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Objective. To analyze the target and potential mechanism of Scutellaria baicalensis (SB) in the treatment of HCC based on
bioinformatics, so as to provide suggestions for the diagnosis, treatment, and drug development of hepatocellular carcinoma
(HCC). Methods. The regulated gene targets of SB were screened by gene expression pattern clustering and differential analysis of
gene expression data of HepG2 cells treated with SB at 0h, 1h, 3h, 6h, 12h, and 24 h. The module genes related to HCC were
identified by the weighted gene coexpression network analysis (WGCNA). KEGG and GO enrichment were used to analyze the
molecular function and structure of the module, and GSEA was used to evaluate the different functional pathways between normal
people and patients with HCC. Then, the module gene was used for univariate Cox proportional hazard analysis and the least
absolute shrinkage and selection operator (LASSO) Cox regression analysis to build a prognostic model. The protein-protein
interaction network (PPI) was used to analyze the core genes regulated by SB (CGRSB) of the module, and the survival curve
revealed the CGRSB impact on patient survival. The CIBERSORT algorithm combined with correlation analysis to explore the
relationship between CGRSB and immune infiltration. Finally, the single-cell sequencing technique was used to analyze the
distribution of CGRSB at the cellular level. Results. SB could regulate 903 genes, of which 234 were related to the occurrence of
HCC. The prognosis model constructed by these genes has a good effect in evaluating the survival of patients. KEGG and GO
enrichment analysis showed that the regulation of SB on HCC mainly focused on some cell proliferation, apoptosis, and immune-
related functions. GSEA enrichment analysis showed that these functions are related to the occurrence of HCC. A total of 24
CGRSB were obtained after screening, of which 13 were significantly related to survival, and most of them were unfavorable
factors for patient survival. The correlation analysis of gene expression showed that most of CGRSB was significantly correlated
with T cells, macrophages, and other functions. The results of single-cell analysis showed that the distribution of CGRSB in
macrophages was the most. Conclusion. SB has high credibility in the treatment of HCC, such as CDK2, AURKB, RRM2, CENPE,
ESR1, and PRIM2. These targets can be used as potential biomarkers for clinical diagnosis. The research also shows that the p53
signal pathway, MAPK signal pathway, apoptosis pathway, T cell receptor pathway, and macrophage-mediated tumor immunity
play the most important role in the mechanism of SB in treating HCC.
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1. Introduction

Liver cancer is a malignant disease with high incidence in the
population, of which hepatocellular carcinoma (HCC) takes
up about 80% for the most common [1]. According to a
statistical report provided by the International Agency for
Research on Cancer of the World Health Organization in
2020, liver cancer is the sixth most common cancer in the
world, with a mortality rate of the top three of all tumors,
and a 5-year survival rate of less than 10%. It is one of the
tumors with the worst prognosis of all cancers [2, 3]. Al-
though many drugs have been approved for clinical use, due
to the lack of accurate targets in the current treatment of
liver cancer, serious drug side effects, and the gradual drug
resistance produced by tumor cells in the course of treat-
ment, the therapeutic effect has been greatly reduced. It is
difficult to improve the survival of patients [4].

Chinese medicine is a multicomponent therapy based on
holism. As a complementary alternative therapy for all kinds
of cancer, Chinese medicine has a broad-spectrum antitu-
mor effect of regulating immunity and promoting apoptosis
[5]. Compared with other treatments, Chinese medicine has
the advantages of low cost and less adverse reactions in the
treatment of liver cancer. At the same time, the efficacy and
safety of Chinese medicine in the treatment of liver cancer
has been confirmed in many clinical studies [6, 7]. Studies
have shown that Chinese medicine can enhance tumor
immunity, alleviate the primary factors of early HCC, and
improve the survival rate and quality of life in patients with
advanced HCC [8, 9]. Scutellaria baicalensis (SB) is a kind of
Chinese herb, which belongs to the genus Scutellaria of
Labiatae with bitter taste and cold nature. It has the effects of
clearing heat and protecting liver, purging fire and detox-
ification, stopping blood, and calming fetus that has been
widely used as a medicine in China for thousands of years
[10]. With the in-depth study of SB, it has been found that
baicalin, baicalein, wogonoside, and wogonin play an im-
portant role in antitumor, which is mainly related to apo-
ptosis and proliferation. However, its specific mechanism
has not been thoroughly found [11]. Clinical studies have
shown that baicalin combined with percutaneous trans-
catheter arterial chemoembolization (TACE) can signifi-
cantly reduce the adverse reactions and prolong the survival
time of patients with liver cancer compared to the control
group [12]. Therefore, further reveal of the mechanism in SB
treating liver cancer is necessary for clinical drug develop-
ment and use.

Due to the complexity of the role of traditional Chinese
medicine, the traditional research methods are difficult to
reveal its mechanism. Bioinformatics is a new discipline that
uses mathematical tools to mine useful information from
massive biological data. Based on bioinformatics, this study
discussed the mechanism of SB in the treatment of patients
with liver cancer from gene to protein level, which provides a
theoretical basis for follow-up research and development
and experimental verification.
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2. Materials and Methods

2.1. Data Source and Processing. The HCC transcriptional
data were sequenced from the TCGA database [13] (https://
portal.gdc.cancer.gov/), including 50 normal cases and 371
HCC cases. The clinical data were downloaded and extracted
at the same time. The gene expression data (GSE84783) of
HepG2 hepatoma cells treated with SB at Oh, 1h, 3h, 6h,
12h, and 24h were obtained from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/) [14]. The limma
package [15] in R4.0.5 is used to standardize the original
data. The single-cell sequencing dataset (GSE146115) of
patients with HCC was also from the GEO database. The
data were filtered by Seurat package in R4.0.5 to screen the
cells with more than 200 genes, and the genes expressed in
more than 3 cells. The mitochondrial and ribosomal gene
contents were calculated, so that the mitochondrial gene
content was less than 5 and the ribosomal gene content was
less than 50. Then, normalization and dimensionality re-
duction of PCA, tSNE, and UMAP were carried out, and the
batch correction of CCA was judged according to the results
of dimensionality reduction [16]. HCC expression data from
the GEO database were used for external verification
(GSE76427).

2.2. Discovery of Potential Target Genes of SB. By using the
Mfuzz package [17] in R4.0.5, the sequencing data of SB
treating HepG2 were clustered and visualized according to
gene expression patterns at different times. The samples
treated with Oh, 1h, and 3h of SB were divided into the
short-term treatment group and 6h, 12h, and 24h, the
others. The differences were analyzed by limma package and
screened according to P <0.05 and |logFC| > 0.5. Then, the
differential genes were intersected with the clustering results,
and the intersected genes will be the targeted genes of SB.

2.3. Modules of WGCNA Related to Hepatocarcinogenesis in
SB. Using the WGCNA package [18] in R4.0.5, the weighted
gene coexpression network (WGCNA) was constructed
from the expression matrix of intersected genes, and the
Pearson correlation coeflicient between genes was calculated
to determine the best soft threshold to approximate the
scale-free network. After that, the matrix was transformed
into a topological overlap matrix (TOM), and the degree of
dissimilarity between genes was calculated for hierarchical
clustering. Finally, the dynamic shearing method is used to
merge similar modules, and the modules with high corre-
lation and significant differences are selected.

2.4. Enrichment Analysis of HCC Genes Targeted by SB.
The gene ontology database (GO, http://geneontology.org/)
[19] and KEGG database (https://www.kegg.jp/kegg/
pathway.html) [20] were used for enrichment of genes,
setting P <0.05, |logFC|>0.5 as standard, using
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clusterProfiler package in R4.0.5. Three modules were
contained in GO analysis: cell component (CC), molecular
function (MF), and biological process (BP). KEGG was for
pathway enrichment. GSEA4.0.1 software was used to for
gene sets enrichment analysis, setting “c2.cp.kegg.v7.4.-
symbols.gmt” and “h.all.kegg.v7.4.symbols.gmt” as reference
gene sets, with the normal group and HCC group as the
standard of classification. Enrichment analysis was carried
out according to default parameter setting (no collapse), and
the number of random combinations was 1000.

2.5. Construction and Evaluation of the Prognostic Model.
Survival package [21] in R4.0.5 was used for univariate cox
proportional hazard analysis of key genes, filtering out genes
significantly associated with prognosis, calculating hazard
ratio (HR), and drawing forest map. Subsequently, Lasso
regression analysis was performed to determine final genes
related to prognosis and survival [22]. The train sets were
used to construct the risk score model related to the
prognosis of HCC based on the linear combination of gene
expression level and regression coefficient. Among them, the
calculation formula of patient risk score is as follows:

Risk score = Z coefficents x expression levels. (1)

The median risk score was used as threshold to divide
patients into the high-risk group and low-risk group,
drawing Kaplan-Meier survival curve [23]. It was worth
emphasizing that the random grouping process was exe-
cuted by createDataPartition function. The receiver op-
erating characteristic (ROC) curves of age [24], gender,
stage and grade, and risk score in the training set were
plotted by survival ROC package, and the area under the
ROC curve (AUC) [25] was calculated to evaluate pre-
diction accuracy of the model. The test set performed the
same analysis for internal validation queue to verify. AUC
>0.7 indicated that the constructed model had good pre-
diction performance.

2.6. Core Targets Revealed by Protein-Protein Interaction in
the Regulatory Network of SB. Uploaded genes in WGCNA
significant modules to STRING 11.0 [26] database for
constructing the protein-protein interaction (PPI) network
and remove unconnected nodes. CytoNCA [27] plug-in in
Cytoscape 3.8.0 was used to analyze topological properties.
According to betweenness centrality (BC), degree centrality
(DC), and closeness centrality (CC), the CGRSBs were
screened. Molecular docking was used to explore the in-
teraction between CGRSB and baicalin, baicalein, wogo-
noside, and wogonin, the four main components of SB.
Preparation for docking is as follows: get receptor proteins
for docking using the AlphaFold database (https://alphafold.
ebi.ac.uk/) [28] and remove nonstandard amino acids, hy-
drogenate, and charge. Ligand molecules for docking were
obtained through PubChem database (https://pubchem.
ncbi.nlm.nih.gov/) [29], and energy minimization was ex-
ecuted. AutoDock Vina software is used for the final mo-
lecular docking [30].

2.7. Survival Analysis of CGRSBs. Combining CGRSBs gene
expression data and clinical information, using limma,
survival, and survminer package in R4.0.5, the clinical
samples were grouped according to median gene expression,
and survival curve was drawn in batches. P <0.05 was
considered statistically significant.

2.8. Immune Infiltration Revealed the Correlation and
Coexpression between Core Genes and Immune Cells. The
CIBERSORT deconvolution algorithm [31] in R4.0.5 was
used to calculate relative proportion of 22 tumor infiltrating
immune cells. According to the filtering results of P <0.05,
the ggplot2 package in R4.0.5 was used for visualization.
Then, the median immune cell level was used as threshold to
divide data into the high infiltration group and low infil-
tration group. Survival and survminer packages were used
for survival analysis to evaluate the correlation between the
infiltration mode of immune cells in HCC and prognosis. To
be same, P < 0.05 was considered statistically significant.

2.9. Genome-Wide Single-Cell Sequencing Analysis Revealed
Distribution of CGRSB in Cell. The first 11 principal com-
ponents (PC) were selected for visualization, and principal
component analysis (PCA) was used to reduce the dimen-
sion of feature space. The K-nearest neighbor (KNN) clas-
sification algorithm was used to determine the best
resolution according to FindCluster function to cluster the
cells. The unified manifold approximation and projection
(UMAP) method was used to visualize the clustering results
after dimension reduction. The singleR package was used to
preliminarily annotate the clustering results, and the an-
notation results were manually corrected in combination
with the literature. Finally, the distribution of CGRSBs in
each cell group was visualized (details in S1).

3. Results

3.1. Potential Regulatory Targets of SB. Under the process of
SB, genes with different expression patterns were clustered
into 10 groups, in which the expression patterns of 6 and 7
gene sets had obvious patterns with the expression of the
former decreased, while the expression of the latter was
contrary along the prolongation of drug treatment pro-
cessing (Figure 1(a)). Therefore, the two gene sets were
selected for further analysis. A total of 3210 differentially
expressed genes were screened by differential analysis be-
tween the early and late stages of drug treatment
(Figures 1(b) and 1(c)), and a total of 903 drug-adjustable
targets were obtained after intersection with clustering 6 and
7 (Figure 1(d)).

3.2. SB Regulated HCC-Related Targets. WGCNA applied
soft threshold of 4 to construct a scale-free network through
function confirmation, so the § value was greater than 0.9
and connectivity was the minimum value in the platform
period (Figure 2(a)). In the sample clustering heatmap, there
was high differentiation between the normal group and HCC


https://alphafold.ebi.ac.uk/
https://alphafold.ebi.ac.uk/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/

expression changes

expression changes

Cluster 1 Cluster 2 Cluster 3

expression changes
0

expression changes
0

expression changes
0

Cluster 4

expression changes

Journal of Oncology

Cluster 5

expression changes
expression changes
expression changes

expression changes

~ d a4 J
v
1h  3h 6h 12h 24h 0h 1h 3h 6h 12h 24h 0h 1h 3h 6h 12h 24h 0h 1h 3h  6h 12h 24h 0h 1h  3h 6h 12h 24h
time time time time time
Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10

3h  6h 12h 24h
time

CAL
HISTIH2BD
SUPV3L1
HISTIH3]
GATA6

TMSB4X
LOC389607

DC58
LOC100507460

SLC25A41
CYP2B7P1
MVK

POUSF1
CDC42EP2

GRAPL
TNFAIPSL3
RNF122
SLC17A3
LOC200726
HIPK2
Cl19orf68

(b)

FicUre 1: Continued.

-0.5

0h 1h  3h 6h 12h 24h



Journal of Oncology

—log10 (P.Value)

Significant

Down
* Not
Up

DIFF

logFC

(d)

MFUZZ

FiGure 1: (a) Cluster diagram of expression pattern, a total of 10 clusters, abscissa for different time, ordinate for gene expression. (b)
Heatmap of the top 100 differentially expressed genes in drug process data in the normal group and HCC group. (c) Volcano map of
difference analysis in drug process data; red represents upregulated genes, blue represents downregulated genes, and grey represents no
significant difference genes. (d) Venn diagram of intersection between differential genes and gene expression patterns clusters 6 and 7.

group, indicating that there was a certain heterogeneity
between the two groups (Figure 2(c)). Genes were clustered
into four modules. It could be seen that the diagonal color of
TOM matrix heatmap was deeper, indicating that the to-
pology overlap of genes in the module was high and the
clustering results were relatively clear (Figure 2(d)). Finally,
the MEbrown module of the four modules had the highest
correlation with tumor (0.61), and the P value (2e-44) was
the most significant (Figure 2(e)). Therefore, the genes in
MEbrown module were identified as HCC-related targets
regulated by drugs and used for subsequent analysis.

3.3. Evaluation in Function of SB Regulating HCC. GO en-
richment analysis of MEbrown module showed that at the
BP level, the genes in the MEbrown module were mainly

involved in the processes related to cell cycle, mitosis, and
DNA replication; at the CC level, they were mostly related to
spindle and chromosome structure; while at the MF level,
they were mainly related to kinase activity, such as serine/
threonine kinase activity and adenosine phosphokinase
activity (Figure 3(a)). In the results of KEGG enrichment
analysis, the p53 signal pathway, apoptosis pathway, T cell
receptor pathway, and MAPK signal pathway were signifi-
cantly enriched by 16 genes (Figure 3(b)). They appeared
simultaneously in the results of GSEA analysis, which was
statistically significant (Figure 3(c)).

3.4. Construction of the Prognostic Model. A total of 57 genes
significantly related to the prognosis were screened by
univariate COX regression analysis, and most of them were
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FIGURE 2: (a) The horizontal axis of the two graphs is soft threshold, the vertical axis of the left graph is the square of the correlation
coeflicient in the network, and the vertical axis of the right graph represents the mean value of all gene adjacency function in the module. (b)
Gene clustering tree constructed by the one-step method and modules obtained before and after cutting. (c) Heatmap of sample clustering.
(d) Heatmap of module vector gene TOM matrix. (e) Heatmap of correlation between modules and phenotypes.
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FIGURE 3: (a) GO enrichment map; dot size in left and column length in right represents the number of enriched genes; red and blue
represent high and low significance. (b) The left graph is the clustering tree of KEGG-enriched genes and pathways, and the right graph is the
circle map of four pathways in KEGG enrichment. (c) GSEA enrichment analysis results of four pathways.
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adverse factors affecting the prognosis, which mean the HR
was greater than 1 (Figure 4(a)). The Lasso regression model
was constructed based on 15 of these genes (Figures 4(b) and
4(c)), which showed that there was a significant difference in
patient survival among the high and low-risk groups
assessed by the model (Figures 4(f) and 4(g)). In addition,
the AUC under the ROC curve of the training group and the
internal test group was 0.794 and 0.751, respectively, which
were significantly larger than the area under the ROC curve
of other clinical traits, which indicated that the performance
of the prognosis model was good (Figures 5(a) and 5(b)). The
external dataset validates our results (S2).

3.5. Determination of Core Targets in SB Regulation Networks.
The results of PPI showed that HCC-related genes regulated
by SB had a certain network, and P value of network en-
richment was far less than 0.05, with 421 edges in 234 nodes
(Figure 5(a)). After screening the PPI network, 24 CGRSBs
were obtained, which were CDK2, MYBL2, ESR1, AURKB,
JUN, RRM2, KIF11, ASF1B, LMNB1, CCNE2, CENPE,
EXO1, PRIM2, CDK9, DUT, CALMI1, KAT2A, NRAS,
RUVBL1, HNRNPL, ERH, SAFB, PLCGI1, DDX55, and
more importance existed in CDK2, AURKB, RRM2,
CENPE, ESR1, and PRIM2 (Figure 5(b)). Molecular docking
showed that they had high binding possibility, all binding
energy less than —7. Among them, CDK2 has the most stable
combination with baicalin, baicalein, wogonoside, and
wogonin (Figure 5(c)).

3.6. Survival Evaluation and Difference Validation of CGRSBs.
The expression of 24 CGRSBs were significantly different
between normal and HCC patients (Figure 6). Not only that,
they also had a certain influence on survival, among which
13 are statistically significant, namely, ASF1B, AURKB,
CENPE, ESR1, EXO1, HNRNPL, KIF11, LMNBI1, MYBL2,
NRAS, RRM2, and RUVBLI. In addition, the expression of
most genes had a negative effect on patient survival, with the
survival rate of patients in the low expression group being
higher than that of patients in the high expression group.
The external dataset had similar results (S2).

3.7. Immune Infiltration Level of Patients and Its Relationship
with CGRSBs. The results of immune infiltration showed
that naive B cells, plasma cells, T cell CD4 memory resting,
T cell CD4 memory activation, T cell regulation, T cell yd,
natural killer (NK) cell activation, NK cell resting, mono-
cytes, macrophages M2, dendritic cell resting, mast cell
resting, mast cell activation, neutrophil infiltration in HCC,
and normal tissues were statistically significant (Figures 7(a)
and 7(b)). The correlation analysis of CGRSBs showed that
CGRSBs had the same expression pattern and were basically
positively correlated (Figure 7(c)). Studies showed that the
functions of T cells and macrophages were significantly
associated with CGRSB (Figure 7(d)), suggesting that SB
could regulate the function of immune cells by regulating the
expression of core genes, which was consistent with our
previous enrichment results. These results were validated in

external datasets (S2). In addition, survival analysis showed
that the proportion of infiltration of these cells was corre-
lated with survival (Figure 7(e)).

3.8. Expression Patterns of Core Targets in SB at Cellular Level.
A total of 1263 cells were obtained after quality control, and
the first 11 PCs were selected for dimension reduction
according to standard deviation and P value. Then, 697
T cells, 230 hepatocytes, 157 NK cells, 81 macrophages, and
68 B cells (Figure 8(c)) were annotated. There were some
differences in the distribution of CGRSBs in various types of
cells, and the CGRSBs concentrated in macrophages are the
most; they are CENPE (P = 1.05E — 08, avg_log2FC =0.34),
NRAS (P =0.0002, avg log2FC=0.33), HNRBPL
(P =0.0082, avg log2FC=0.25), and SAFB (P = 0.0005,
avg_log2FC =0.44), 4 in total (Figure 8(d)).

4. Discussion

According to the statistics in the Surveillance, Epidemiology,
and End Results (SEER) database [32] of the National
Cancer Institute (NCI), HCC patients are mainly diagnosed
in the early stage, and the proportion of male patients of
different races is higher than that of women (Figures 9(a)
and 9(b)). The data downloaded from TCGA in this study
had the same characteristics, with a total of 175 patients in
stage 1 (49.6%) and more male patients than female patients
(255 males and 122 females). This shows that the data ob-
tained in this study are representative, and the results are
reliable.

In order to better confirm the relationship between SB
and genes in the network, we clustered and extracted genes
with the same trend in time variables, observed the changes
of each clustering result in the overall time dimension to
determine which gene groups have a certain upward and
downward trend before and after drug application, and
speculated that these may be drug-targeted regulatory genes.
On the other hand, the difference analysis can screen out the
up and downregulated genes with statistical significance
more accurately, which reduces the possibility of false
positive results. WGCNA analysis selected the MEbrown
modules related to the occurrence of liver cancer and
constructed the prognosis model. In the comparison of the
effectiveness of the model, the model constructed by the
MEbrown module gene has a stronger ability to predict the
prognosis than other clinical traits and can be used to
evaluate the prognosis of clinical patients.

Previous studies had shown that SB can delay the
progression of HCC by regulating cell cycle, promoting
apoptosis and autophagy, and inhibiting cancer cell me-
tastasis and drug resistance [33-38]. KEGG and GO en-
richment results show that downstream proteins of genes
regulated by SB can participate in the p53 signaling pathway,
apoptosis pathway, T cell receptor pathway, MAPK signaling
pathway, and cell cycle-related processes. This is consistent
with the previous research results, which furtherly confirm
that SB had an important effect on cell proliferation and
apoptosis.
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Studies show that tumor suppressor protein p53 is a key
participant in tumor suppression, which can promote cell
growth arrest, apoptosis and senescence, and block angio-
genesis [39-41]. p53 can also promote antitumor micro-
environment to inhibit tumor occurrence.By releasing
related factors, the hepatic stellate cell expressing p53 made
macrophage polarization tend to M1 state, which can inhibit
the occurrence of tumor, while the factors secreted by p53
deficient stellate cells stimulated macrophage polarization
into the M2 state and enhanced the proliferation of pre-
cancerous cell [42]. Fabregat et al. indicated that down-
regulated physiological proapoptotic molecules and
overactivated antiapoptotic signals were important initiating
factors for HCC [43]. In HCC, cell cycle progression is
largely involved in the distortion disorder of cyclins or their
regulators [44]. Some studies [45, 46] have found that the

MAPK signaling pathway plays a central role in several steps
of cancer development, including the development of cancer
cell migration and apoptosis resistance. The involvement of
T cell receptor (TCR) and costimulatory molecules is an
important switch for T cell activation and plays an important
role in tumor immunity [47, 48]. A study showed that
baicalein and baicalin can stimulate T cell-mediated tumor
immune response by reducing the expression of PD-L1 in
HCC cells [49]. The results of GSEA enrichment analysis
showed the cell cycle process, apoptosis pathway, the JAK-
STAT signal pathway upstream of the MAPK signal path-
way, and the NF-«B pathway responding to TNF signal have
some active differences between the obtained HCC samples
and the normal samples.

Consequently, this study suggests that the therapeutic
effect of SB on HCC is mainly achieved by targeting the p53
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for molecular docking.

signaling pathway to regulate cell cycle progression, enhance
tumor cell apoptosis, and regulate the MAPK signaling
pathway and T cell-mediated tumor immunity, which are
closely related to the occurrence and deterioration of HCC.
It is worth noting that the results show that immune cells
such as T cells play a certain role in SB treating HCC.
However, the current research on HCC mainly focused on
the relationship between SB and cell proliferation and ap-
optosis [33]. In the study of other diseases, it has been found
that SB can regulate the immune function of macrophages
[50-56], T cells [57-59], dendritic cells [58, 60], and mast
cells [61-63], which suggests that the tumor immune
mechanism of SB on HCC remains to be explored.

TCM treatment of diseases often have the overall net-
work. Therefore, we constructed the PPI network for the
obtained MEbrown module and screened out the core target
CGRSB in the SB regulation and HCC network through the
importance of the protein expressed by each gene in the
network. These CGRSBs almost have the same positive
expression pattern and upregulated in HCC tissues, which
are adverse factors for patient survival. Among them, CDK2,
AURKB, RRM2, CENPE, ESR1, and PRIM2 are of the
highest importance. Studies have shown that [64] CDK2 is
necessary for the proliferation of HCC cells and can promote
the transformation of cells from G1 phase to S phase.
AURKB, a member of the aurora kinase family, plays an
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clusters.

important role in regulating cells from G2 to mitotic phase
[65, 66]. The chromosome number of cells transfected with
AURKB is unstable and characterized by invasive tumors
[67]. RRM2 gene knockout can induce autophagy [68] in
HCC cells. Human centromere-associated protein (CENPE)
is one of the spindle checkpoint proteins, which has

antitumor activity and can promote apoptosis of HCC cells
[69]. The expression of PRIM2 is related to the survival rate
of patients [70]. The above results show that these genes play
an important role in the progress of HCC and can be used as
potential biomarkers. The effect of the main components of
SB on CGRSB has been confirmed in 40 studies, and most of
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them have the same regulatory effect on the target com-
ponents. Among them, the role of PLCG1 and DDX55 has
not been mentioned in the literature, which is worthy of
turther exploration (S5). Meanwhile, the docking results
show that their binding is relatively stable, suggesting that
the regulation of SB main components on HCC will involve
core targets such as CDK2, and indirectly improved the
survival of patients.

In order to further analyze the relationship between
CGRSBs and tumor immunity in patients with HCC, by
performing immune infiltration and correlation analysis, we
found the proportion of immune cell infiltration such as
T cells and macrophages was significantly correlated with the
expression of CGRSBs, and these immune infiltration
conditions had a certain impact on the survival of patients.
In addition, single-cell analysis showed that CGRSBs was
mostly concentrated in macrophages at the cellular level.
Tumor-associated macrophages (TAM) are rich in HCC
tissues, which is generally characterized by M2, namely, they
inhibited immune function and promoted the pathogenesis
of HCC [71]. The plasticity of TAM made the repolarization
research from M2 to M1 become a hot topic in tumor
immunotherapy [72]. Studies have shown that baicalin can
reprogram into M1-like macrophages by initiating TAM and
promote the production of proinflammatory cytokines,
which is related to the increase of autophagy and the
transcriptional activation of the RelB/p52 pathway [73].
Therefore, the mechanism of macrophages and T cells in the
treatment of HCC by SB is worthy of further research.

In summary, cluster analysis of gene expression patterns
at different time points was the first to be carried out in this
study. The potential therapeutic targets for HCC were ob-
tained. HCC-related MEbrown gene modules were obtained
by WGCNA analysis. CDK2, AURKB, RRM2, CENPE,
ESRI1, and PRIM2 in its PPI network are the hub genes
regulated by SB, which can be used as potential therapeutic
targets for HCC. The model constructed by MEbrown
module gene screening has a good predictive level in
evaluating the prognosis of patients, which can provide

suggestions for the prognosis of patients and facilitate the
design of personalized treatment plans for patients. In ad-
dition, the results show that SB can not only regulate cell
proliferation and apoptosis but also affect the infiltration of
immune cells such as macrophages and T cells in tumor
microenvironment to achieve the therapeutic effect by
causing some certain effects, including the p53 signaling
pathway, MAPK signaling pathway, apoptosis pathway, and
T cell receptor-mediated tumor immunity, which provides a
theoretical basis and direction for subsequent experimental
research.
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