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Abstract

In the analysis of high-throughput data from complex samples, cell composition is an important factor that needs to
be accounted for. Except for a limited number of tissues with known pure cell type profiles, a majority of genomics
and epigenetics data relies on the “reference-free deconvolution” methods to estimate cell composition. We develop
a novel computational method to improve reference-free deconvolution, which iteratively searches for cell
type-specific features and performs composition estimation. Simulation studies and applications to six real datasets
including both DNA methylation and gene expression data demonstrate favorable performance of the proposed
method. TOAST is available at https://bioconductor.org/packages/TOAST.
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Background
There have been an increasing number of large-scale clin-
ical studies using high-throughput technologies to pro-
file biological samples collected from human subjects, in
order to identify molecular biomarkers and therapeutic
targets for different diseases [1, 2]. These samples (e.g.,
blood, tumor, or brain tissues) are oftenmixtures of differ-
ent cell types. The importance of accounting for cell com-
position in high-throughput data analyses has been well-
recognized [3–5]. For example, researchers proposed to
include the compositions in regression models as covari-
ates to adjust for the association between proportions and
phenotype [6, 7], or to use them as inputs to solve for cell
type-specific profiles [8]. Adjusting for cell composition
is especially emphasized in epigenome-wide association
studies (EWAS), where ignoring the composition has been
shown to produce biased results [4]. As a result, adjusting
for cell composition has become a standard procedure in
EWAS studies [6, 9–11].
Regardless of the approach and goal, an important first

step in the analysis of high-throughput data from complex
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tissues is to estimate the cell compositions. Experimen-
tal approaches including different cell sorting techniques
[12, 13] are accurate, but too laborious and expensive to
be used in large-scale studies. A number of computational
methods based on signal deconvolution algorithms have
been proposed. These methods mainly fall into two major
categories: reference-based (RB) [14–17] and reference-
free (RF) deconvolution [18–23].
There have been some discussions and comparisons of

RB and RF deconvolution methods. It was reported that
the RB deconvolution in general provides more accurate
and robust estimation than RF deconvolution [17, 24, 25].
However, the application of RB methods are limited
because it requires reference panels—the data from puri-
fied cell types. Currently, such reference panels only exist
for a few tissue types, including blood [14, 26, 27], brain
[6], and pancreas [28]. When reference panels are unavail-
able, for example in under-studied tissues or new high-
throughput data modalities, RF deconvolution is the only
viable solution. Moreover, the reference data are collected
from a small number of samples with limited clinical con-
ditions (mostly healthy subjects) and phenotypes such as
age and gender. It has been reported that reference-based
method fails to provide accurate cell composition esti-
mation when the subjects of mixed tissues and reference
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panels have significant differences in clinical conditions
and phenotypes, for example, when mixed samples are
collected from newborns while the pure tissue samples
are from adults [29]. In this case, reference-free decon-
volution could be a better option [23, 30]. Due to these
reasons, RF deconvolution is widely applied in recent
studies of complex tissues [10, 31, 32]; therefore, new tech-
niques with potential of improving RF deconvolution is
worthy of further investigation.
The high-throughput data from complex samples are

weighted averages of signals from different cell types.
To solve for cell compositions, most RF deconvolution
methods are based on some type of factor analysis. They
usually apply on the data for a subset of “informative”
features, or the ones containing information for the cell
composition. It has been reported that feature selection
plays an important role in the deconvolution and has
great impacts on the accuracy of cell composition esti-
mation [33–35]. Intuitively, the good features are the cell
type-specific ones, i.e., the ones with distinct profiles
in different cell types [36]. However, without reference
panels, these features cannot be easily identified. As a
result, most popular RF methods resort to ad hoc fea-
ture selection procedure. The variability of features has
been commonly used as indicator of how “informative"
a feature is for sample mixing [35, 37–39]. Using the
most variable features in reference-free deconvolution is
also recommended by a number of existing reference-free
deconvolution publications [22, 23, 36]. A review of pub-
lished studies that used RF deconvolution (Table 1) reveals
that 8 out of 10 methods select the most variable sites as
features.

Table 1 Summary of different feature selection techniques used
by reference-free deconvolution methods in published studies

Features selected by RF methods Published studies

Deconf Liebner et al. [40]

RefFreeEWAS Johnson et al. [9]

RefFreeEWAS Johnson et al. [10]

Largest variability RefFreeEWAS Chen et al. [11]

RefFreeEWAS Everson et al. [41]

ReFACTor Kaushal et al. [42]

ReFACTor Rahmani et al. [23]

NMF Feng et al. [32]

External information Deconf Gaujoux et al. [43]

RefFreeEWAS Gasparoni et al. [44]

RefFreeEWAS is EWAS using Reference-Free DNA Methylation Mixture
Deconvolution, from CRAN package RefFreeEWAS. ReFACTor is reference-free
adjustment for cell type composition, from the GLINT package. NMF is non-negative
matrix factorization, available from https://github.com/haoharryfeng/cfDNAmethy.
Deconf is the in-silico deconfounding approach, i.e., alternate least-square NMF
method using heuristic constraints, available from the CellMix package

In this work, we develop a straightforward and effective
algorithm to improve RF deconvolution by better select-
ing features. The key idea is to identify features showing
distinct profiles among different cell types, without know-
ing the pure cell type profiles or mixing proportions a
priori. The feature selection procedure is purely data-
driven, without requiring any additional information. The
algorithm is based on a recently developed statistical
framework, which provides functionality to detect cross-
cell type differential signals for high-throughput data from
mixed samples [45]. The proposed algorithm in this work
iteratively performs feature selection (based on cross cell
type differential analysis) and RF deconvolution and only
needs a small number of iterations (less than 30) to
achieve the best estimation.
We evaluate our method through extensive simulation

and analyses of six real datasets and show that the pro-
posed method can significantly improve the accuracy of
proportion estimation based on existing RF deconvo-
lution techniques. From our method, we observe sub-
stantial improvement in correlation and reduction in
bias in the estimated proportions. In addition, there are
significant improvements by using several other met-
rics including root mean squared error and goodness-
of-fit of the deconvolution model, and precision of the
selected features. Our method is applicable to both gene
expression data and DNA methylation data as demon-
strated in both simulation and real data applications.
The method is implemented in the R package TOAST
(TOols for the Analysis of heterogeneouS Tissues), which
is freely available on Bioconductor (https://bioconductor.
org/packages/TOAST).

Results
Method overview
In this work, we develop an iterative algorithm to improve
feature selection. Figure 1 summarizes the general work-
flow of the proposed method in an intuitive way. Given
the original data matrix Y and a list of initial features, step
(a) is to conduct an RF deconvolution to estimate mix-
ture proportions. With estimated proportions, step (b) is
to identify cell type-specific features using cross-cell type
differential analysis. These features are then used for the
RF deconvolution in step (a) in a new iteration. By iter-
ating steps (a) and (b), the updated feature list can better
capture the cell type distinction and improve RF decon-
volution compared with initial features that are usually
selected by choosing the most variable ones. The detailed
notations and algorithm are described in the “Method and
material” section.
The proposed method TOAST is essentially a feature

selection method and thus could be used with existing
reference-free algorithms to improve RF deconvolution.
In order to evaluate the utility and flexibility of TOAST,
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Fig. 1 A schematic plot to illustrate the proposed method. We assume four cell types (K = 4) and six subjects (N = 6). Our method starts with the
original data matrix Y and a list of initial markers. In step a, mixture proportions are estimated using existing RF deconvolution algorithms. In step b,
cross-cell type differential analysis is performed to identify cell type specific-features as updated feature list. We improve the feature selection and RF
deconvolution through iterating steps (a) and (b)

we conduct extensive simulation and real data analyses
of both gene expression data and DNA methylation data.
We apply TOAST with the most popular reference-free
methods, deconf [19] for gene expression data and Ref-
FreeEWAS [22] and BayesCCE [23] for DNA methylation
data.

Simulation
To comprehensively assess the proposed method, we
design a series of simulation studies where we can man-
ually control the cell mixing procedure and sample sizes.
Simulation data are generated based on real microarray
experiments, one for gene expression and the other one
for DNA methylation. We evaluate the impact of sev-
eral factors on the deconvolution results, including sam-
ple size, initial marker selection, endpoint selection, and
number of cell types in the mixture. The simulation pro-
cedure is described in detail in the “Method and material”
section. In each simulation setting, the results presented
are summarized over 100 Monte Carlo datasets.
To obtain a fair assessment of the proposed method, we

adopt a number of metrics including correlations and root

mean squared bias (RMSBias) of estimated versus true
proportions, overlaps with true cell type-specific features,
goodness of fit, and root mean squared error (RMSE) of
the fitted deconvolution model. These metrics quantify
the deconvolution results from the quality of estimated
proportions, precision of selected features, and goodness
of the overall deconvolution model. These metrics have
been used by several previous studies [17, 23, 27, 46].
The details of calculating these metrics are available in
the “Method and material” section. Using these metrics,
higher correlations with true proportions, more overlaps
with cell type-specific markers, higher goodness of fit,
smaller RMSBias, and RMSE indicate better deconvolu-
tion performance.

Benchmarking TOAST through simulation
We first evaluate the proposed method in gene
expression-based simulation, where deconf is used as
the deconvolution method. Figure 2a shows the correla-
tions of estimated and true proportions at initial point
(number of iterations = 0) and after several iterations of
applying the proposed method, for each of the four cell
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Fig. 2 Results of the simulation study based on gene expression microarray dataset (GSE19830). a The correlations between estimated and true
proportions by number of iterations. Left panel of a: boxplot of correlations for four cell types by number of iterations. Right panel of a: mean
correlations across four cell types by number of iterations. b The number of overlaps with true cell type-specific (CTS) markers before and after
iterations in the top left panel, the root mean squared bias (RMSBias) in the top right panel, the goodness of fit in the bottom left panel, and the root
mean squared error (RMSE) in the bottom right panel. Sample size is 100 for b. p values in each panel are obtained using paired t test. Red font
indicates being statistical significant. Top 1001–2000 most variable features are selected as initial features. Baseline performance is presented in the
“number of iterations = 0” columns in a and “Before” columns in b

types (left panels) and averaged over four cell types (right
panels). From the top row to bottom row, samples sizes
increase from 50, 100 to 200. It is clear from left panels
that overall the correlations between estimated and true
proportions keep increasing during the iteration for all
four cell types. The improvements are more dramatic and
at the same time more stable with larger sample sizes. In
the right panels, we compare the mean correlations over
four cell types from the proposed method (black solid
lines) versus by using the 1000 “real” cell type-specific
features (red dashed lines). Here the real cell type-specific
features are obtained from analyzing the pure cell type
profiles. Note that these cell type-specific features are
not available in real datasets. The results in right panels
of Fig. 2a show that our iterative procedure achieves
similar or even slightly better results than using true cell
type-specific features. This indicates that our method
is able to identify better cell type-specific features than
using reference panels, which are usually of limited sam-
ple size (e.g., only one biological replicate in the current
simulation study) and biological variances. In real world
scenarios when reference panels are often obtained from
a population different from the samples being stud-
ied, there could be biases in the reference. When the
biases in the existing reference panels are large, TOAST
can achieve better performance than using external
reference panel.

Figure 2b shows the change of other metrics before and
after applying the proposed method using 100 simulated
samples. We observe that applying the proposed method
significantly increases the number of overlaps with cell
type-specific features (p < 1e − 16) and goodness of fit
(p < 1e − 16) and significantly decreases RMSBias (p <

1e− 16) and RMSE (p < 1e− 16). Additional file 1: Figure
S8 is a Venn diagram that intuitively presents the overlaps
between initial, TOAST-selected, and cell type-specific
features.
Additional file 1: Figure S1 presents the simulation

results from the study based on DNA methylation data
with RefFreeEWAS, one of the most popular reference-
free deconvolution tools designed for DNA methylation
data. We observe similar trend for the improvements in
correlations with true proportions and in other metrics.
Compared to Fig. 2, one major difference is that the appli-
cation to DNA methylation data requires more iterations
to converge, especially for smaller sample sizes. We sus-
pect that it is related to the larger number of features
in DNA methylation data (54,674 features in the simu-
lated gene expression dataset versus 459,226 features in
the simulated DNA methylation dataset), which leads to
increased difficulty in identifying a good set of cross-
cell type differential features. Nevertheless, these simula-
tions demonstrate that the proposed method effectively
improves the proportion estimation.



Li and Wu Genome Biology          (2019) 20:190 Page 5 of 17

Initial feature selection
As described in the “Background” section, variability
is commonly used to select “informative” features for
reference-free deconvolution. Along the same line, we
consider six different approaches to select initial features,
including the top 1000 most variable features; the top
1001 to 2000, 2001 to 3000, 5001 to 6000, and 10,001
to 11,000 most variable features; and 1000 randomly
selected features. Figure 3 and Additional file 1: Figure S7
demonstrate that regardless of the method being used, the
improvements from without applying TOAST (“Initial”
columns) to after applying TOAST (“TOAST” columns)
are consistent and stable across different sample sizes
(rows) and data types (gene expression in Fig. 3 and DNA
methylation in Additional file 1: Figure S7). Even a ran-
domly selected set of initial features can lead to substantial
improvements after applying TOAST (Additional file 1:

Figure S4). This indicates that TOAST is very robust and
stable to selections of initial features.
Closer comparisons of initial feature selections reveal

that different initial features only have slight impacts on
the converging rate. We compare using the top 1000
most variable features as initial features (Additional file 1:
Figure S2, S3) versus using the second 1000 most variable
features (Fig. 2, Additional file 1: Figure S1). We find the
latter set of features requires fewer iterations to achieve
a satisfactory deconvolution results than the former set.
However, with enough number of iterations (e.g., 30 iter-
ations), the ending correlations with true proportions are
similar for these two sets of initial features.
To further investigate this phenomenon, we first check

the overlaps between selected features and the true cell
type-specific features (identified from pure profiles) in our
simulation study with 100 simulated subjects. Additional

Fig. 3 TOAST is stable with different initial feature selections in gene expression simulation studies. The panels from top to bottom correspond to
sample sizes 50, 100, and 200. The panels from left to right correspond to different methods of selecting initial features: Top 1–1000 variables is to
select the top 1000 most variable features, 1001–2000 is to select the top 1001–2000 most variable features, similarly 2001–3000, 5001–6000,
10001–11000 are to select the top 2001–3000, 5001–6000, 10001–11000 most variable features. Random 1000 is to randomly select 1000 features as
initial features. In each panel, “Initial” and “TOAST” correspond to reference-free deconvolution results without and with TOAST. The presented
results are summarized over 100 Monte Carlo experiments
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file 1: Figure S6a shows an increasing trend for overlaps
during the iteration. This trend is clear for both top 1000
and second 1000 most variable features as initial features,
however, the second 1000 features have higher numbers of
overlaps with cell type-specific features. This explains why
selecting the second 1000 features could converge faster
than the top 1000. With the increasing of iteration num-
bers, the difference between the two lines in Additional
file 1: Figure S6a shrinks, which is consistent with the sim-
ilar ending correlations by using the two sets of initial
features.
In the same direction, we also compare the within-cell

type standard deviations for different sets of features: the
top 1000 most variable features, the second 1000 most
variable features, and the features selected after applying
TOAST, using the pure tissue profiles of the Mouse-
Mix dataset (described later). As shown in Additional
file 1: Figure S6b, the top 1000 most variable features
have greater within-cell type variance than the second
1000most variable features, and the features selected after
applying TOAST have the smallest variation. This indi-
cates that selecting the most variable features might not
be a good idea in general, since the large variance can be
from within-cell type (whereas one wants features with
large between-cell type variation).
Considering the final performance using different initial

features is similar, and the 1001–2000 most variable fea-
tures have better converging rate than the top 1000 most
variable features, we stick with using the 1001–2000 most
variable features as initial features.

Ending point of iterations selection
In addition to initial feature selection, it is also impor-
tant to understand how to choose the ending point of
iterations. Ideally, we want to choose the iteration where
the correlations of estimated and true proportions reach
maximum. However, these correlations cannot be com-
puted without knowing the true proportions. Root mean
squared error (RMSE) of the fitted data from deconvo-
lution methods has been used to choose tuning parame-
ters in deconvolution algorithm [17]. Technically speak-
ing, RMSE is not directly related to correlation with
true proportions. However, RMSE reflects the fitness of
the deconvolution model to the observed data, and bet-
ter fitness usually leads to better proportion estimation.
Figure 4a and c show the scatterplots of RMSE versus cor-
relations with true proportions, from the gene expression
and DNA methylation simulation studies, respectively.
Significant negative correlations can be observed between
RMSE and correlations with true proportions, indicat-
ing that smaller RMSE is related with better proportion
estimation.
Figure 4b and d are boxplots of correlations with true

proportions using different endpoint in the algorithm,

from gene expression and DNA methylation simulations.
Init is the results of using conventional RF methods with-
out applying the proposed method. Iter20, Iter30, and
RMSE are different ways of selecting endpoint. Best is the
best correlation results from the 30 iterations. Note that
Best is not observed in real data analysis but is presented
here to make us aware of the best possible results.
We find no matter which endpoint selection method is

used, the increase of correlations with true proportions
over initial point is dramatic, which demonstrates the sta-
bility of the proposed method. Among the three endpoint
selection methods, choosing by smallest RMSE results in
the highest mean correlations in both gene expression and
DNA methylation simulation studies. This finding also
holds if we use randomly selected initial features (Addi-
tional file 1: Figure S5). Together with the significant
negative correlations observed in Fig. 4a and c, we decide
to choose the ending point of the proposed algorithm by
the smallest RMSE. In our software, users could specify
the total number of iterations, and among them, the iter-
ation with the smallest RMSE would be chosen. Based on
our experience, 30 iterations are sufficient for gene expres-
sion and DNA methylation datasets with four cell types
and moderate or large sample size. The number of itera-
tions should be increased for studies with smaller sample
size (e.g., less than 50) or more cell types (e.g., 6 or more).

Impact of number of cell types in themixture
For RF deconvolution, selecting an appropriate number
of cell types is a difficult question. We provide more dis-
cussion toward the selection of cell type numbers in the
“Discussions” section. Here we use our DNA methylation
simulation study to explore the impact of having 6 cell
types (CD4T, CD8T, Gran, Mono, NK, B cells) versus 4
cell types (CD4T+CD8T+NK, Gran, Mono, B cells) on
RF deconvolution and the proposed method. As expected,
increasing number of cell types leads to lower correla-
tions of estimated proportions versus true proportions
even after applying TOAST (Additional file 1: Figure S9).
We find increasing sample size is crucial for better pro-

portion estimation, especially with more cell types. For
example when there are 6 cell types in the mixture, cor-
relations between true and estimated proportions from
TOAST can be twice as high from 200 samples compared
with 50 samples. Moreover, we find that TOAST provides
greater performance improvement for 4 cell types than
6 cell types when sample size is moderate (50 or 100).
This indicates that when sample size is small, it is bet-
ter to specify a relatively small number of cell types and
apply TOAST. If the experiment requires more cell types
to be studied, increasing sample size is the most effective
approach to improve deconvolution accuracy. In real data,
the heterogeneous samples could contain many different
cell types. However, the mixture is usually dominated by
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Fig. 4 Exploration of endpoint selection. a, b Results from gene expression simulation settings. c, d DNA methylation simulation settings. a, c
Negative correlations between RMSE and the correlations of estimated versus true proportions. b, d The boxplots of correlations with true
proportion using different endpoint selection methods. Init is based on the initial features. Iter20 is based on features after 20 iterations. Iter30 is
based on features after 30 iterations. RMSE is based on results with the smallest RMSE in 30 iterations. Best is the best possible correlations over all
iterations (not obtainable in real data analysis)

just a few cell types, so it is reasonable to just model
the major ones. To what level the cell types should be
combined and modeled is another question worth further
investigations.

Compatibility with other RFmethod
TOAST is a feature selection method and works in con-
junction with existing RF deconvolution methods for cell
composition estimation. For all above results, TOAST
uses deconf for gene expression and RefFreeEWAS for
DNA methylation deconvolution. However, TOAST will
work with other RF deconvolution methods and improve
the results through better feature selection. Here we
choose the state-of-the-art deconvolution method for
DNA methylation data, BayesCCE [23], to demonstrate
the flexibility of the proposed method. In their semi-
nal paper published in 2018, BayesCCE has been shown
to outperform existing deconvolution methods including
ReFACTor [47], NNMF [20], and MeDeCom [48]. Here

we compare performance of BayesCCE with and without
applying TOAST for feature selection.
We find TOAST can significantly improve the decon-

volution performance of BayesCCE (Fig. 5). Compared
to BayesCCE, the proportions estimated by BayesCCE+T
(BayesCCE with TOAST incorporated) achieve signifi-
cantly higher correlation with true proportions (p =
7.9e−07), smaller rootmean squared error (p = 3.4e−07),
and root mean squared bias (p = 5.8e − 4). The improve-
ment pattern holds in settings with different sample sizes
(Additional file 1: Figure S10), and the improvement is
more significant with the increase of sample size.

Real data results
While simulation is useful to evaluate how well TOAST
behaves in an idealized synthetic setting, simulation
cannot inform us how well the deconvolution per-
forms in reality. To fully evaluate TOAST in real world
applications, we obtain six datasets including two gene
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Fig. 5 The proposed method could improve the deconvolution performance of BayesCCE in simulation studies. BayesCCE is the BayesCCE results
without applying TOAST. BayesCCE+T is the BayesCCE algorithm with the proposed method TOAST. Results are based on 100 DNA methylation
simulation datasets with four cell types. Panels from left to right demonstrate correlations of estimated versus true proportions (Corr with true prop),
root mean squared error, and root means squared bias. 200 samples are simulated in each dataset. The p values are obtained from paired t test. Red
fonts indicate significant test results. Boxplots are summarized from 100 Monte Carlo experiments

expression, the Mouse-Mix data [8] and Immune data
[14]), and four DNA methylation datasets, the EPIC
(European Prospective Investigation into Cancer and
Nutrition) data [49], Aging data [50], RA (Rheumatoid
Arthritis) data [51], and Breast data [10].
These datasets are diverse in a number of aspects. For

example, the sample sizes of these datasets range from 12
(Immune data) to 689 (RA data). Both Mouse-Mix and
Immune data have true proportions from experiments,
but the rest of the datasets do not have “true” propor-
tions to provide benchmarks. As a surrogate, we obtain
blood reference panels from [4] with profiles of six cell
types (CD8T, CD4T, NK, Bcell, Mono, Gran) and apply RB
deconvolutionmethod EpiDISH [24] to obtain proportion
estimates. Moreover, the Breast data is collected based on
non-diseased breast tissue and does not have a reference
panel to refer to. This is a perfect example to showcase
the utility of RF deconvolution. To evaluate our method in
the case with no prior information of cell type number of
the tissue, we adopt goodness of fit in addition to correla-
tion with true or RB proportions as metrics, as calculating
goodness of fit does not require known true proportions
(details demonstrated the “Method andmaterial” section).
The goodness of fit has been extensively used in previous
studies to evaluate the deconvolution performance [27].
Even though it can be affected by the selected features to
some degree, our simulation studies show that goodness
of fit is highly and positively correlated with “correla-
tions with true proportions” (Additional file 1: Figure S11).
Thus, it is a reasonable metric to assess the deconvolution

results since better goodness of fit is more likely to be
associated with estimates having higher correlation with
true proportions.

Benchmarking TOAST through six real data experiments
Figure 6 summarizes the correlations and goodness of fit
from all real data applications. These analyses reveal in
most of cases a significant increase of correlations with
true or RB proportions (p = 0.0246) and in all cases
a substantial increase of goodness of fit (p = 0.0139).
We further examine the proportions estimated before and
after applying TOAST for each dataset. Figure 7 and Addi-
tional file 1: Figure S12–S14 shows the estimated versus
true proportions at initial point (“Before”) and after apply-
ing TOAST (“After”). The improvements in proportion
estimation can be dramatic for some datasets. For exam-
ple in the application to the Mouse-Mix data shown in
Fig. 7a, the correlations of estimated and true proportions
for liver increase from 0.857 to 0.923 after applying the
proposed algorithm. Similarly, the correlations increase
from 0.756 to 0.942 for the brain and from 0.862 to 0.964
for the lung.
The improvements can also be observed in DNAmethy-

lation data applications. For example in the EPIC data
experiment, the correlations increase from 0.0923 to 0.506
for B cells and from 0.367 to 0.551 for CD8T. It should be
pointed out that, since we do not have true proportions in
DNA methylation datasets, the results from RB deconvo-
lution could itself be deviated from the truth. This might
explain the correlations of these applications are lower
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Fig. 6 The proposed method improves the deconvolution results in real data applications. Boxplots show the evaluation metrics before and after
updating features. a The correlation of estimated versus true (Mouse-Mix, Immune datasets) or reference-based deconvolution solved proportions
(EPIC, Aging, RA datasets). b The goodness of fit for the deconvolution models before and after applying TOAST. The “Before” columns in both plots
are baseline reference-free results without applying TOAST. Small jitter noises are added to points to provide better visualization

than Fig.7a and Additional file 1: Figure S12, which have
true proportions to benchmark the results. Neverthe-
less, our proposed method still demonstrates significant
improvements in the composition estimation.
The Breast data have neither true proportions nor RB

proportions because of the lack of pure tissue profiles;
thus, we cannot present correlations nor scatterplot of
proportions as with other datasets. We use the RefFreeE-
WAS package to determine the number of cell types, and
six is selected in the analysis (consistent with [10]). The
goodness of fit shows a dramatic increase before and after
applying TOAST (Purple crossed squares in Fig. 6b).
We further demonstrate the compatibility of TOAST

with BayesCCE and evaluate the performance in the three
DNA methylation datasets (EPIC, Aging, and RA) which
collect blood samples, as blood samples have prior knowl-
edge of blood proportions provided in the BayesCCE
paper. Additional file 1: Figure S16 shows that TOAST
improves the performances from both RefFreeEWAS and
BayesCCE.With TOAST, bothmethods have highermean
absolute correlations and lower root mean squared bias.

Comparison of RB and RF estimations in RA data
Finally, we ask whether the estimated proportions are bio-
logically meaningful? Moreover, we are curious between
RB and RF, which provides more meaningful estimation?
Previous studies have shown that when reliable refer-
ence panel is available, RB deconvolution can obtain pro-
portion estimates with high accuracy [14–17]. However,
when the reference panel is obtained from subjects with

different phenotypes such as age, gender, and disease sta-
tus from the population of interests, RF could provide
better proportion estimates than RB method [30].
RA dataset [51] epitomizes such a scenario, as it collects

the whole blood from 354 RA patients and 335 normal
controls with males and females in each group, while the
blood reference panel is obtained from 6 healthy males in
a separate study [26]. It was reported that RA can signif-
icantly change the proportions of some blood cell types
in patients [52, 53], making blood cell proportions from
RA patients differ from healthy subjects. Thus, the blood
cell proportions can potentially be used for predicting
RA. To compare the proportion estimations from differ-
ent methods, we adopt a tenfold cross validation and use
the estimated proportions to predict the disease status of
each patient. Proportions that can better predict disease
are deemed better estimated.
We compare RB method EpiDISH, RF methods Ref-

FreeEWAS, BayesCCE, and the RF methods with TOAST
(RefFreeEWAS+T and BayesCCE+T) and summarize
the results in Fig. 8. The left panel shows the propor-
tions estimated from RB and BayesCCE+T, and the right
panel shows the precision-recall curves for predicting RA
from estimated proportions. Figure 8b shows that all RF
methods achieve better disease prediction performance
than RB method. Most importantly, TOAST can greatly
improve the prediction performance of either RefFreeE-
WAS or BayesEWAS compared to the original meth-
ods, resulting in more biologically meaningful proportion
estimation.
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a

b

Fig. 7 Proportion estimation from the Mouse-Mix dataset (GSE19830, upper panel) and EPIC dataset (GSE51032, lower panel). Left panels of a and
b: estimated proportions versus true proportions without applying TOAST (baseline performance). Right panels of a and b: estimated versus true
proportions after updating feature selection by the proposed algorithm. “True” proportion of the EPIC dataset is obtained using RB deconvolution
method EpiDISH

a b

Fig. 8 Results from the analysis of RA dataset (GSE42861). a The boxplots of estimated proportions of RA patients and controls from reference-based
(RB) deconvolution method and BayesCCE with TOAST (BayesCCE+T). b The precision-recall curve for predicting disease status using estimated
proportions from different methods. RefFreeEWAS and BayesCCE are baseline performance without applying TOAST. Results averaged from tenfold
cross validation are used to generate the curves
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We also investigate the impacts of gender on the pre-
diction performance (Additional file 1: Figure S15). In
both male and female groups, we observe comparable
or improvements after applying TOAST (yellow and red
lines) over without TOAST (green and purple lines).
These results again demonstrate the favorable and robust
performance of the proposed method. On another note,
we observe greater improvements by using TOAST in
females than in males. In male populations, there is mini-
mum advantage in reference-free deconvolution methods
(colored lines) over reference-based method (black line),
while the advantage is more profound in the female group
and overall population.We believe this could be explained
through gender distinctions in RA etiology [54–56] and
sample size differences (197 males and 492 females). Nev-
ertheless, TOAST still provides robust performance in
improving proportion estimations and disease predictions
for both male and female samples.

Discussions
We present TOAST, a feature selection method for
reference-free deconvolution to estimate cellular compo-
sition from high-throughput data of complex samples.
We design an iterative algorithm, based on cross-cell
type differential analysis, that improves feature selec-
tion and subsequently proportion estimation. Different
from other methods that improve deconvolution per-
formance through prior knowledge of markers or cell
type proportions, TOAST is a purely data-driven method
without requiring additional information. This provides
great convenience for analyzing novel complex tissues or
data from new modalities. TOAST can be incorporated
with most, if not all, existing RF methods. The appli-
cations to deconf, RefFreeEWAS, and BayesCCE show-
case this flexibility. If any prior information about cell
type proportions are available, TOAST together with
a RF method that utilizes such information, for exam-
ple, BayesCCE, could further improve the estimation
accuracy.
It is important to note that in general the RF decon-

volution methods require large sample size to work well.
As described in the “Background” section, sample decon-
volution is important for analyzing data from large-scale
clinical studies for human diseases. In such studies, large
sample size is not only reasonable, but also necessary. In
our opinion, the small sample size study is only reasonable
for very homogeneous samples, such as cell lines or model
organisms. To study heterogeneous and complex diseases
in human subject, large sample size is necessary to provide
enough power to identify disease biomarkers and thera-
peutic targets. This is the reason why most serious studies
of human diseases have large sample sizes, for example,
TCGA for cancers [57] and ROS/MAP for neurodegenera-
tive diseases [58]. On another note, for datasets with small

sample sizes, reference-free method is not recommended
and one has to rely on reference-based method.
One universal difficulty of applying RF methods is to

choose an appropriate number of cell types. Toward this
end, we first want to join the discussions in previous
publications and mention the usage of prior knowledge
[23, 48]. For tissues that have been well-studied, such as
blood and brain, prior knowledge about cell types can be
easily obtained [26, 59]. When there is no prior informa-
tion about the number of cell types, many RF methods
provide schemes to select cell type number automatically,
for example, by comparing the estimation error and the
approximation error [48], or by AIC and BIC [20]. In
our application to the Breast dataset, we use the “Est-
DimIC” function provided by the RefFreeEWAS package
and choose six cell types, which is in consistent with pre-
vious analysis [10]. In addition, the selection of cell type
numbers is dependent on sample size. As demonstrated in
the simulation results, estimation accuracy is much lower
for 6 cell types than 4 cell types with moderate sample
sizes, even if the proposed method is applied. As a rec-
ommendation, when sample size is small and RF method
is needed, one should consider to combine similar cell
types and decrease the cell type number specified in RF
deconvolution.
In the evaluations of initial feature selection, we con-

sider six sets of selections, the top 1000, 1001 to 2000,
2001 to 3000, 5001 to 6000, and 10,001 to 11,000 most
variable features and 1000 randomly selected features.
These results provide comprehensive evaluations of the
robustness of TOAST. Regardless of the initial features,
TOAST could improve the feature selection and subse-
quently improve deconvolution accuracy.
The proposed method is primarily focused on microar-

ray data (for gene expression or DNA methylation) in this
work. However, the same principal is applicable for cell
composition estimation in other data types, such as RNA-
seq. Since the RF deconvolution method for RNA-seq
is still underdeveloped, we did not test our functional-
ity to deconvolve RNA-seq. Instead, we have evaluated
our cross-cell type differential analysis method on RNA-
seq data. We have designed a simulation study based on
a real RNA-seq dataset [60] using Bioconductor package
PROPER [61]. Detailed procedures of our RNA-seq sim-
ulation study have been described in Additional file 1:
Section S2. As demonstrated in Additional file 1: Figure
S17, TOAST is able to detect cross-cell type differential
expressed genes (DEGs) with high accuracy (> 70% of
the top ranked 1000 genes are true DEGs), which means
TOAST is able to accurately select desired features from
RNA-seq data.
Our proposed method works in combinations with

existing RF methods, such as deconf for gene expres-
sion data and RefFreeEWAS and BayesCCE for DNA
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methylation data. It is therefore important to follow the
data preparation procedures suggested by those pack-
ages. For example, BayesCCE suggested to incorporate
methylation-altering covariates into the analysis [23],
which has been shown to generate more biologically
meaningful results in our real data applications.
TOAST also demonstrates favorable computationally

performance since the feature selection step is based on
linear regression.We have benchmarked TOAST on a lap-
top computer with 4GB RAM and Intel Core i5 CPU. For a
real gene expression dataset with 54,675 features and 100
samples, it takes less than 2min to complete 30 iterations.
For a real DNA methylation dataset with 459,226 features
and 100 samples, it takes around 8min to complete 30
iterations.
Finally, the proposed methods have some connections

to SVA (Surrogate Variable Analysis) [62] and RUV
(Remove Unwanted Variation) [63, 64]. Both RUV and
SVA are targeting at the removal of “unwanted” variations
or “undesired” confounding factors. For complex tissues,
the cell compositions, which we are interested in, might
be considered as unwanted variations under their con-
text. All methods use some type of factor analysis (SVD
for RUV and SVA, and NMF for TOAST), and the esti-
mated “unwanted variations” (or proportions in our study)
can be used for downstream analysis by including them
as covariates in a linear model. One important distinc-
tion in TOAST is the iterative feature selection procedure,
since SVA and RUV use a fixed set of features. From
this perspective, an extension of SVA, the ISVA (Indepen-
dent Surrogate Variable Analysis) [65], has more similarity
to TOAST for its data-driven feature selection. However,
ISVA identifies informative features through regressing
observed data on each individual surrogate variable (SV).
If the SVs contain proportion information, this approach
can be considered as a special case of TOAST. Moreover,
ISVA only performs one round of feature selection instead
of iterating between feature selection and ICA (indepen-
dent component analysis). This may not be ideal since we
have shown that the iteration greatly improves the results.

Conclusion
We study the problem of feature selection in RF decon-
volution for cellular composition estimation from high-
throughput data of complex samples. We design an itera-
tive algorithm, based on cross-cell type differential anal-
ysis, that improves feature selection and subsequently
proportion estimation. There are two advantages of the
proposed methods. First, our algorithm is flexible enough
to work with existing RF deconvolution methods. The
applications to gene expression data and DNA methyla-
tion data showcase this flexibility. Second, our current
results show that only a few iterations (e.g., 30 itera-
tions) can achieve good improvements, which means it

is computationally efficient. With the wide applications
of RF deconvolution and the increasing needs of analyz-
ing heterogeneous samples, we expect broad applications
of the proposed method to microarray data and to other
omics data as well.

Method andmaterial
Notations andmodel
We first provide a formal definition of the problem that
most RF deconvolution algorithms try to solve. Denote the
data generated from high-throughput experiments by Y,
a P by N matrix with rows representing features (genes,
CpGs, etc.) and columns representing samples. Assume Y
contains mixed signals from K (assumed known) “pure”
cell types. Most deconvolution methods seek the optimal
solutions for matrix factorization Y = WH. Here refer-
ence panelW is a P by K matrix, where the k-th column of
W is the profile of cell type k. H is the mixture proportion
matrix with dimension K by N, each column represents
the mixture proportions of K cell types for each subject.
H has a constraint that every column sums up to one. If
the input is DNA methylation data, another constraint, in
which elements of W are bounded by 0 and 1, is added to
the algorithm.H is the variable of interests in this analysis.
Using this notation, selecting high variable features

is equivalent to selecting rows with highest variance
Var(Yi·) = ∑

j(Yij − Ȳi·)2, which contains contribu-
tions from within-cell type variances (biological variation
among samples for pure cell types), cross-cell type vari-
ances (mean differences among pure cell types), and vari-
ation from the mixing proportions. As discussed in recent
published studies [32, 46], the good features for deconvo-
lution are those with low within-cell type variation and
high cross-cell type variation. If we select features solely
based on variance of raw observations, features with high
within-cell type variances could also be included, which
will have negative impact on the RF deconvolution in later
step.
Now we briefly introduce the method for cross-cell type

differential analysis for data from mixed sample, which is
a special case of our previously proposed method [45].
Assume the observed data for the p-th feature are Yp =
[Yp1,Yp2, · · · ,YpN ]T , p = 1, · · · ,P. Denote the propor-
tions obtained for sample s are θs = (θs1, θs2, · · · , θsK ).
With known proportions, the observed data can be mod-
eled by a linear model:

E(Yp) = Vβp (1)

where

V =

⎡

⎢
⎢
⎢
⎣

θ11 θ12 · · · θ1K
θ21 θ22 · · · θ2K
...

...
...

θN1 θN2 · · · θNK

⎤

⎥
⎥
⎥
⎦
, βp =

⎡

⎢
⎢
⎢
⎣

μp1
μp2
...
μpK

⎤

⎥
⎥
⎥
⎦
. (2)
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Regression coefficient μpk represents the mean level for
the p-th feature in the k-th cell type. Using this model, one
can test the difference between cell type k versus other cell
types in feature p by following hypothesis test:

H0 : μpk − 1
K − 1

∑

i�=k
μpi = 0, k = 1, · · · ,K . (3)

Features with significant test results are cell type-specific
features.
The above linear model can be fit using ordinary least

squares (OLS) method.We find that sometimes extremely
small variance estimation can lead to undesirable results
for some features. To overcome this problem, we impose
a data-driven lower bound (10th quantile values of all
estimated variances) to stabilize the variance estimates.
Similar methods are widely used in popular tools for dif-
ferential expression analysis which has been proven to
have good results [66]. In addition, as all the μpi’s repre-
sent the mean observation levels for each cell type, it may
not be reasonable to have negative estimators. As such,
we provide options to bound negative estimated parame-
ters in the TOAST software. In our experiments, we find
bounding negative estimators hasminimum impact on the
results due to the small proportions of negative estimators
(e.g., less than 2% in RA data analysis).
With this method, we design the following iterative

algorithm to improve feature selection in RF deconvolu-
tion. The algorithm starts with a list of initial features,
denoted as M0, which could be selected using conven-
tional methods, such as choosing the top variable fea-
tures. In the “Initial feature selection” section, we have
provided more discussion about this. Observed data for
these features, denoted as YM0 , are used as inputs for RF
deconvolution to estimate mixture proportions. With the
estimated proportions, we run cross-cell type differen-
tial analysis on the whole observed data Y to detect cell
type-specific features. In each iteration, the top features
from this analysis with the same length as M0 are then
used for another round of RF deconvolution. In our soft-
ware implementation, the function “DEVarSelect()” has an
argument “nMarker” for users to specify the number of
initial features and selected features in each iteration. The
default value is 1000, as used throughout this paper. The
feature selection and RF deconvolution are iterated for a
number of times then stop. In the “Ending point of itera-
tions selection” section, we have more discussions about
choosing endpoint. The algorithm is summarized below.
Note that Algorithm 1 is not constrained to a specific

deconvolution method, so most existing RF methods can
be applied in conjunction with this procedure. For exam-
ple in our simulation study and real data applications, we

Algorithm 1: Improve feature selection in RF decon-
volution
Input: Y (observed data matrix) and K (number of cell
types);
1. Select a list of initial featuresM0;
2. Conduct RF deconvolution on YM0 with K cell
types, where YM0 is a sub-matrix of Y and rows of YM0
are the corresponding rows for features inM0.
InitializeH0 by the estimated proportions; i = 0;
while Stopping criteria is not met do

3. Ĥ =Hi; i = i + 1;
4. Use proportion Ĥ and Y as inputs for cross-cell
type differential analysis;
5. Construct a new feature listMi of the same
length asM0 containing the top cell type-specific
features for all K cell types;
6. Conduct RF deconvolution on YMi where the
rows of YMi are the corresponding rows of Y for
features inMi.Hi = estimated proportions;

end
Output: Hi.

use RF algorithm deconf [19] for gene expressionmicroar-
ray data and RefFreeEWAS [20] and BayesCCE [23] for
DNA methylation microarray data.
The proposed algorithm guarantees the improvements

of proportion estimations from two aspects. The first is
that RF deconvolution performs better with more “cor-
rect” or informative features. The second is that feature
selection can be improved with more accurate estimated
proportions. The first point has been empirically demon-
strated by all our results and by discussions about feature
selection in many RF deconvolution publications [23, 36].
The latter point is a natural result from the measurement
error model [67, 68].

Simulation setting
We design two simulation studies based on real datasets,
one for gene expression data and the other one for DNA
methylation data, so that the simulation studies mimic the
real data scenarios well.
The first step of our simulation studies is to gener-

ate subject-specific reference panels. In the first simula-
tion study, the four cell types in the reference panels for
each individual are simulated from log-normal distribu-
tions, with cell type-specific means and variances esti-
mated based on a real gene expression microarray dataset
obtained from the Gene Expression Omnibus (GEO) with
accession number GSE11058 [14]. This dataset provides
gene expression profiles of four purified immune cell line
tissues and their manually mixed samples. We only use
the data from four purified cell line tissues to estimate the
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cell type-specific mean and variance of each feature. In the
second simulation study, the four cell types in the refer-
ence panels are simulated from normal distributions, with
cell type-specific means and variances estimated from the
GEO dataset GSE35069 [26]. Note that GSE35069 has
DNA methylation measurements for six types of purified
blood cells (CD4T, CD8T, B-cell, Mono, Gran, NK, Gran).
For our simulation study, we combined CD4T, CD8T, and
NK to one pseudo-cell type when estimating the cell type-
specific mean and variance of each feature. In the “Impact
of number of cell types in the mixture” section, we explore
the impacts of using 6 cell types to deconvolve observed
signals versus using 4 cell types.
After subject-specific reference panels are generated,

the simulated pure cell types are manually mixed
using known mixture proportions, which are simu-
lated from a Dirichlet distribution with parameters
(0.968, 4.706, 0.496, 0.347) for four-cell type setting or
(0.89, 4.12, 0.47, 0.33, 0.61, 1.02) for six-cell type setting.
Randomly simulated measurement errors are added to
the mixed signals. For all settings, results are summarized
over 100 Monte Carlo datasets.

Evaluation metrics
We calculated a number of metrics to evaluate the pro-
posed method. First, we compute the correlations and
biases for comparison between estimated and true pro-
portions. Correlations with true proportions is widely
used in almost all studies that involve evaluating the
deconvolution performance [14, 17, 20, 24]. Specifically,
we calculate:

Corr with true prop = diag(r(H, Ĥ)) (4)

where r(·) represents the Pearson correlation and diag(·)
is the diagonal operation extracting the diagonal elements
from the variance-covariance matrix. RMSBias is the root
mean squared bias of the estimated versus the true pro-
portions, i.e.,

RMSBias =
√

∑
(H − Ĥ)2/KN . (5)

Number of overlaps between selected and cell type-
specific markers is to evaluate the agreement between our
selected markers, and the best markers can be chosen
if pure tissue profiles are known. The cell type-specific
markers are selected by the largest log fold changes of the
cell type-specific value against the mean value of other
cell types, iterating over all cell types (details presented in
Additional file 1: Section S1). Higher overlap usually leads
to better proportion estimation.
Goodness-of-fit score is the Pearson correlation of real

observations and fitted values from the RF deconvolution
results, which we find is a metric especially suitable when

true proportions are unknown [27]. Briefly, for estimated
basis matrix Ŵ and cell proportions Ĥ, the reconstructed
observation is Ŷ = ŴĤ. Goodness of fit is defined as:

Goodness of fit = r(vec(Y ), vec(Ŷ )). (6)

vec(·) is the vectorization operation.
RMSE is also a widely used metrics calculated by the

root mean squared error between the estimated and true
proportions, i.e.,

RMSE =
√

∑
(Y − Ŷ)2/PN . (7)

Datasets
All the six datasets used in the study are publically avail-
able and can be downloaded from the Gene Expression
Omnibus (GEO): Mouse-Mix data by Shen-Orr et al.
[8] (accession GSE19830), Immune data by Abbas et al.
[14] (accession GSE11058), EPIC (European Prospective
Investigation into Cancer and Nutrition) data by Riboli
et al. [49] (accession GSE51032), Aging data by Hannum
et al. [50] (accession GSE40279), RA (Rheumatoid Arthri-
tis) data by Liu et al. [51] (accession GSE42861), and
Breast data [10] (accession GSE88883). The purified blood
cell profiles are obtained from the R/Bioconductor pack-
age FlowSorted.Blood.450k and are originally obtained
by Reinius et al. [26]. After the preprocessed data are
downloaded from GEO, RMA are used to normalize gene
expression data and quantile normalization are used to
normalize the DNA methylation data.

Implementation of the reference-free methods
We use the ged function from R package CellMix [69],
downloaded from GitHub (https://github.com/rforge/
cellmix/tree/master/pkg), for the deconf algorithm [19]
implementation. We use the RefFreeCellMix function
from R package RefFreeEWAS [20] which is obtained from
its CRAN page (https://cran.r-project.org/web/packages/
RefFreeEWAS/index.html). The BayesCCE Matlab tool-
box is downloaded from GitHub (https://github.com/
cozygene/BayesCCE). In order to incorporate BayesCCE
with our algorithm, we call the matlab function from R
using the R.matlab package [70].
When implementing BayesCCE, we set parameters k =

6 and d = 10 and select the initial variables with ReFACTor
as recommended in the BayesCCE paper. In addition to
high-throughput data matrix, BayesCCE accepts known
patient phenotype information. We accounted for age and
gender for all analyzed DNA methylation, EPIC, Aging,
and RA data. We also accounted for the smoking status
when analyzing the RA data. For the prior information
of cell proportions used in BayesCCE, we use the true
parameter values in generating simulation proportions
(0.968, 4.706, 0.496, 0.347) for four synthetic cell types,

https://github.com/rforge/cellmix/tree/master/pkg
https://github.com/rforge/cellmix/tree/master/pkg
https://cran.r-project.org/web/packages/RefFreeEWAS/index.html
https://cran.r-project.org/web/packages/RefFreeEWAS/index.html
https://github.com/cozygene/BayesCCE
https://github.com/cozygene/BayesCCE
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when evaluating BayesCCE in simulation study. In real
data analysis with blood samples, we use the parameter
(15.0727, 1.8439, 2.5392, 1.7934, 0.7240, 0.7404) for gran-
ulocytes, monocytes, CD4+, CD8+, B cells, and NK cells
provided by the BayesCCE paper and originally obtained
from the Perioperative Medicine at UCLA’s perioperative
data warehouse (PDW) [71].
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