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Abstract: Vibrio parahaemolyticus is a major foodborne pathogen and the main cause of diarrheal
diseases transmitted by seafood such as fish, shrimp, and shellfish. In the current study, a novel
lytic phage infecting V. parahaemolyticus, vB_VpaP_GHSM17, was isolated from the sewage of a
seafood market, Huangsha, Guangzhou, and its morphology, biochemistry, and taxonomy features
were identified. Morphological observation revealed that GHSM17 had an icosahedral head with a
short, non-contractile tail. The double-stranded DNA genome of GHSM17 consisted of 43,228 bp
with a GC content of 49.42%. In total, 45 putative ORFs were identified in the GHSM17 genome.
Taxonomic analysis indicated GHSM17 belonging to genus Maculvirus, family Autographiviridae. In
addition, GHSM17 was stable over a wide range of temperatures (20–60 ◦C) and pH (5–11) and
was completely inactivated after 70 min of ultraviolet irradiation. The bacterial inhibition assay
revealed that GHSM17 could inhibit the growth of V. parahaemolyticus within 8 h. The results support
that phage GHSM17 may be a potential candidate in the biological control of V. parahaemolyticus
contamination in aquaculture.
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1. Introduction

Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is widely found
in oceans and estuaries. Eating any raw seafood containing pathogenic V. parahaemolyticus
can cause human infection, which is characterized by watery diarrhea, abdominal cramps,
nausea, vomiting, and headache [1]. Most clinically-derived pathogenic V. parahaemolyticus
can produce two major toxins, thermostable direct hemolysin (TDH) [2] and TDH-related
hemolysin (TRH) [3]. Both toxins have the characteristics of hemolytic toxicity, enterotox-
igenicity, cardiac toxicity, and cytotoxicity that can affect the infected hosts [4–6]. Addi-
tionally, V. parahaemolyticus can also lead to severe acute hepatopancreatic necrosis disease
(AHPND) in shrimp aquaculture, which causes huge economic loss to shrimp farmers [7].
At present, for the rapid and effective control of the proliferation of V. parahaemolyticus,
antibiotics are widely and inevitably used in aquafarming, the transportation and sales
section, leading to multiple antibiotic-resistant strains in pathogenic communities [8]. Mi-
crobial risk assessments indicated that both ready-to-eat (RTE) foods and aquatic products
in China were at great risks of infection with pathogenic V. parahaemolyticus [9,10]. In
addition, most isolated V. parahaemolyticus strains showed a certain degree of resistance
to streptomycin, cefazolin, and ampicillin [11], posing particularly serious threats and
challenges to human public health and economic problems worldwide [12–14]. Notably,
biological additives, rather than antibiotics, will be a potential candidate for the prevention
and control of the pathogenic bacteria in aquatic products [15].

Viruses 2022, 14, 1601. https://doi.org/10.3390/v14081601 https://www.mdpi.com/journal/viruses

https://doi.org/10.3390/v14081601
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0002-9908-1001
https://doi.org/10.3390/v14081601
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v14081601?type=check_update&version=2


Viruses 2022, 14, 1601 2 of 15

Bacteriophages are universal viruses on earth that can specifically recognize, cap-
ture, and lyse their host bacteria in various environments. With the inevitable increase
of multiple antibiotic-resistant bacteria and the lack of novel antibiotics, phage therapy is
becoming increasingly popular due to its enormous potential to destroy bacteria [16,17]. As
early as 1919, phage therapy was successfully applied to chickens infected with Salmonella
Gallinarum [18]. At present, phages are widely used as a biological control agent in the food
and agriculture industries, wastewater treatment, and aquaculture [19]. Previous studies
have shown that the direct application of a single phage or phage cocktail to RTE foods
and meat could significantly reduce contamination with various food-borne pathogens [20].
Lytic phages were applied to chicken skin to reduce the number of Salmonella Enteritidis
or Campylobacter jejuni by 2 log CFU within 48 h [21]. A study was the first to report that
a cocktail of three phages (ECP-100) significantly reduced E. coli O157:H7 on lettuce and
cantaloupe [22]. Phage therapy was also conducted in vivo, demonstrating that phages
could control bacterial infections in fish, shrimp, and other aquatic products in aquacul-
ture [23,24]. In hatchery trials, the phage treatment of Penaeus monodon larvae infected
Vibrio harveyi resulted in a larval survival rate of over 85%, suggesting that phages would
be an effective alternative to antibiotics [25]. Importantly, these viruses were nontoxic to
humans and could eradicate bacterial biofilms due to biofilm-degrading enzymes, which
had also proven to be more promising than antibiotics [26].

In this study, a lytic phage infecting V. parahaemolyticus, termed as vB_VpaP_GHSM17,
was isolated from the sewage of a seafood market, Huangsha, Guangzhou, and its mor-
phology, biochemistry, and taxonomy features were identified. Phage GHSM17 was a new
member of the genus Maculvirus, family Autographiviridae, and its growth inhibitory effect
on V. parahaemolyticus was investigated. The characterization and analysis will potentially
be of great help in further expanding our cognition of Vibrio phages and also provide a new
tool for V. parahaemolyticus control.

2. Materials and Methods
2.1. Bacterial Strains and Phage Isolation

A total of 17 strains of V. parahaemolyticus from Guangzhou Customs Technology
Center were used in this study, which were isolated from import and export seafood. The
genotypes and sources of each strain are shown in Table 1. All V. parahaemolyticus were
stored in 25% (v/v) glycerol at −80 ◦C and further validated by PCR to detect species–
specific genes (tlh) and virulence genes (tdh and trh), according to a previous study [27,28].

Table 1. Host range of phage vB_VpaP_GHSM17.

Strain Origin Lytic Ability Virulence Genes

V. parahaemolyticus ATCC17802 American Type Culture Collection + Tlh+/tdh−/trh+

V. parahaemolyticus PR13 Pearl River − tlh+/tdh−/trh−

V. parahaemolyticus OY14 American Oysters + tlh+/tdh−/trh−

V. parahaemolyticus FFTF11 Frozen Fork Tail Fillets + tlh+/tdh−/trh−

V. parahaemolyticus BC21 Bengali Frozen Cuttlefish − tlh+/tdh−/trh−

V. parahaemolyticus BC20 Bengali Frozen Cuttlefish + tlh+/tdh−/trh−

V. parahaemolyticus IFH23 Indonesian Frozen Hairtail − tlh+/tdh−/trh−

V. parahaemolyticus TGS36 Thai Grass Shrimp + tlh+/tdh−/trh−

V. parahaemolyticus SAL38 South African Lobster − tlh+/tdh−/trh−

V. parahaemolyticus HA44 Haliotis − tlh+/tdh−/trh−

V. parahaemolyticus CR48 Crab + tlh+/tdh−/trh−

V. parahaemolyticus OY49 Oyster + tlh+/tdh−/trh−

V. parahaemolyticus TMS61 Thai Mantis Shrimp − tlh+/tdh−/trh−

V. parahaemolyticus SC123 Scallop + tlh+/tdh−/trh−

V. parahaemolyticus SC126 Scallop − tlh+/tdh−/trh−

V. parahaemolyticus CR127 Crab + tlh+/tdh−/trh−

V. parahaemolyticus SE132 Seawater − tlh+/tdh−/trh−
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The sewage sample was collected from Huangsha, Guangzhou, and processed as
previously described for the phage culture [29]. After the sample was filtered, MgSO4
was added and completely dissolved. The mixture was filtered through a filter membrane
again. The filter membrane was eluted for 10 min. Then, the eluted liquid was mixed
with 100 µL of V. parahaemolyticus OY49 into 5 mL of Tryptic Soy Broth (TSB, 2 mM CaCl2)
and cultivated at 37 ◦C, 220 rpm for 24 h. After culturing for 24 h, the mixed culture was
centrifuged at 8000× g for 10 min at 4 ◦C, and the supernatant was filtered through a
0.22-µm filter to remove residual bacteria. The phage proliferation was repeated three
times, and the presence of phages was verified by a double-layer plate. Briefly, the phage
at the appropriate dilution (100 µL) was mixed with V. parahaemolyticus OY49 (100 µL) in
5 mL of TSB (0.4% agar), incubated at 37 ◦C, and plaques were observed after 3 h. Three
candidate plaques were picked by sterile pipette tips into TSB (2 mM CaCl2). Then, 100 µL of
V. parahaemolyticus OY49 was added, and the mixture was cultured at 37 ◦C with 220 rpm for
24 h. The cultured mixture was centrifuged, and the presence of plaques was observed by
a double-layer plate. The phage purification step was repeated six times by a double-layer
plate. Finally, the purified phages were stored in 30% (w/v) glycerol at −80 ◦C.

2.2. Phage Morphological Observation

A fresh phage suspension was prepared, and polyethylene glycol 8000 (PEG 8000)
was added to the phage suspension with a final concentration of 15%. The mixture was
incubated at 4 ◦C overnight. After incubation for 24 h, the deposit was centrifuged at
12,000× g for 20 min at 4 ◦C and then resuspended with SM buffer (1 mL) to prepare the
phage suspension concentrate for electron microscopy analysis. Three gradients (1.3, 1.5,
and 1.7 g/mL) of CsCl solutions were prepared. The phage suspension was subjected to
CsCl gradient centrifugation at 170,000× g, 4 ◦C for 2 h, and the blue band containing
phages was collected immediately. Phage concentrates were placed on carbon membranes
prepared with 3% (w/v) phosphotungstic acid. Morphological features were observed
under a transmission electron microscope (TEM, Talos L120C) at 80 kV.

2.3. Extraction and Sequencing of Phage Genome

After the phage concentrate was obtained according to Section 2.2, the DNA was
extracted from phage GHSM17. DNase I and RNase A were used to digest bacterial DNA,
and a phage DNA extraction kit (Leagene Biotechnology, Beijing, China) was used for
purification. DNA quantification, electrophoresis, enzymatic digestion, and other general
manipulations were performed according to standard procedures [30]. DNA concentration
was measured by Nano Vue Plus spectrophotometer (GE Healthcare, Chicago, IL, USA).
Purified DNA was sent to Personal Biotechnology Corp. (Shanghai, China) for whole-
genome sequencing. A DNA library was prepared with the insert size of 400 bp for the
phage sample. Phage genome samples were sequenced by the Illumina MiSeq platform
using the PE 2 × 150 bp strategy.

2.4. Genome Assembly, Annotation, and Comparison

The raw sequencing data contained some low-quality reads with adapters. In order to
ensure the quality of the subsequent information analysis, SOAPec [31], was used to filter
all reads based on the Kmer frequency. The filtered high-quality reads were reassembled
via A5-MiSeq v20160825 [32] and SPAdes v3.12.0 [33]. The sequences were extracted, and
the sequences with high sequencing depth were compared with the National Center for
Biotechnology Information Non-redundant (NR) Database by blastn [34]. The viral genome
sequences of each splicing result were picked out. Pilon v1.18 [35] was used to correct
the results for obtaining the final genome sequence. After obtaining the whole genome
sequence, Diamond v0.8.36 [36] and GeneMarkS v4.32 [37] were used for the prediction of
open reading frames (ORFs) in the phage genome. Finally, a circular map of the genome of
phage GHSM17 was generated via CGView. In addition, predictions of non-coding RNAs
were mainly obtained by comparison with the Rfam v14.1 database [38].
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After obtaining the assembled genome sequence, it was uploaded to the NCBI database
for the sequence alignment. In brief, the most similar species sequences and taxonomic
names were obtained through sequence alignment. Firstly, the blastn [34] was used to align
the target sequences in the database. The calculation function of the alignment algorithm
used default parameters. After obtaining the most similar known sequence information,
the results were filtered through the three thresholds of Query Coverage (90~100%), Percent
Identity (50~100%), and E value (0~1 × 10−6) to obtain the final alignment result. Secondly,
after obtaining the preliminary taxonomic results, the information obtained from the
comparison was retrieved in the ICTV to obtain all known species (that is, taxonomically
classified species) and genome information of the genus. The genome information of all
known species from this genus was downloaded from the database, and then the ORF-
based genome-wide structure and function linear alignment was performed. The results
were visualized using Easyfig [39]. Thirdly, after finishing the preliminary genome-wide
alignment of the target sequence, the initial taxonomic information of the phage strain was
obtained, including the three levels of family, genus, and species. All the relevant phage
genome information of this family was downloaded from the NCBI database for fastANI
analysis [40]. Based on the analysis results, we obtained the average nucleotide identities
of the phage GHSM17 and all related species to further determine its taxonomic status,
with parameters: cutoff_down = 0.75, fragLen = 3000, clustering_distance_cols/rows = euclidean.
Pheatmap [41] was used to visualize the calculation and analysis results. Finally, based on
the predicted ORF structure and gene function, we selected the sequences corresponding to
the two molecules of the RNA polymerase and terminase large subunit for phylogenetic tree
analysis. MEGAX was used to analyze the phylogenetic tree with the following parameters:
No. of Bootstrap Replications = 1000, Substitution Model/Method = Kimura2-parameter model,
Gaps/Missing Data Treatment = Use all sites, Branch Swap Filter = Very Strong [42].

2.5. Phage Titer Determination

Phage titers were determined by the double-layer plating. Briefly, after 100 µL of
phage suspension appropriately diluted and 100 µL of V. parahaemolyticus OY49 in mid-log
phase were poured into double-layer plates, the mixture was incubated at 37 ◦C for the
observation and counting of plaques after 3 h. The appropriate dilutions were determined
by three replicate plates for each dilution. Finally, the phage titer was calculated as follows:
plaque number × 10 × dilution gradient = pfu/mL.

2.6. Determination of Phage Host Range

To determine the host range of the purified phage, a spot assay was used for 17 V. para-
haemolyticus strains (Table 1). Using the double-layer plating, 100 µL of V. parahaemolyticus
in mid-log phase and 6 mL of TSB (0.4% agar) were mixed and poured onto double-layer
plates. After solidifying for 5 min, 2 µL of phage suspension in TSB was added dropwise to
the plate. The plate was then incubated at 37 ◦C. After 3 h, it was checked whether a zone
of inhibition occurred. It was judged based on the clarity of the zone of inhibition: clear
lysis zone (+) and no lysis zone (−).

2.7. Determination of Multiplicity of Infection (MOI) and One-Step Growth

To determine the optimal MOI, 100 µL of bacteriophage and 100 µL of V. parahaemolyti-
cus OY49 (1 × 108 cfu/mL) in 10 mL of TSB (2 mM CaCl2) were prepared according to
the ratio of MOIs of 0.0001, 0.001, 0.01, 0.1, 1, 10, and 100, respectively. The mixture was
incubated at 220 rpm for 10 h at 37 ◦C and centrifuged at 8000× g for 5 min at 4 ◦C. The
supernatant was taken and filtered through a 0.22-µm filter to obtain a phage suspension.
Phage titers were determined by double-layer plating. The multiplicity of infection with
the highest titer was the best MOI.

The one-step growth curve was determined according to the method of Yang et al. [43].
The V. parahaemolyticus OY49 suspension cultured to OD600 = 1 was diluted to 1.0 × 108 cfu/mL.
An amount of 1 mL of bacteria was taken and centrifuged at 8000× g for 5 min at room
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temperature, the pellet was resuspended in 0.9 mL of SM buffer (100 mM NaCl, 8 mM
MgSO4, and 50 mM Tris-HCl, 0.01% Gelatin, pH 7.5), and phage suspension was added
according to the ratio of MOI of 0.1 for mixing. The mixture was incubated for 10 min
at 37 ◦C. After centrifugation at 8000× g for 5 min at room temperature, the pellet was
suspended in 10 mL of TSB. The mixture was then incubated with shaking at 37 ◦C and
220 rpm. Phage titers were determined by double-layer plating every 10 min.

2.8. Stability of Phage to Environmental Stress

Tests for phage stability under particular environmental conditions, including temper-
ature, pH, and UV, followed a previously-described protocol [44]. An amount of 1 mL of
phage suspension (4 × 107 pfu/mL) was added to 1.5-mL centrifuge tubes, which were
respectively incubated at different temperature ranges from 20 ◦C to 90 ◦C for 1 h. For pH
stability experiments, the pH of TSB was adjusted to 3, 4, 5, 6, 7, 8, 9, 10, and 11, respectively.
An amount of 1 mL of phage suspension (1 × 109 pfu/mL) was added into 9 mL of TSB
with a specific pH value and incubated in a water bath at 37 ◦C for 1 h. The UV tolerance
experiment was carried out as follows: the phage suspension (1 × 108 pfu/mL) was added
to the sterile plate and irradiated by UV at 30 W/100 W power in a biosafety cabinet. The
sample was about 15 cm away from the UV lamp, and a 100-µL sample was drawn every
10 min. The double-layer plate method was used to determine the phage titer.

2.9. Phage Control Experiment

In order to detect the potential of application, the antibacterial effect of phage GHSM17
against V. parahaemolyticus was studied in a 96-well plate with V. parahaemolyticus OY49 and
SC123 according to a previous study [45]. Briefly, 100 µL of bacterial dilution
(1 × 108 cfu/mL) was added to 5 mL of TSB, and phage suspension was added into
the experimental groups as MOI 0.01, 0.1, 1, and 10. An amount of 200 µL of the mixture
was pipetted into a 96-well plate. The blank group was without neither V. parahaemolyticus
nor phage suspension, and the control group was with V. parahaemolyticus and without
phage suspension. The 96-well plate was placed in the Microplate Reader (37 ◦C, 220 rpm)
for culture. Starting from 0 h, the absorbance value (OD600) was detected for each sample
every 1 h.

2.10. Statistical Analysis

According to the principles of standard control experiments, the experiment was
repeated three times, and the results were expressed in the form of mean ± standard
deviation (SD). GraphPad Prism 8.0.1 software was used to analyze the above statistics
and results.

3. Results
3.1. Morphology and Host Range of Bacteriophage GHSM17

In this study, the phage GHSM17 was isolated from sewage using the double-layer
plating. Clear plaques (about 2 mm in diameter) were formed on a double-agar plate
(Figure 1A,B), indicating that the phage was lytic, and it also was demonstrated by mito-
mycin C treatment (Figure S1). The TEM revealed that the phage GHSM17 consisted of an
icosahedral head and a short noncontracted tail (Figure 1B). Head length, head diameter,
and tail length were measured at 54 ± 2, 53 ± 2, and 19.5 ± 1 nm (n = 2) by TEM, respec-
tively. Referring to the official guidelines of the International Committee on Taxonomy of
Viruses (ICTV) and the International Virus Classification and Nomenclature, the phage
GHSM17 belonged to the order Caudovirales and then was named as vB_VpaP_GHSM17.
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tron microscopy.

Seventeen strains of V. parahaemolyticus were used to determine the host range of
the phages. As the results, phage GHSM17 was able to lyse 9 of the 17 tested strains,
with a relatively broad host range (Table 1), suggesting the potential of the GHSM17 to
be a candidate for phage therapy. Different phages with the same host were isolated,
with vB_VpS_BA3 having a quite narrow host spectrum, infecting only 5 (5/61) strains of
V. parahaemolyticus, while vB_VpS_CA8 was able to lyse 22 (22/61) strains [43]. The host
range of different phages was determined by the total number of hosts it used. Therefore,
the host spectrum of phages from different sources cannot be directly compared. However,
phages with a broader host spectrum mean that they may be the better candidates for
phage therapy.

3.2. Optimal MOI and One-Step Growth Curve

As shown in Figure 2A, the phage GHSM17 infected V. parahaemolyticus OY49 at the
MOI of 0.0001, 0.001, 0.01, 0.1, 1, 10, and 100 and showed high bacteriophage titer, reaching
the maximum phage titer at the MOI of 0.1. The life cycle of bacteriophage, including the
latent period, explosive phase, and plateau phase, was quantified using a one-step growth
curve. As seen from Figure 2B, GHSM17 was characterized by a relatively short latency
period of 20 min, a rise phase of 100 min, and a burst size of 316 pfu/cell, indicating that
phages grew efficiently and rapidly after adsorption on the host surface. Taking these
together, phage GHSM17 showed excellent lytic effect on the V. parahaemolyticus isolate.
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3.3. Stability of Bacteriophages

The primary conditions for further applications of phages were investigated by resis-
tance to the environmental stress assay. Heat stability tests showed that phage GHSM17
was stable below 60 ◦C but completely inactivated at 80 ◦C (Figure 3A). Furthermore, as
shown in Figure 3B, phage GHSM17 maintained high activity from pH 5.0 to pH 11.0, and
the activity dramatically decreased when the pH was lower than 5.0, while it was essen-
tially inactive at pH 3.0. The titer of GHSM17 declined every 10 min under UV irradiation
(Figure 3C), achieving extermination after 80 min of exposure to UV at 30 W. By increasing
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the intensity of the UV light, the death of the phage was accelerated, and the time was
shortened to 70 min. The results demonstrated that the phage could withstand various
stresses in an aquaculture environment.
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3.4. Bacterial Inhibition Assay

The growth-inhibitory effect of phage GHSM17 on host bacteria was assessed using
the bacterial inhibition assay by V. parahaemolyticus OY49 and V. parahaemolyticus SC123.
V. parahaemolyticus was cultured in TSB (3% NaCl) at 37 ◦C and infected at MOIs of 0.01, 0.1,
1, and 10. It can be seen in Figure 4 that V. parahaemolyticus OY49 and SC123 reached a stable
phase after 14 h of culture, respectively. After the addition of the phage, V. parahaemolyticus
OY49 was significantly inhibited in growth within 8 h, while an exponential phase was ob-
served after 8 h (Figure 4A). Meanwhile, after the phage infection, V. parahaemolyticus SC123
regrew after 4 h, but its growth was inhibited within 20 h at all MOI ratios (Figure 4B). The
number of viable cells was measured at 20 h, and it was found that V. parahaemolyticus OY49
regrew rapidly, while V. parahaemolyticus SC123 regrew relatively slowly. In conclusion,
the growth of V. parahaemolyticus OY49 and V. parahaemolyticus SC123 were inhibited by
phage GHSM17 within 8 and 4 h, respectively; then, V. parahaemolyticus OY49 entered the
exponential growth phase, while V. parahaemolyticus SC123 was still suppressive.
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(B) V. parahaemolyticus strain SC123 at multiplicity of infections (MOIs) 0.01, 0.1, 1, and 10 for 20 h.

3.5. Characteristics of Phage Genome

The Illumina NovaSeq sequencing platform was used to obtain the genomic sequence
of GHSM17. After standard sampling and preprocessing procedures, a total of approx-
imately 31,206,584 high-quality reads were obtained with an average length of approxi-
mately 400 bp. After automated assembly and manual optimization to further align the
entire genome with a single contig, the whole genome of GHSM17 was obtained. The
whole genome of phage GHSM17 consisted of linear double-stranded DNA, with a full
length of 43,228 bp and a GC content of 49.42% (Table 2).
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Table 2. Structural characteristics of phage vB_VpaP_GHSM17 genome.

Phage Len. (bp) GC (%) ORFs tRNA Termini Type

vB_VpaP_GHSM17 43,228 49.42 45 0 direct terminal repeat linear

Genome ends were identified as direct terminal repeat (DTR) sequences by assessing
sequence coverage using PhageTerm. The entire genome structure of GHSM17 is shown in
Figure 5A. A total of 45 ORFs were predicted, 23 of which were similar to genes encoding
known functional proteins. All predicted ORFs were divided into six modules (Figure 5B),
including DNA metabolism modules (ORF 7, ORF 22, ORF 25, ORF 27, ORF 35, ORF 36,
ORF 37, and ORF 38), a lytic module (ORF 8), a packaging module (ORF 6), structural
modules (ORF 9, ORF 10, ORF 12, ORF 14, ORF 15, ORF 17, ORF 18, and ORF 19), additional
function modules (ORF 4, ORF 21, ORF 23, and ORF 30), and the rest were assigned to
hypothetical protein modules (Table S1). No tRNA genes were found, implying that the
replication of phage GHSM17 was highly dependent on the host’s translation machinery.
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Figure 5. Genomic characterization of vB_VpaP_GHSM17. (A) Schematic diagram of GHSM17. From
inside to outside, the first to third circles represent the scale, GC Skew, and GC content, respec-
tively; the fourth and fifth circles represent the positions of CDS, tRNA, and rRNA on the genome.
(B) Schematic representation of the genomic organization of GHSM17 compared to all four classified
species in genus Maculvirus, family Autographiviridae.

To determine the overall similarity of phage GHSM17 to the genomes of 51 Vibrio
phages in Genbank (as of March 2022), we calculated the average nucleotide identity (ANI)
values. All 51 Vibrio phages belonged to the family Autographiviridae, and they belonged
to the following seven genuses/subfamilies: Beijerinckvirinae, Colwellvirinae, Cyclitvirus,
Maculvirus, Melnykvirinae, Studiervirinae, and Tawavirus. Their genome sizes ranged from
~36 to 47 kb (Table S3). The clustering results showed that the clustering algorithm based
on euclidean distance divided 51 phages into 7 clusters, corresponding to Beijerinckvirinae,
Colwellvirinae, Cyclitvirus, Maculvirus, Melnykvirinae, Studiervirinae, and Tawavirus, and
the classification results of the algorithm were completely consistent with the known
classification results of the ICTV database (Figure 6). From this reasonable classification
result, GHSM17 was verified to belong to genus Maculvirus taxonomically. From the
heatmap, GHSM17 had the highest homology of 94.82% with vB_VpaP_KF2 (Accession
number: NC_048036.1) isolated from Korea. Meanwhile, the results of the genome identity
between phage GHSM17 and all phages of the genus Maculvirus are shown in Table S2,
which showed that all genome identities (percent identity, P.I.) were less than 95%. All
the above results indicate that the phage GHSM17 was a new species belonging to the
genus Maculvirus.
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Species origin and evolution were described by phylogenetic tree. We found that the
phylogenetic analysis method based on the terminase large subunit can well resolve the pre-
cise location and evolutionary pathway of GHSM17 in the developmental map (Figure 7A).
As shown in the phylogenetic tree, GHSM17 was the closest relative to seven Vibrio phages,
OWB, vB_VpP_FE11, vB_VpaP_KF2, vB_VpaP_KF1, vB_VpP_DE10, vB_VpP_NS8, and
vB_VpaP_MGD1. These eight Vibrio phages clustered on the same clade (bootstrap value:
96), indicating that GHSM17 belonged to the Maculvirus genus of the Autographiviridae
family. Simultaneously, as another most conserved protein in the phage genome, the devel-
opmental tree constructed by the sequence corresponding to RNA polymerase (Figure 7B)
still achieved a very significant result (bootstrap value: 90). It was worth noting that, in
both trees, the Pantoea phage LIMElight, which did not belong to the genus Maculvirus,
was observed to be very close to the aforementioned clusters, even more similar (bootstrap
value: ~72–79) than some phages of the genus Maculvirus. This indicated that, in the
evolution of related proteins in the Pantoea phage, there was a potential homology between
the genus Limelightvirus and Maculvirus.
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4. Discussion

At present, V. parahaemolyticus is the principal pathogen causing food-borne infections
in most countries and coastal areas [4]. Food poisoning caused by V. parahaemolyticus
accounts for 20% to 30% in Japan, and it was the main pathogenic factor of gastroenteritis
caused by seafood consumption in Asia and the United States [46–49]. Phage therapy
was considered a promising strategy due to its safety, non-pollution, and low side-effects
on aquaculture and humans [50]. Phage products were approved by the FDA as direct
food additives and are commercially available [51]. For example, a cocktail of six phages
(ListShield) was approved by the FDA, which was effective against 170 Listeria mono-
cytogenes strains in RTE foods and poultry products [52]. In this study, the lytic phage
vB_VpaP_GHSM17 was isolated from Huangsha sewage in Guangzhou. GHSM17 had
an excellent capability to control and kill bacteria efficiently, with rapid recognition and
adsorbence to V. parahaemolyticus strains.

Phage GHSM17 is a short-tailed phage with an icosahedral head and formed trans-
parent plaques on lawns (Figure 1). Vibrio phage vB_VpP_DE17 [53], with head length
(47 ± 2 nm) and tail length (17 ± 2 nm), was similar in morphology to the phage in this
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study. Both of them belonged to Caudovirales. In addition, other forms of Vibrio phages
were isolated from marine, clam, and shrimp, such as long-tailed phages ϕ-1~4 belonging
to Myoviridae [54], vB_VpaP_MGD2 belonging to Podoviridae [55], and filamentous phage
V5 belonging to Inoviridae [56], illustrating the morphological diversity of Vibrio phages.

Phage GHSM17 is a lytic phage with a relatively broad host range. The host range
of each phage was determined by the total number of hosts it uses. It was reported that
phage VP06 lysed 16 (28.1%) of 57 Vibrio strains, while phage PG07 lysed 47% (14/30) of the
tested strains [57]. Therefore, it cannot be directly compared to the host range of different
phages. GHSM17 exhibited a 20 min incubation period and a 100 min rising phase, with a
lysate size of 316 pfu/infected cell (Figure 2). The one-step growth curve indicated that the
phage could grow rapidly and efficiently after being adsorbed to the host surface, reflecting
the efficient lysis of phage GHSM17 on V. parahaemolyticus isolates. In addition, GHSM17
exhibited broad temperature (20 ◦C–60 ◦C) and pH (5–11) stability, similar to other Vibrio
phages [43], suggesting that the phage retained its activity well at room temperature and a
broad pH range.

Bacterial inhibition experiments showed that GHSM17 inhibited V. parahaemolyticus
within 8 h (Figure 4), making it a potential bio-inhibitor candidate. Although GHSM17
inhibited V. parahaemolyticus within 8 h, the inhibiting effect decreased as the bacteria
growth resumed after 8 h, which might be due to the selective pressure associated with
phage predation leading to the bacterial acquisition of resistance, which was observed in a
previous study [58]. Currently, only the lytic phage is available for phage therapies due to
its inability to generate horizontal gene transfer between bacteria [59]. Further, to exclude
lysogenic and toxic genes, a full sequence analysis is required before the phages are used in
the treatment of bacterial diseases.

To further determine the virological classification, the analysis of the genomic infor-
mation of GHSM17 was performed. Through genome sequencing, the whole genome
of GHSM17 was 43.2 kb in length, encoding 45 protein genes (Figure 5A). The 23 ORFs
were homologous to genes encoding known functional proteins, including DNA metabolic
modules, lytic modules, packaging modules, structural modules, and additional func-
tional modules (Figure 5B). Whole-genome alignment by blastn and ANI indicated that
GHSM17 was a new member of the Maculvirus genus, Autographiviridae family. Phages
containing RNA polymerases were classified within the Autographiviridae family, including
Vibrio phage GHSM17, vB_VpaS_OWB, vB_VpaP_KF1, vB_VpaP_KF2, and VP93 [60–62].
Phylogenetic tree analysis indicated that GHSM17 was closest to the seven Vibrio phages
OWB, vB_VpP_FE11, vB_VpaP_KF2, vB_VpaP_KF1, vB_VpP_DE10, vB_VpP_NS8, and
vB_VpaP_MGD1 (Figure 7). These eight Vibrio phages clustered on the same clade, indicat-
ing that GHSM17 belonged to the Maculvirus genus of the Autographiviridae family.

Bacteriophages are extremely specific to the host, with no inhibitory and therapeutic
effects on bacteria that cannot be lysed. The host range of bacteriophages was determined
by their tail fiber protein [63]. In order to expand the host range of phage therapy, different
phages were mixed as a cocktail to reduce the development of phage resistance in bacteria.
According to previous studies, the cocktail method reduced the selective pressure exerted
by specific phages on their host bacteria [50]. If bacteria resistant to phage attacks emerge,
the cocktail can be further modified or improved by adding different phages or replacing
existing phages with others [64]. Further studies will be necessary to investigate the safety
and efficacy of controlling V. parahaemolyticus infection in aquaculture.

5. Conclusions

V. parahaemolyticus is a pathogenic bacterium commonly found in seawater and
seafood. In this work, a novel phage GHSM17 towards this bacterium was isolated and
characterized and its potential as an alternative for biological control was also evaluated.
GHSM17 had an icosahedral head with a short, non-contractile tail, and it belonged to the
family Autographiviridae. This lytic phage had the characteristics of a relatively wide host
range and high lysis efficiency. Furthermore, the phage was stable over a wide pH and
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temperature range. Here, we provided the preliminary evidence supporting the control
potential of phage GHSM17 against V. parahaemolyticus. Future research will focus on
characterizing the biosafety of phage in against V. parahaemolyticus infection in aquaculture
and determining the efficacy of GHSM17 in vivo.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v14081601/s1, Table S1: ORFs function analysis of phage vB_VpaP_
GHSM17; Table S2: the results of the genome sequence alignment of phage vB_VpaP_GHSM17;
Table S3: all Vibrio phages in family Autographiviridae; Figure S1: lysogenic validation of phage
vB_VpaP_GHSM17.
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