two approaches, additional to the standard polynomial (constant,

linear and quadratic) regressors. In the first approach, we simply modi-

fied fALFF such that all frequencies below 0.01 Hz were excluded in

the denominator. We denoted these fluctuation measures high-

frequency fALFF or hfALFF. They are calculated as:

hfALFF¼ ALFF

Pi fNyquistð Þ
i 0:01Hzð Þ

âij j
ð1Þ

where âi is defined as the Fourier coefficient at index i(f ) for fre-

quency f.

In the second method, we defined low-frequency trends via

time courses based on autocorrelations similar to Friman, Borga,

Lundberg, and Knutsson (2004). These time courses, called explor-

atory trends, were estimated for each subject by performing a

FIGURE 1 Comparison of group-averaged (fractional) amplitude of low-frequency fluctuation ((f )ALFF) maps with full nuisance regression versus

no nuisance regression. While mean fALFF maps show little changes, more distinct changes can be seen in ALFF maps, as highlighted by the
arrows (see text for details) [Color figure can be viewed at wileyonlinelibrary.com]
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canonical correlation analysis (CCA) on all non-GM time courses

(i.e., WM and CSF), and their lag-one shifted versions (after PCA-

based dimensionality reduction to 5% of the number of samples/

repetitions). All individual masks used for extracting the time

courses were carefully checked to make sure that no GM voxel

enter PCA. These time courses are very well suited to explaining

low frequency drifts and, as a data driven method, alter frequen-

cies that are not included in the data to a lesser degree than pre-

defined mathematical functions. Following Friman et al. (2004),

(f)ALFF maps were computed using the four exploratory detrend-

ing time courses with the highest autocorrelation (instead of the

polynomial detrending) for all 16 pipelines. The only difference

being that no orthogonalisation of the other regressors with

respect to these time courses was performed during analysis.

In addition to group-level t-values, test–retest variability can

also be used to assess data quality. For two of our three data

groups, multiple resting-state data sets are available per subject. In

case of 1.5 T, three data sets were acquired in one session. For

3 T, 10 data sets acquired in 10 sessions over a period of 1 month

are available for each subject. All data sets underwent the different

preprocessing variants and the variance across repetitions was

calculated.

3 | RESULTS

Results of the group-averaged (f)ALFF maps obtained with full nui-

sance regression and without nuisance regression are depicted in

Figure 1. For all field strengths, visual inspection shows only subtle

differences between preprocessing approaches for fALFF and small

differences for ALFF, especially if no bias-field correction was

applied. It can be seen that bias-field correction reduces the hyper-

intense regions close to the MR radiofrequency coil elements

(Arrow 1), especially in the more superior regions of the brain, but

increases ALFF values in central brain regions (Arrow 3). This effect

is more pronounced in data sets with nuisance regression. Nuisance

regression also reduces high ALFF values in the ventricles

(Arrow 2).

Differences between bias-corrected ALFF maps with and without

nuisance regression are shown in Figure 2 (columns correspond to

1.5 T/3 T/7 T results). The top row of images show the results of

paired t tests between individual ALFF maps and indicate an increase

of ALFF in WM and subtle decrease in GM. Importantly, there is a

notable increase in group-level one-sample t-values after nuisance

regression in widespread areas across the brain. Mean t-value changes

in GM are +45% for 1.5 T, 26% for 3 T, and + 15% for 7 T data

FIGURE 2 Influence of nuisance regression on bias-corrected amplitude of low-frequency fluctuation (ALFF) maps. Differences between

ALFF maps with and without nuisance regression: Paired t test (p < .05, FWEwhole-brain, corresponding to 5.2, 6.2, and 7.1 for 1.5, 3, and 7 T,
respectively) between individual ALFF maps (top row); relative change in group-level t-values (second row); relative change of group SD (third
row); relative change of group mean (bottom row). The increase in t-values after nuisance regression is primarily caused by a strong reduction
of interindividual ALFF variance [Color figure can be viewed at wileyonlinelibrary.com]
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(Figure 2, second row). As these t-values were calculated by averaging

ALFF maps across subjects and dividing them by the SE, changes could

be caused by either changes in mean ALFF or changes in variance

across the group. As can be seen in the third row of Figure 2, the

increase in t-values after nuisance regression is caused by a strong

reduction of interindividual ALFF variance despite high mean ALFF

values in WM (Figure 2, bottom row). ALFF maps without bias correc-

tion show similar effects (Figure S1).

In case of fALFF, pairwise t tests reveal some changes related to

nuisance regression for 1.5 and 3 T data but not for 7 T data (Figure 3,

top row). Comparing group-level t-values (Figure 3, second row) shows

increases throughout the brain in 3 T data. Interestingly, some decreases

in t-values are apparent in GM areas of 7 T data. Closer inspection

reveals that these differences are caused by changes in group-level vari-

ance (Figure 3, third row) while mean fALFF values remain almost

unchanged (Figure 3, bottom row). Averaging across all GM voxels

results in t-value changes of +48% for 1.5 T, 62% for 3 T, and + 22% for

7 T data. While group variance in WM is reduced after nuisance correc-

tion in all data sets, variance increases in some 7 T GM areas.

In order to analyse this unexpected increase in group variance in

more detail, we examined the change in group-wise t-values for all

nuisance regressor combinations. More specifically, we calculated the

group-level t-value changes with and without a specific regressor

(Detr, RP, WM, and CSF). These changes were then averaged for all

preprocessing variants.

In the case of ALFF (Figure 4a, dark blue columns), group-wise

t-values increased for all nuisance regressors. The highest t-value

increases, that is, the strongest reductions in intersubject variance, were

found for the full regressor basis. Mean t-value changes for detrending,

RP, WM, and CSF regression were 9, 5, 11, and 14% for 1.5 T; 1, 3, and

7% for 3 T; and 2, 3, 5, and 6% for 7 T, respectively. Combining detrend-

ing, RP, WM, and CSF regression increased t-values by 45, 26, and 15%

for 1.5, 3, and 7 T data, respectively. Regression using phase-randomised

time courses changed group t-values by 0.18 � 0.31% across all prepro-

cessing variants and field strengths (mean � SD).

In case of fALFF, however, the results are less clear (Figure 5a,

red columns). RP, WM, and CSF regressions led to increases in group-

wise t-values by 8, 16, and 18% for 1.5 T; 8, 16, and 29% for 3 T; and

4, 8, and 15%, for 7 T. Surprisingly, detrending (orange arrows in

Figure 5) caused changes in group-wise t-values of −2 and −6% for

1.5 and 7 T, while at 3 T minimal change was observed (<0.2%). This

detrimental effect of detrending was observed for fALFF but not

ALFF maps indicating that the normalisation process used in fALFF

calculation was the decisive factor. Preprocessing with phase-

randomised time courses changed group t-values by 1.44 � 1.87%

across all regression variants and field strengths (mean � SD).

FIGURE 3 Influence of nuisance regression on fractional amplitude of low-frequency fluctuation (fALFF) maps. Differences between fALFF maps

with and without nuisance regression: Paired t test (p < .05, FWEwhole-brain, corresponding to 5.2, 6.1, and 7.1 for 1.5, 3, and 7 T, respectively)
between individual fALFF maps (top row); relative change in group-level t-values (second row); relative change of group SD (third row); relative
change in group mean (bottom row). While variance is reduced throughout the 1.5 T data sets, some areas of the 3 and 7 T data show increases
in group variance after nuisance regression [Color figure can be viewed at wileyonlinelibrary.com]

1576 WOLETZ ET AL.

http://wileyonlinelibrary.com


Targeting the mechanism behind the effects of this normalisation

step, we repeated our analysis on a new set of fALFF maps which were

normalised without using the low-frequency components, that is, the

frequency range used for calculating spectral power in the denominator

was limited to frequencies above 0.01 Hz. We denoted these fluctua-

tion measures high-frequency fALFF or hfALFF. The corresponding

plots of hfALFF group-level t-value changes after detrending and WM,

CSF, and RP regression are shown as green columns in Figure 5. From

these results, it can be seen that—contrary to fALFF—hfALFF maps

benefited from detrending (5, 1, and 4% for 1.5, 3, and 7 T, respectively).

However, comparing the absolute group-level t-values between fALFF

and hfALFF shows that fALFF results based on preprocessing without

detrending (Figure 5b, red arrows) yielded higher numbers than hfALFF

with full regression (Figure 5b, green arrows).

In addition, we also wanted to explore alternative detrending

techniques that do not require a novel definition of LFF measures. To

this end, we implemented exploratory detrending (described in

Section 2) instead of traditional polynomial detrending. The results for

these maps can be seen as pink columns in Figures 4 and 5 for ALFF

and fALFF maps, respectively. While full nuisance regression using

exploratory detrending led to the highest increase in ALFF t-values,

absolute group-level t-values for fALFF preprocessing without

detrending were higher than the exploratory detrending variant.

In order to allow for a comprehensive assessment of preprocessing

effects, we plotted changes in group-level means and SD for all prepro-

cessing variants in Figures 6 and 7. It can be seen that preprocessing

had only subtle effects in group-level means (all changes are less than

1%). Contrary, preprocessing has profound effects on variance across

the group. While RP, WM, and CSF regression caused reductions in

group variance of 2–20% across all field strengths, polynomial detrend-

ing of fALFF had no (3 T) or even detrimental effects of group variance

(+2 and + 7% for 1.5 and 7 T, respectively).

For a more comprehensive assessment of the effects of dif-

ferent preprocessing variants, we also calculated test–retest vari-

ance across repeated resting-state data acquisitions. Figure 8

shows the changes test–retest variance for all LFF measures (note

that no test–retest data was available for 7 T data). It is apparent

that all preprocessing variants yielded reductions in test–retest

variance. The strongest reductions were found for preprocessing

with exploratory detrending and RP/WM/CSF regression. With

respect to polynomial detrending, 1.5 T data show subtle differ-

ences (<2%) between approaches with and without detrending,

while 3 T data indicate stronger variance reduction when detrend-

ing is applied (−45 and −49%, respectively).

4 | DISCUSSION

In this study, we assessed the effects of different regression-based

artefact reduction variants on (f)ALFF maps. Our results clearly show

that the choice of regression approach greatly influences the (f)ALFF

maps calculated.

(a)

(b)

FIGURE 4 Influence of preprocessing choices on amplitude of low-frequency fluctuation (ALFF) values. (a) Relative change in group-level

t-values for the different nuisance regressors. (b) Grey matter averaged t-values after nuisance regression [Color figure can be viewed at
wileyonlinelibrary.com]
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4.1 | Bias-field correction

For ALFF maps, bias-field correction of the EPIs has a strong effect,

since it propagates directly into the resulting maps. At the same time,

fALFF maps are intrinsically unaffected since all linear terms are can-

celled during the voxelwise normalisation. In the ALFF maps, bias-field

correction reduces elevated values close to RF coils used in

FIGURE 6 Comparison of relative changes in group-level ALFF mean (x axis) and SD (y axis). While changes in mean t-values are below 1%, group

variance is strongly reduced by all preprocessing variants [Color figure can be viewed at wileyonlinelibrary.com]

(a)

(b)

FIGURE 5 Influence of preprocessing choices on fractional amplitude of low-frequency fluctuation (fALFF) values. Relative change in group-level

t-values for the different nuisance regressors. (b) Grey matter (GM) averaged t-values after nuisance regression. Polynomial detrending (Detr)
reduces group-level t-values (orange arrows). Highest group-level t-values are obtained after full nuisance regression without polynomial
detrending (red arrows). Green arrows indicate mean GM t-values of hfALFF maps [Color figure can be viewed at wileyonlinelibrary.com]
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multichannel receive arrays (which are commonly used in fMRI stud-

ies). This can be seen as a beneficial effect as these elevated values

are only related to signal reception without any physiological basis

and therefore need to be corrected. Bias-field correction as used in

this study furthermore led to increased values in the centre of the

brain (see Figure 1), even though image intensities in the bias-field

corrected EPIs clearly showed very homogenous white and GM inten-

sities throughout the brain. As there is no physiological reason for ele-

vated ALFF values close to the centre, we conclude that this effect is

introduced by the bias-field correction itself. Bias-field correction aims

to equalise spatial differences in signal amplitude, that is, after bias-

field correction the signal amplitude should be constant throughout a

homogeneous object. The reduction of signal-to-noise ratio (SNR)

with increasing distance from the RF-coil (Wright & Wald, 1997) will

consequently cause a relative increase of noise levels in regions closer

to the centre of the brain. This effect increases ALFF values in low-

SNR regions after bias-field correction since ALFF values increase

with noise power. High-SNR regions (i.e., regions close to the imaging

FIGURE 7 Comparison of relative changes in group-level fractional amplitude of low-frequency fluctuation (fALFF) mean (x axis) and SD (y axis).

While changes in mean t-values are below 1%, RP, WM, and CSF regression yield reductions of the SD across subjects of up to −20%. Polynomial
detrending before fALFF calculation causes either no (3 T) or even an increase in group-level variance (1.5 and 7 T) [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 8 Changes in test–retest variance for the different preprocessing approaches. Results are based on three data sets per subject at 1.5 T

and 10 data sets per subject at 3 T. All preprocessing variants yield reductions in test–retest variability. Strongest reductions are found for
RP/WM/CSF regression and exploratory detrending of fractional amplitude of low-frequency fluctuation (fALFF) maps. For ALFF maps,
polynomial detrending is clearly indicated, whereas fALFF maps show only small differences between realignment parameter (RP)/white matter
(WM)/cerebrospinal fluid (CSF) correction with and without detrending [Color figure can be viewed at wileyonlinelibrary.com]
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coils) on the other hand, will benefit from bias-field correction, since

the tSNR is limited in these regions by the physiological noise, which

scales with the signal (Kruger & Glover, 2001; Triantafyllou et al.,

2005; Triantafyllou, Polimeni, & Wald, 2011). Correcting for signal

strength will therefore appropriately correct ALFF values in these

regions, without disproportionately amplifying noise. Still, any error in

estimating the bias field will also linearly propagate into the resulting

ALFF maps.

Normalisation of ALFF values, that is, division by the mean ALFF,

can be considered standard, as it has been shown that normalisation

reduces the influence of motion on ALFF values (Küblböck et al.,

2014). As a consequence of this normalisation, any local changes to

ALFF due to bias correction will change ALFF in all other brain voxels

as well. It is important to consider this when ALFF values in different

brain regions are compared between studies. On the other hand, the

effects of bias-field correction on statistical tests will be limited, since

the estimated bias fields and therefore changes in ALFF maps will be

rather similar across subjects, especially in regions with low gradients

in the bias field as long as the same coil and setup was used for all

subjects.

4.2 | Nuisance regression

In general, nuisance regression was found to be highly beneficial in

reducing intersubject variance. This is particularly apparent when

examining test–retest variance. Here, our results show a reduction of

test–retest variance of almost 50%.

However, our results also show that detrending using polynomial

regressors should be applied with caution. In case of ALFF, the largest

benefits were found for the full regression scheme, including polyno-

mial detrending. The consistency of fALFF maps, that is, ALFF normal-

ised to the whole frequency spectrum, was not improved by

polynomial detrending. On the contrary, intersubject variance was

increased by polynomial detrending. Interestingly, the results of test–

retest variance comparisons do not indicate such a detrimental effect

for polynomial detrending.

In an attempt to explore this unexpected result, we have intro-

duced a novel fluctuation measure, hfALFF, which is based on normal-

ised ALFF based on frequency power above 0.01 Hz. The fact that

hfALFF maps were positively affected by polynomial detrending indi-

cates that these very low frequencies caused the t-values reductions

seen in fALFF maps. As such, it may be argued that hfALFF values

might be preferable to standard fALFF. We also compared the abso-

lute group-level t-values and found that while polynomial detrending

of hfALFF reduced intersubject variance, mean t-values of hfALFF

were still below their fALFF counterparts. Replacing fALFF by hfALFF

can thus not be recommended.

Explicitly or implicitly removing low-order polynomial trends

seems to be less well suited for removing the effects of low frequency

drifts in the data than the noise reduction properties inherent in the

normalisation step of fALFF. Fitting and removing a regressor that

contains drifts affects a wide range of frequencies. We show this issue

in more detail below, where we derive an equation for least-square

fitting in the Fourier domain.

Given a signal y of length N and a nuisance regressor matrix x, the

linear least squares estimate can be described as:

β¼ xHx
� �−1

xHy ð2Þ

where xH denotes the complex conjugate transpose of x. The discrete

Fourier transform (DFT) can be written using matrix algebra as the

product of a Fourier matrix and a signal vector. The elements of the

Fourier matrix are

Fk,n ¼ e−2πi k−1ð Þ n−1ð Þ=N ð3Þ

For row index k = 1…N and column index n = 1…N. Without loss

of generality, we can define a unitary DFT matrix U with the prop-

erty U−1 = UH

U¼ Fffiffiffiffi
N

p ð4Þ

The Fourier transforms of the signal vector y and the regression

matrix x are

Y¼Uy ð5Þ

X¼Ux ð6Þ

Using the properties of U, the linear least squares estimate can be

rewritten as

β¼ XHUUHX
� �−1

XHUUHY ð7Þ

β¼ XHX
� �−1

XHY ð8Þ

Fitting the nuisance model to the data in time domain is therefore

identical to fitting the data in Fourier domain. The cleaned time course

ŷ and its Fourier transformed version Ŷ¼Uŷ are therefore:

ŷ¼ y−xβ ð9Þ

ŷ¼ y−x xHx
� �−1

xHy ð10Þ
and

Ŷ¼Y−Xβ ð11Þ

Ŷ¼Y−X XHX
� �−1

XHY ð12Þ

Ŷ¼ I−X XHX
� �−1

XH
� �

Y ð13Þ

Nuisance regression can therefore be interpreted as a linear

transformation of the Fourier components of the time course, where

the transform solely depends on the composition of the nuisance

regressor matrix in Fourier space. In this sense, it is a special kind of

Fourier filter, where each frequency component is not only adapted

but also combined with all other frequency components.

From these equations, it may be concluded that every frequency

component may be distorted due to other, more dominant compo-

nents. Importantly, if these frequencies were not present in the data,

they will be introduced due to the removal of the regressor (Chen,

Jahanian, & Glover, 2017; Hallquist, Hwang, & Luna, 2013). (f)ALFFs,

as spectral measures, can be very sensitive to such changes and

depending on whether or not further noise reduction methods are

applied, group results can improve or worsen. Based on our results,
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we therefore cannot recommend the use of detrending for fALFF maps.

It is, however, important to remove these polynomial trends from all

other regressors. For ALFF maps, detrending can be recommended,

since ALFF calculation does not entail inherent noise reduction proper-

ties (i.e., division by overall spectral power) and will therefore benefit

from the explicit removal of these trends. Alternatively, the use of

exploratory detrending (Friman et al., 2004) positively affects both

fALFF and ALFF maps and can be used instead of traditional detrending.

Exploratory detrending was found to yield increased group-level t-

values, with absolute t-values comparable to ALFF with full regression

and fALFF with full regression without polynomial detrending.

However, extracting the exploratory detrending time courses

from the data can be challenging. First, masks must not contain any

GM voxels. Second, an additional data reduction step is necessary

since in fMRI data sets usually have many more voxels than time

points (Friman et al., 2004). The numbers of retained dimensions has

to be estimated and will depend on the length of the time series and

the data itself. If too few dimensions are retained, the data will not be

very well represented and if too many are retained, the matrices in

the CCA might not be of full rank.

Exploratory detrending is closely related to PCA. PCA can be used

as the necessary dimensionality reduction step needed as a preproces-

sing step for estimating the exploratory trends. In this case, the differ-

ence between PCA and the estimation of the exploratory trends is

that instead of removing the subspace of the PCA with the absolute

highest variance, the subset with the highest autocorrelation is

removed from the high variance subspace.

Similar to studies investigating the effects of nuisance regression

for functional connectivity metrics (Murphy et al., 2009; Shirer et al.,

2015; Weissenbacher et al., 2009), our results demonstrate that nui-

sance regression increases the consistency of (f)ALFF values across

subjects. Generally, we observed an increase in t-values with increas-

ing numbers of regressors. It can be seen that for ALFF, any kind of

nuisance regression increases group-wise t-values, whereas for fALFF,

some kinds might even cause reductions.

Our findings show a different spatial pattern of (f)ALFF distribu-

tion before/after nuisance regression compared to Turner

et al. (2013). This might be explained by the different nuisance signal

models used, as our study extended the approach used by Turner and

colleagues by the first principal components in the CSF and WM, mak-

ing it capable of capturing more data variance.

Reducing large outliers, for example, the CSF in ALFF maps, sig-

nificantly shifts the mean whole-brain ALFF value and therefore

affects all other regions as well. For ALFF, we observed the greatest

changes in WM, but found less changes in the fALFF maps (see

Figure 3). This effect can largely be attributed to the high-order CSF

regression (mean and five principal components), which was able to

remove large parts of the CSF signal.

Our results rely on the assumption that, for healthy subjects, the

removal of nuisance signals should reduce the variance in the data

more than the mean. A limitation of this approach is that the lower

bounds of (f)ALFF is the system noise in the images and perfect homo-

geneity with a mean greater than zero would therefore be achieved

when any signal was removed from the time series in all subjects. Due

to the fact that only the mean signal in WM was minimally affected by

the regression, we are convinced that we are well above these limits

and have not removed any signal of interest in our analysis.

The present study is based on data acquired at 1.5, 3, and 7 T.

While ultrahigh field-strength data are characterised by increased

specificity of the BOLD effects measured (Yacoub et al., 2001), effects

due to physiological noise and other artefacts are also enhanced

(Triantafyllou et al., 2005). Nevertheless, our 1.5 and 3 T results

clearly show that nuisance regression can be even more beneficial at

field strengths lower than 7 T, as group-level t-value increases due to

preprocessing were twice as high at 1.5 and 3 T than at 7 T (about

50% for 1.5 and 3 T and 25% for 7 T).

In conclusion, we have systematically assessed the influence of a

number of preprocessing strategies in (f)ALFF studies and have dem-

onstrated the need for appropriate preprocessing in order to control

for nonneural, confounding factors during data acquisition and analy-

sis. Based on test–retest reliability as a measure for data quality, we

have shown that full regression will yield the strongest reduction in

(f)ALFF variance across sessions. Regarding group homogeneity, we

have demonstrated that nuisance regression generally increases

homogeneity, with detrending being a particularly critical technique in

requiring different treatment for ALFF and fALFF maps. Overall, the

results of this study clearly identified data preprocessing as a crucial

step in (f)ALFF calculation.
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