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Abstract

Palmitoyl acyl transferases (PATs) play a critical role in protein trafficking and function. Huntingtin interacting protein
14 (HIP14) is a PAT that acts on proteins associated with neuronal transmission, suggesting that deficient protein
palmitoylation by HIP14, which occurs in the YAC128 model of Huntington’s disease (HD), might have deleterious
effects on neurobehavioral processing. HIP14 knockout mice show biochemical and neuropathological changes in
the striatum, a forebrain region affected by HD that guides behavioral choice and motor flexibility. Thus, we evaluated
the performance of these mice in two tests of motor ability: nest-building and plus maze turning behavior. Relative to
wild-type controls, HIP14 knockout mice show impaired nest building and decreased turning in the plus maze. When
we recorded the activity of striatal neurons during plus-maze performance, we found faster firing rates and
dysregulated spike bursting in HIP14 knockouts compared to wild-type. There was also less correlated firing between
simultaneously recorded neuronal pairs in the HIP14 knockouts. Overall, our results indicate that HIP14 is critically
involved in behavioral modulation of striatal processing. In the absence of HIP14, striatal neurons become
dysfunctional, leading to impaired motor behavior.
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Introduction

Palmitoyl acyl transferases (PATs) bind palmitic acid, a 16-
carbon lipid, to specific cysteine residues, a post-translational
modification known as palmitoylation [1]. Protein palmitoylation
increases hydrophobicity to facilitate protein insertion into
membranes and plays a role in protein-protein interactions and
the clustering and trafficking of proteins [1,2]. In the brain, the
mobilization and operation of membrane proteins such as
neurotransmitter receptors and transporters depends on
protein palmitoylation [3-5]. Thus, disruption of this mechanism
can have detrimental effects on synaptic function and neuronal
plasticity [5]. Previous studies have associated impaired
palmitoylation with schizophrenia, X-linked mental retardation,
and Huntington’s disease (HD) [4,6-10]. Despite mounting
evidence for the importance of palmitoylation in brain function,
its role in behavior and behavior-related neuronal processing
has not been evaluated.

Huntingtin interacting protein 14 (HIP14) palmitoylates key
synaptic proteins such as glutamic acid decarboxylase (GAD)
GAD-65, the synthesizing enzyme for gamma-aminobutyric
acid (GABA), an inhibitory neurotransmitter, and postsynaptic
density protein (PSD) PSD-95, a scaffold protein associated
with receptor clustering and signaling during synaptic
transmission [11-14]. Palmitoylation is impaired in HIP14
knockout mice, which show neuropathological changes similar
to those described for transgenic models of HD, including
decreased striatal volume and atrophy of medium spiny
neurons (MSNs), the most abundant neuronal type in the
striatum [15]. HD, an autosomal dominant condition caused by
a mutation in the huntingtin (HTT) protein, is characterized by a
progressive loss of motor, cognitive, and emotional control
[16,17]. Interestingly, HD transgenic models develop
behavioral, neuropathological, and biochemical changes
resembling those described in HD patients.
Electrophysiological studies of behaving transgenic mouse
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models of HD indicate that long before the phenotype emerges,
patterns of neuronal communication become dysfunctional
[18-20]. Because mutant HTT impairs HIP14 function, which
prevents the proper HIP14 palmitoylation of several synaptic
proteins [4,10,15], altered electrophysiological properties of
presumed MSNs may be due in part to a failure of HIP14
activity. Here, we evaluated the firing patterns of individual
striatal neurons in HIP14 knockout and wild-type mice while
they explored a plus maze, a behavioral test that provides
information about arm choice patterns to identify motor deficits
such as behavioral inflexibility [21]. We also evaluated nest-
building performance, a behavior related to thermoregulation
and shelter that involves motor coordination and depends on
striatal function [22,23].

Materials and Methods

Animal housing and genotype
We attest that all efforts were made to minimize the number

of animals used and their suffering, and certify that animal use
was approved by the Institutional Animal Care and Use
Committee of Indiana University based on guidelines
established by the National Institutes of Health. HIP14
knockout and wild-type littermates (FVB/N background strain)
were bred from heterozygous pairs obtained from the Hayden
laboratory at University of British Columbia, Vancouver,
Canada. Mice were housed individually and maintained under
controlled temperature and humidity conditions with a 12-h
light/dark cycle and food and water ad libitum. Genotyping was
carried out on DNA extracted from tail tissue placed in 25 μL
cell lysis buffer (50 mM Tris, pH 8.0; 25 mM EDTA; 100 mM
NaCl; 0.5% IGEPAL CA-630; 0.5% Tween 20) and proteinase
K (10 mg/mL; 60 μg/reaction) and incubated at 55°C overnight.
DNA was diluted with 350 μL filter-sterilized water, heated to
100°C for 10 min, centrifuged for 2 min at 17,000 X g, and
stored at 4°C. Polymerase chain reaction (PCR) and agarose
gel electrophoresis were used to determine genotype. The
following primers were used: Hip 14Int5F (5’- CCG TCT TAG
TGC CAT TTG TTC GTC-3’); BetaGeo5’R (5’-GGT GCC GGA
AAC CAG GCA AAG-3’); and Hip14Int5A (5’-CAT GTG TCG
GGA TGG CTG TGA AAA G-3’). Each reaction consisted of
2.0 μL DNA template, 0.4 μL each primer (20 μM stock
solution), 7.2-μL filter-sterilized HPLC water, and 10.0 μL 2x
Biomix Red (Bioline USA, Taunton, MA) for 20 μL total volume.
For PCR cycling, samples were maintained at 94°C for 3 min
followed by 30 cycles at 94°C for 30 s, 62°C for 45 s, and 72°C
for 60 s, with a final elongation at 72°C for 7 min.
Electrophoresis was performed in type I agarose with 0.5
μg/mL ethidium bromide at 5 V/cm for 180 min using a 100-
base pair ladder as DNA standard. Gels were evaluated with
Kodak Image Station 4000R and Kodak Molecular Imaging
software (Carestream Molecular Imaging, New Haven, CT) to
confirm genotype. A single 600 bp band indicated the wild-type
condition, and a single 480 bp band indicated the homozygous
HIP14 knockout genotype.

Nest-building behavior
Nest building behavior was assessed according to the

protocol described by Deacon (2006) [24]. Once weekly, a new
5 cm pressed cotton square Nestlet® (Ancare, Bellmore, NY,
USA) was weighed and placed in the home cage of each
mouse. On each of the three days following the placement of
the Nestlet®, nesting quality was assessed on a scale of 1-5: 1
= material was mostly unused, with >90% intact; 2 = material
was partially used, with 50% to 90% intact; 3= the material was
torn apart and scattered with <50% intact, but there was no
detectable nest site; 4 = most (>90%) of the material was used
to make a discernible but flat nest; and 5 = most (>90%) of the
material was used to build a complete nest having a central
cavity and walls higher than the body height of the mouse. The
mass of the remaining unused Nestlet® was also weighed on
each of the three consecutive days after its placement, and the
percentage of used material was then calculated. HIP14
knockout and wild-type mice nest building behavior was
monitored from 12 to 36 weeks of age. Some mice used for the
nest building study were subjected to electrode surgery
implantation (described below) to evaluate the
electrophysiology properties of striatal neurons.

Electrode implantation surgery
Each electrode bundle consisted of four 50 μm Formvar-

insulated stainless steel wires (California Fine Wire, Grover
Beach, CA) and one 50 μm uninsulated stainless steel ground
wire. Two bundles were friction-fitted to gold pin connectors in
a custom nylon hub (6-mm diameter). The electrode assembly
is small, lightweight, and well tolerated by the mice so that they
could behave freely.

Mice were weighed prior to surgery implantation. At 32
weeks of age, HIP14 knockout mice showed a significant
reduction in body weight (26.7±1.0 g, N=12) compared to wild-
type littermates (32.8 ± 1.3g, N=14; t=3.3, df=24, p = 0.002).
Mice were anesthetized with an IP injection of a mixture of
chloral hydrate and sodium pentobarbital or chloropent
(170mg/kg chloral hydrate, 40mg/kg sodium pentobarbital;
0.4ml/100g body weight) and mounted in a stereotaxic frame.
Following a midline scalp incision, a hole was drilled through
the skull to target the striatum (+ 0.8 mm anterior and ± 2.2 mm
lateral to bregma and 3.2 mm ventral) [25]. Two additional
holes were drilled in the contralateral site for stainless anchor
screws. Electrodes were lowered into the striatum and the
electrode assembly was then permanently attached to the skull
by means of dental acrylic. Mice were allowed 1 week of
postsurgical recovery in individual cages with food and water
ad libitum.

Plus maze
Behavioral performance in the plus maze was evaluated

simultaneously with electrophysiological activity for both HIP14
knockout and wild-type mice. The plus maze was suspended 2
mm above a force-plate actometer, a device that monitors the
position of the mouse and indicates the number of turns into
each arm (right, left, front and back) [26]. Plus-maze turning
behavior is a measure of motor flexibility, or the probability of
turning, determined by the sum of arm choices to the right and
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left arm divided by the total number of choices (left, right, and
front) [21,26]. Once a mouse was connected to our recording
system, it was placed in one arm of the plus maze and allowed
to explore the maze freely for 30 min. Typically, mice explore
the first arm until they reach the center or choice point, where
they have the option to continue straight to explore the
opposite arm or turn to enter either the right or left arm [21,26].

Electrophysiology
Neuronal activity was recorded during the light phase of the

diurnal cycle while the mice freely explored the arms of a plus
maze as described elsewhere [21]. Recording sessions were
conducted once weekly for 30 min each when the mice were
between 32 and 52 weeks of age. The electrode assembly was
connected to a lightweight flexible wire harness equipped with
field-effect transistors that provided unity-gain current
amplification for each of the eight microwires. Neuronal
discharges were acquired by Multichannel Acquisition
Processor (MAP) through a preamplifier (Plexon, Dallas,
Texas). The MAP system allows for direct computer control of
signal amplification, frequency filtering, discrimination, and
storage. To detect spiking activity, signals were band-pass
filtered (154 Hz to 8.8 KHz) and digitized at a rate of 40 KHz.
All spike sorting occurred online before the beginning of the
recording session. Sort Client software (Plexon, Dallas, Texas)
was used in conjunction with oscilloscope tracking to isolate
each unit (matching the analog signal with the digitized
template) and to eliminate the need for post hoc off-line sorting.
Voltage threshold 2.5-fold background noise was established
and a template waveform was created via component analysis.
Autocorrelation and interspike interval (ISI) analyses for each
unit were used to avoid recording the same unit on multiple
channels. Mice participated in multiple recording sessions.
Recorded units were treated as independent entities in each
recording session because electrode drift and subtle changes
in behavioral state cannot guarantee positive detection of the
same neuron over multiple sessions [27].

Spike train analysis
Electrophysiological data for each recording session was

analyzed by means of NeuroExplorer (Nex Technologies,
Littleton, MA). Analysis was performed on single-unit data
collected over the entire 30-minute recording session. Firing
rate was calculated by dividing the spike trains into 1-s bins
(spikes/s). To assess spike-train variability, the coefficient of
variation of interspike intervals (CV ISIs) was calculated by
dividing the standard deviation of all ISIs in a train by the mean
ISI of the train. Bursting activity, which corresponds to periods
of high-frequency firing, was calculated by the Poisson surprise
method [18,28]. This method uses a probability-based
approach to burst detection that compares successive ISIs in a
spike train to a Poisson spike train with the same firing rate. If a
set of consecutive ISIs occurs with a sufficiently low probability,
the event is considered “surprising” and classified as a burst.
Therefore, the surprise value is an index of how intense or
“surprising” the ISIs of a particular burst are compared with
other ISIs in the same train, and provides an estimate of the
statistical significance of each burst in the train [18]. Burst

surprise is not sensitive to fluctuations in average firing rate
and treats each spike as an independent entity. Moreover, this
method is well established for detecting burst activity in
striatum [29-31]. This analysis requires setting a minimum
surprise value, and here we used a value of 5, which estimates
that a burst occurs about 150 times (P=0.007) more frequently
than would be expected in a Poisson spike train with the same
mean firing rate [32]. The following bursting properties were
analyzed for each recorded neuron: burst rate, percent of all
recorded spikes that occurred in bursts, mean burst surprise,
mean burst duration, mean ISI in a burst, mean burst
frequency, and mean number of spikes per burst.

We also compared one-second intervals of neuronal activity
at the choice point with activity obtained at any arm of the plus
maze. For this purpose, a total of 50 random events were
obtained one second before the mice entered the choice point.
For comparison, 50 random events (also one-second duration)
were taken two seconds after the mouse left the center of the
maze. These events were obtained through NeuroExplorer.

To determine the percentage of coincident bursts, defined as
bursts from two simultaneously recorded neurons [33], the
number of burst overlaps were divided by the sum of bursts
between the two units. The mean time (duration) that bursts
were coincident was also calculated. Coincident bursting and
coincidence duration were determined for each pairwise
comparison in each session. To assess correlated activity
between two spike trains, cross-correlation histograms (CCHs)
were constructed for each pairwise comparison [34] for each
30-minute recording session. All CCHs were based on 0.5 ms
bins and a 0.5-s time lag from the zero bin. CCHs were
smoothed using a Gaussian filter with a bin width of 3.
Significant peaks, indicating correlated firing in both the raw
and smoothed CCHs, were indentified using a 99% confidence
interval by assuming the null hypothesis that each spike train is
a Poisson process and that firing between neuronal pairs is
independent [35].

Histology
Electrode placement was verified after the final recording

session was completed in each mouse by deeply anesthetizing
the mouse with chloropent and a running current pulse (30 μA
for 10 s) through each active microwire of each electrode
bundle. Mice were perfused and brains preserved as previously
described [18]. Consecutive series of striatal coronal sections
of 40 μm were obtained by cryostat and mounted in gelatin-
subbed slides. The sections were stained with cresyl violet and
examined under a light microscope to confirm electrode bundle
location, which was identified as a clear blue spot; only
recordings that had electrode placements verified in the
striatum were included in the analysis.

Statistical analysis
Statistic program package GraphPad Prism 6 (GraphPad

Software, San Diego, CA) was used for statistical analysis of
behavioral and electrophysiological data. Corporal body weight
was analyzed by an unpaired t test, which was also used to
analyze plus-maze turning. Nest-building behavior was
analyzed by two-way repeated measures ANOVA (RM
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ANOVA) followed by Bonferroniʼs multiple comparisons test.
Nonparametric statistics were used to analyze the
electrophysiology data because of significant deviation from
normality and a lack of homogeneous variances in spike-train
samples [36]. Thus, we used the Mann-Whitney U test to
compare firing rate, CV ISI, and all bursting parameters. Our
electrophysiology data are presented as box-and-whiskers
plots; the box extends from the 25th to the 75th percentile with
the line at the median (50th percentile), and the whiskers
represent the minimum and maximum values. A chi-square test
with Yates correction was used to determine differences in the
proportions of correlated and non correlated neurons. Two-way
ANOVA was used to compare neuronal activity observed when
the mice were at the choice point versus in the plus-maze arm.
Data is expressed as mean ± SEM; differences were
considered significant when p ≤ 0.05.

Results

Behavior
Nest-building activity.   Nest-building behavior was studied

in wild-type and HIP14 knockout mice from 12 to 36 weeks of
age (N=7 wild-type and N=5 HIP14 knockout). Two
characteristics of nest building were evaluated: the amount of
Nestlet® used and the level of completion of the nest. Figure
1A shows that wild-type mice mostly used the entire Nestlet®
throughout the study. In contrast, HIP14 knockout mice tended
to use less Nestlet® material. A two-way repeated measures
ANOVA revealed a significant difference between genotypes
(F(1, 10)=8.66; p=0.014). However, no interaction between
genotype and age were observed (F (24, 240)=1.39, p=0.10).

Although HIP14 knockouts tended to use less Nestlet®
material at early ages, a significant difference relative to wild-
type is observed from 32 weeks of age (Figure 1A: t= 3.51;
p=0.012). Figure 1B shows nest construction. Whereas wild-
type mice build a relatively complete nest at all ages studied,
HIP14 knockout mice consistently build a poor quality nest: flat
without a discernible nest site. A two-way repeated measures
ANOVA revealed a significant difference on nest construction
between genotypes (F(1,10)=11.7, p=0.006). Note that the HIP14
knockout nest is deficient as early as12 weeks of age, and
statistical differences in nest construction relative to wild-type is
evident through 31 weeks of age (t=3.13; p=0.04).

Plus maze.   Wild-type mice often turn to explore the
perpendicular arms (probability of turning is 0.71±0.01; N=38).
In contrast, HIP14 knockout mice are less likely to turn
(probability of turning is 0.60±0.02, N=46); instead, once they
cross the choice point, they explore the opposite arm, a
common sign of motor inflexibility [21]. Statistical analysis of
probability of turning reveals a significant difference between
wild-type and HIP14 knockout mice (t=3.6, df=82, p=0.0005).

Electrophysiology
Striatal firing pattern.  Histological analysis confirmed that

all microelectrode placements were in the striatum of both
groups of mice, as shown schematically in Figure 2A. Spike
waveforms of wild-type and HIP14 knockout mice are shown in
Figures 2B and C, respectively. All recorded units displayed
waveforms and firing patterns characteristic of MSNs recorded
in vivo, as previously described [18,20].

Striatal neuronal activity was recorded while mice explored
the plus-shaped maze for 30 minutes. We recorded a total of

Figure 1.  Impaired nest building performance in HIP14 knockout mice.  Nest building activity was evaluated from 12 to 36
weeks of age. Two characteristics were studied: (A) the percentage of Nestlet® used and (B) the completion of the nest according
to Deacon score (see material for score description). Data were analyzed through repeated measure two-way ANOVA and
Bonferroniʼs multiple comparisons test. N=7 and N=5 for wild-type and HIP14 knockout, respectively. DATA represented as MEAN
± SEM. * p=0.04.
doi: 10.1371/journal.pone.0084537.g001
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131 units in 14 wild-type and 146 units in 12 HIP14 knockout
mice. Figure 3A shows that the firing rate (spikes/s) of HIP14
knockout neurons is higher than that of wild-type neurons
(p=0.032), although evaluation of the CV ISI indicated no group
difference in the variability of the spike train (Figure 3B;
p=0.77).

Burst firing is disrupted in the HIP14 knockouts. In these
mice, bursts occur more often than in wild-type mice (Figure
4A; p=0.005) and also have a shorter duration (p=0.0001) and
a reduced interval between bursts (p=0.003; Figure 4B and C,
respectively). Other burst properties, such as the percentage of
spikes that participate in a burst and the burst surprise value,
did not differ from wild-type (data not shown). Differences in
firing rate and bursting can be observed in the spike train
rasters sampled from wild-type and HIP14 knockout mice in
Figure 5. Note the increased firing rate, the increased number
of bursts, and the short duration of each burst in HIP14
knockout versus wild-type units.

Neuronal activity was also evaluated at two specific points:
a) one second before the mouse enters the choice point and b)
two seconds after it leaves the choice point and is exploring
any arm of the maze. Firing patterns are summarized in Table
1. Both wild-type and HIP14 knockout striatal neurons show
similar number of spikes and firing rate when mice are in either
the choice point or the arm of the maze. Relative to neuronal
activity observed at the choice point, striatal neurons in wild-
type mice display increased number of bursts, mean burst

duration, and mean interburst interval when they explore the
arm. Similar changes in burst firing are observed in HIP14
knockout striatal neurons (see Table 1).

Interestingly, important differences occur when comparing
neuronal activity between wild-type and HIP14 knockout mice
when they explore either the center or the arm of the maze. At
the choice point, HIP14 knockout neurons show increased
firing rate, increased number of bursts, and a greater number
of spikes per burst relative to the wild-type group. When HIP14
knockout mice explore the arm, there are prominent changes in
bursting properties, but no difference in firing rate frequency
(Table 1).

Correlated firing.  The proportion of correlated pairs of
simultaneously recorded neurons was evaluated for each
recording session, as previously described [18]. Correlated
firing between pairs of units occurs when the CCH confidence
limit exceeds 99% [35]. Sample CCHs for wild-type and HIP14
knockout mice are shown in Figure 6. Note the large proportion
of unit pairs that showed correlated firing (denoted by asterisk)
in wild-type striatum (Figure 6A) compared with the HIP14
knockout (Figure 6B). From a total of 187 neuronal pairs
recorded in wild-type mice, 110 were correlated (58.8 % of total
pairwise of neurons) and 77 (41.1%) were not. In the HIP14
knockout group, 320 total pairs were recorded, and only 99
(30.9%) showed correlated activity while 221 (69%) did not.
Our χ2 analysis indicated that these group differences were
highly significant (Figure 7; χ2 =36.7; df=1, p=0.0001),

Figure 2.  Electrode position and medium spiny neuron (MSN) waveforms in wild-type and HIP14 knockout mice.  A)
Electrode position was verified through histological analysis, the coronal section of mouse brain showing the position of each
electrode bundle in wild-type (white) and HIP14 knockout (gray) mice. Sample of waveforms collected from a putative MSN from the
striatum of a wild-type (B) and HIP14 knockout (C) mouse.
doi: 10.1371/journal.pone.0084537.g002
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suggesting that the HIP14 knockout disrupts behavior-related
correlated firing in striatum.

We also assessed coincident bursting between neuronal
pairs, and although there was no difference in the number of
coincident bursts between HIP14 knockout and wild-type mice
(Figure 8A), we found a significant decrease in the amount of
overlap between bursting pairs in HIP14 knockout mice
(P<0.0001; Figure 8B), consistent with a decrease in burst
duration.

Discussion

We demonstrate here that HIP14 knockout mice show
deficient nest-building behavior and reduced plus-maze turning
relative to wild-type littermates. Moreover, striatal neuronal
processing is impaired in HIP14 knockouts as manifested by
increased firing rate and altered bursting. These mice also
show a decrease in correlated firing between simultaneously
recorded neuronal pairs. Together, these results indicate that
protein palmitoylation by HIP14 is a key component for
behavior-related neuronal processing in the striatum.

For nest building, healthy mice began by shredding the
Nestlet® material, relying on the coordinated activity of
forelimbs and orofacial muscles [23]. HIP14 knockouts leave
increasing amounts of the material unused as they age, a sign
of impaired motor coordination. In fact, tests aimed at motor
coordination (e.g., fixed and accelerating rotarod) show deficits
in HIP14 knockouts [15]. Such deficits also may interfere with
actual construction of the nest, as demonstrated in HIP14
versus wild-type mice. However, poor nest construction could
also reflect deficiencies in synaptic plasticity related to

cognitive processes. This hypothesis is consistent with
evidence that HIP14 palmitoylates PSD-95, a scaffolding
protein associated with the recruitment of N-methyl-D-aspartate
(NMDA) receptors required for spatial memory acquisition
[37,38]. In fact, reduced palmitoylation of PSD-95 occurs in the
brain of HIP14 knockouts [39]. Thus, it is possible that impaired
synaptic plasticity in the striatum might underlie poor nest
construction observed in HIP14 knockout mice.

A change in the dopaminergic system also may contribute to
impaired nest building in HIP14 knockout mice. Szczpka et al.
(2001) reported that dopamine-deficient mice are not able to
construct a nest, and restoration of dopamine synthesis in the
striatum re-established nest-building behavior [22]. Similarly,
this behavior is impaired by systemic injection of the
dopaminergic toxin 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) [40]. Previous research indicated
that HIP14 knockout mice display significant but non-
progressive striatal volume loss and reduced neuronal counts,
particularly affecting the MSNs expressing enkephalin and
dopamine- and cyclic AMP-regulated phosphoprotein
(DARPP32) neurons [15]. Several dopaminergic proteins, such
as the D1 and D2L dopamine receptors and the dopamine
transporter are targets of protein palmitoylation [41-44], and
although the PAT responsible for their palmitoylation has not
been identified, it seems likely that dysfunctional dopaminergic
neurotransmission could play a role in impaired nest building in
HIP14 knockouts.

The low probability of turning into the left or right arm as mice
explore the plus maze has been linked to motor inflexibility,
which is often observed in HD transgenic models [21]. Along
with impaired motor behavior, we identified abnormal patterns

Figure 3.  Increased spike activity in the striatum of wild-type and HIP14 knockout mice.  Neuronal activity was collected while
mice freely explored the plus maze for 30 min. Data are illustrated as box-and-whiskers plots. The box extends from the 25th to the
75th percentile with the line indicating the median (50th percentile). The whiskers represent minimum and maximum values. A) Firing
rate is expressed as the number of spikes per second; B) Coefficient of variation of inter-spike intervals (ISIs). N=131 neurons in
wild-type and N=146 in HIP14 knockout. Data were analyzed by Mann-Whitney U test. p=0.032 for firing rate and p=0.77 for CV ISI.
doi: 10.1371/journal.pone.0084537.g003

Impaired Striatal Processing in HIP14 Knockouts
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of striatal activity in HIP14 knockout mice at the choice point,
where the mouse has to decide if it will continue straight to
explore the opposite arm or turn to either the right or left arm
(see Table 1). At the choice point, HIP14 knockout striatal
neurons show increased firing rate and bursting activity, which
may impact specific behaviors such as turning. Therefore,
aberrant striatal processing observed at the choice point might
relate to the low probability of turning in HIP14 knockout mice,
due to changes in firing rate and bursting activity that might
modify neuronal transmission related to reliability of information
transmission [33,45]. Moreover, simultaneously recorded
neurons in HIP14 knockout mice tend to operate in a non-
correlated way, which may also play a role in motor inflexibility
because synchronous neuronal activity shapes behavioral
output [46-48]. This information suggests that protein
palmitoylation by HIP14 plays a critical role in striatal
processing and appears necessary for normal motor output.

A significant decrease in the number of excitatory synapses
has been reported for the striatum of HIP14 knockout mice,
similar to what has been described for the full-length HD
transgenic model YAC128 [15]. These data suggest that
impaired cortical input, which has been implicated in striatal
dysfunction in HD models [49], may contribute to dysregulated
MSN processing in HIP14 knockout mice. Moreover, MSNs
release GABA and give rise to the direct and indirect striatal
output systems. The direct pathway projects to the internal
segment of globus pallidus (GPi) and the substantia nigra pars
reticulata (SNr), both of which comprise the output structures of
the basal ganglia and project to brainstem and thalamus. The
indirect system also targets the GPi and SNr but through
synaptic connections in the external segment of the globus
pallidus (GPe) and the subthalamic nucleus (STN). The
striatum is the first information processing unit of the basal
ganglia, and together with the thalamus and cerebral cortex,
constitutes the neuronal circuitry that shapes motor control. It is

Figure 4.  Striatal neurons in HIP14 knockouts show impaired bursting activity.  A) Bursting activity as expressed by number
of bursts per minute B) mean burst duration C) Mean interburst interval. Data were analyzed by Mann-Whitney U test. p<0.005 .
doi: 10.1371/journal.pone.0084537.g004

Impaired Striatal Processing in HIP14 Knockouts
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possible that altered MSN activity in HIP14 knockout mice
leads to altered brain activity downstream from the striatum,
which might underlie dysfunctional motor behavior and other
striatum-related behaviors. This is a likely possibility because
HIP14 palmitoylates GAD 65, the enzyme that catalyzes the

synthesis of GABA, the neurotransmitter released by MSNs to
downstream targets [12,13]. Moreover, dysfunctional
neurotransmitter release might also contribute to deficient
neurotransmission in HIP14 knockouts, since HIP14
palmitoylates SNAP-25 and synaptotagmin I, two proteins

Figure 5.  Sample spike train rasters (30 s) from wild-type and HIP14 knockout striatal neurons.  Example of six neurons
simultaneously recorded in the striatum of wild-type (A) and seven units recorded in HIP14 knockout mice (B). Bursts are denoted
by boxes.
doi: 10.1371/journal.pone.0084537.g005

Table 1. Striatal Neuronal activity in wild-type and HIP14 knockout mice at the choice point and arm.

   Wildtype HIP14 KO

Electrophysiological parameters Choice Point Arm Choice Point Arm
Spikes   197.7±29.18 † 225.1±29.7 † 311.0±33.6 323.3±32.4
Mean frequency  4.5±0.6 † 4.8±0.5 6.3±0.6 6.5±0.6

# Burst   1.2±0.1* † 1.9±0.2 † 2.1±0.2 * 2.8±0.2

% Spikes in Burs  9.5±1.4 † 14.0±1.7 † 14.2±1.7 * 19.7±1.9
Mean Burst Duration  0.11±0.01* 0.16±0.01 0.13±0.01 * 0.20±0.01
Mean Spikes in Burst  6.2±1.2 7.7±1.1 7.8±0.9 10.1±0.9
Mean Interburst Interval 104.2±23.8* 205.8±30.7 160.7±24.3 218.3±28.6
Mean Burst Surpise  5.2±0.9 5.6±0.7 5.9±0.7 7.2±0.7
* Statistically different relative to neuronal activity obtained while mice explore the arm p< 0.05.
† relative to neuronal activity observed in HIP14 knockout p< 0.05.
Data expressed as MEAN±SEM. N=126 events in wild-type and N=133 in HIP14 knockout mice.
doi: 10.1371/journal.pone.0084537.t001
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involved in the fusion of presynaptic vesicles containing the
neurotransmitter [12]. Similar findings have been reported for
other HIP14 knockout organisms. For example, recordings of
excitatory junctional potentials in the Drosophila melanogaster

HIP14 mutant show impaired evoked neurotransmitter release
[50,51].

Recent studies indicate that in addition to its PAT activity,
HIP14 mediates Mg2+ transport [52,53] and although the impact

Figure 6.  Representative cross-correlation histograms in wild-type (A) and HIP14 knockout mice (B).  CCHs were generated
by five units each from wild-type and HIP14 knockout mice. Each correlation matrix shows all possible pairs (bin width =0.05 s).
Correlated neurons can be recognized by the presence of peaks that exceed the 99% confidence limit. Note the reduced number of
correlated unit pairs in the HIP14 knockout matrix; each correlated pair is denoted by asterisk.
doi: 10.1371/journal.pone.0084537.g006

Figure 7.  Reduced correlated neuronal activity in the striatum of HIP14 knockout mice.  The graph shows the total number of
correlated and non-correlated neurons in the striatum of wild-type and HIP14 knockout mice. Data were analyzed by Chi-square test
with Yates correction. χ2=36.7, df=1, p=0.0001.
doi: 10.1371/journal.pone.0084537.g007
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of this mechanism on neuronal transmission has yet to be
evaluated, a change in Mg2+ homeostasis may impact striatal
processing. Consider that MSNs receive inputs from cerebral
cortex that release glutamate. The Mg2+ that blocks the
glutamatergic receptor NMDA is released upon membrane
depolarization, allowing full NMDA receptor activation.
Therefore, changes in Mg2+ concentration might affect NMDA
function. Further studies need to be done to understand the
role of HIP14 as a Mg2+ transporter and its relation with
neuronal transmission.

Proper HIP14 activity depends on its interaction with the HTT
protein [54]. Here we show that HIP14 knockouts show signs of
motor inflexibility that often occur in HD transgenic models [21].
At the electrophysiological level, HD transgenic mice show
impaired striatal neuronal processing [18,19,26,55]. For
example, the R6/2 transgenic model that expresses the first
exon of the human huntingtin gene containing ~150 CAG
shows an aggressive HD-like phenotype that coincides with
increased firing rate and decreased bursting activity [18]. Also,
reduced correlated firing activity is observed when R6/2 mice
freely explore an open-field arena [18]. Compared with R6/2
activity, HIP14 knockout neurons show similar changes in firing
rate and proportion of correlated neuronal activity. However,
given that the full-length HD transgenic model YAC128 and

HIP14 show similar neurochemical changes in the striatum and
motor behavioral deficits [15,39] evaluation of striatal neuronal
activity in the full-length HD transgenic model YAC128 during
plus-maze behavior is necessary to compare with the changes
observed in HIP14 knockout mice.

In conclusion, our results indicate that protein palmitoylation
is a key component for proper striatal neuronal processing in
vivo. Deficient palmitoylation by the HIP14 protein might
underlie dysregulated neuronal processing involved with the
motor and cognitive deficits that occur in neurodegenerative
conditions such as HD.
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