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Fragile X Syndrome (FXS) is the most frequent cause of inherited intellectual disabilities

and autism spectrum disorders, characterized by cognitive deficits and autistic

behaviors. The silencing of the Fmr1 gene and consequent lack of FMRP protein, is the

major contribution to FXS pathophysiology. FMRP is an RNA binding protein involved

in the maturation and plasticity of synapses and its absence culminates in a range of

morphological, synaptic and behavioral phenotypes. Currently, there are no approved

medications for the treatment of FXS, with the approaches under study being fairly

specific and unsatisfying in human trials. Here we propose peptides/peptidomimetics

as candidates in the pharmacotherapy of FXS; in the last years this class of molecules

has catalyzed the attention of pharmaceutical research, being highly selective and

well-tolerated. Thanks to their ability to target protein-protein interactions (PPIs), they

are already being tested for a wide range of diseases, including cancer, diabetes,

inflammation, Alzheimer’s disease, but this approach has never been applied to FXS.

As FXS is at the forefront of efforts to develop new drugs and approaches, we discuss

opportunities, challenges and potential issues of peptides/peptidomimetics in FXS drug

design and development.
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INTRODUCTION

Fragile X syndrome (FXS) was first described in 1943 and it is now established as the most
common cause of inheritable intellectual disabilities (ID) (1). The molecular cause of FXS is
the extensive repeat expansion of a CGG triplet (200 repeats in the full mutation) in the 5

′

untranslated region (UTR) and consequential hypermethylation of the Fmr1 gene, finally leading
to transcriptional silencing of the fragile X mental retardation protein (FMRP) (2–4). A small
proportion of individuals affected by FXS with different levels of severity show deletion or point
mutation in the Fmr1 gene, that in turn cause the complete loss of FMRP or the production of a
functionally deficient protein (5–7).

This disease affects 1:4,000 males and 1:6,000–8,000 females (8, 9) showing symptoms from
moderate to severe ID (10). The clinical picture of the syndrome is complex; FXS phenotype
displays characteristics in common with autism spectrum disorder (ASD) and attention deficit
hyperactivity disorder (ADHD), with general anxiety, social avoidance and hyperactive behaviors
(11–13). Seizures, recurrent otitis media, strabismus and obesity are also often occurring in patients
affected by FXS. Besides, about 10% of males with FXS display a Prader-Willi like phenotype (14).
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The physical features of FXS comprehend elongated face, broad
forehead, high palate, prominent ears, hyperextensible finger
joints, flat feet and macroorchidism (15). All these behavioral,
phenotypical and clinical characteristics of FXS, are due to
the lack of FMRP, a well-characterized RNA-binding protein,
showing crucial functions mainly related to mRNAs metabolism
(16). Its main role is represented by the translational repression
of numerous key mRNAs in pre- and postsynaptic neurons (17,
18). The FMRP deficiency results in increased protein synthesis,
causing the upregulation of several signaling effectors, such as
excitatory metabotropic glutamate receptor (mGluR) (19, 20), α-
amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)
receptor (21), extracellular signal-related kinase (ERK1/2) (22–
24), matrix metalloproteinase 9 (MMP-9) (25–27), brain-
derived neurotrophic factor (BDNF) (28, 29), and mammalian
target of rapamycin (mTOR) (30, 31). Moreover, functional
impairment in gamma-aminobutyric acid (GABA) receptor and
in the endocannabinoid system have been also documented
in FXS (32–34). In healthy conditions all these machineries
orchestrate neurotransmission and local protein synthesis that
impact synaptic plasticity, learning and memory. Hence, in
FXS pathology, the lack of FMRP leads to increased protein
synthesis with a direct effect on dendritic spine dysgenesis and
cognitive disabilities (9, 17), causing the majority of the FXS
symptoms. Evidences from Fmr1 knockout (KO) mice and from
human post-mortem brain biopsies showed increased amount
and length of dendritic spines, with an immature profile (35–37).

FMRP inhibits translation initiation through its interactions
with eIF4E (Eukaryotic translation Initiation Factor 4E) and
CYFIP1 (Cytoplasmic FMRP Interacting Protein 1) (4, 7, 38–
40). eIF4E is the cap-binding protein known to be activated
by the interaction with the scaffold protein eIF4G (Eukaryotic
translation Initiation Factor 4G) or inhibited by 4E-binding
proteins (4E-BPs), these last being a well-characterized group
of proteins that repress protein synthesis (41, 42). The 4E-
BPs and eIF4G compete for the same binding site on the
eIF4E surface; thus, 4E-BPs inhibit the eIF4E-eIF4G complex
formation by sequestering the unbound eIF4E (43, 44). CYFIP1
belongs to the 4E-BPs family and in neurons, mainly at synapses,
the FMRP-CYFIP1-eIF4E inhibitory complex regulates protein
synthesis during synaptic activity, playing a pivotal role in
the modulation of long-term synaptic plasticity at synapses
(18, 38). Moreover, the CYFIP1 paralog CYFIP2 is itself able
to interact with FMRP and with the FMRP-related proteins
FXR1P/2P, which are cytoplasmatic proteins that share with
FMRP the functional domains deputed to promote homo- and
heteromerization (45, 46).

CURRENT STRATEGIES IN FXS
TREATMENT

Recently, strong effort was dedicated to develop specific FXS
pharmacological treatment that can lead to a possible cure, or at
least alleviate symptoms (47–51). The most promising or studied
treatments for FXS are listed in Table 1. However, although
several therapeutic approaches are being tested on different FXS

animal models (i.e., Fmr1 KO mouse, rat and zebrafish; dFmr
null mutant fly) and patients over the years, an approved and
successful curative therapy for FXS is missing to date, and the
management of the clinical aspects of the syndrome continue to
focus on symptomatic treatment of psychiatric and behavioral
problems, rather than the molecular causes (49, 50, 52).

One of the first approaches that was suggested for FXS
treatment was the Fmr1 gene activity restoration through changes
in the DNA methylation levels and epigenetic modifications (53,
54). Although different compounds were tested and successfully
achieving in vitro reactivation of the Fmr1 gene, such as 5-
azadeoxycytidine (5-azadC) (53), this strategy has not been
tested with in vivo studies due to safety problems related to
low reactivity and high toxicity of these chromatin-modifying
enzymes inhibitors (55). Similarly, another strategy involves
the use of non-coding RNAs to affect DNA methylation state
and histones modification (56). Based on the promising results
obtained in cancer and other diseases (57), several miRNAs and
lncRNAs were identified and tested in different FXS models (58–
60), but their potential use in clinical therapy is still far away
similarly to the modern application of gene therapy methods
to restore the Fmr1 gene (61). Indeed, independent groups
demonstrated the possibility to use viral-vectors or CRISPR-
technology, with encouraging results in preclinical FXS models
(62–67); however, the clinical application in patients is being
debated for several undisclosed questions, as safety and brain-
targeted delivery. Regarding this approach it is also important to
consider that the reactivation of the Fmr1 mRNA with the full
mutation could be toxic, as it was demonstrated by a correlation
detected between the Fmr1 mRNA levels in blood and more
severe autism features (68).

However, since several compounds are used to treat behavioral
and mental problems, such as stimulants or antipsychotics
(69), the majority of pharmacological efforts are employed to
compensate the absence of FMRP. Among targeted treatment
for FXS, several focused on the neurotransmission imbalance
associated with FXS. Particular attention has been dedicated
in testing the group 1 metabotropic glutamate receptors
5 (mGluR5) antagonists, such as AFQ056/Mavoglutarant,
Fenobam, MPEP, STX107, CTEP, RO4917523 (9, 10, 17, 19),
and GABA receptors (GABAa and GABAb) agonists (70). In
Fmr1 KO mice these agents showed improvement of several
FXS features, including better behavioral abilities, restoration
of normal levels of dendritic spines and reduction in protein
synthesis (9, 17, 69). Despite these positive results, the transition
from animal to human model did not give the same encouraging
outcomes, since most of clinical trials failed (71, 72). The high
placebo response and the imprecise design and methodology of
the trials were the major causes of failure.

Most of drugs tested in FXS pharmacotherapy are compounds
already employed or approved for other disorders. Sertraline
is a serotonin reuptake inhibitor approved for treating anxiety
and mental disabilities in young children and tested in
Fmr1-KO mouse model. Sertraline normalizes serotonin and
dopamine levels, with a rescue on synapse and dendritic
formation (73, 74). Even in FXS patients, Sertraline showed
favorable results, as several studies demonstrated improvements
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in language, anxiety and social conduct (75, 76). Cannabidiol
(CBD), a synthetic molecule active on cannabinoid receptors,
has been used for the treatment of neurological disorders,
such as Huntington, Parkinson’s and Alzheimer’s diseases,
but also epilepsy, schizophrenia, autoimmune diseases. All
these pathologies have in common altered endocannabinoid
signaling pathway, condition confirmed to be deregulated also
in FXS animal model (77, 78). Clinical studies indicated
good results (79–81), albeit with tolerated side effects. The
following FDA-approved drugs have been tested in FXS
preclinical and clinical studied: acamprosate (for maintenance
of alcohol abstinence), lovastatin (for hypercholesterolemia),
minocycline (for acne) and metformin (for non-insulin diabetes
mellitus). In particular lovastatin targets the RAS-MAPK-
ERK1/2 pathway (82, 83) while minocycline inhibits the MMP-
9 activity (25). Both compounds showed promising results in
preclinic testing using different model systems, with a reduction
in protein synthesis and beneficial cognitive and behavioral
aspects (25, 82, 84, 85). Nevertheless, these encouraging data
were followed by moderate effects in trials on FXS patients,
also expressing the need for a more in-depth investigation
on the tolerability of these compounds (86–88). To date,
the anti-diabetes drug metformin could be considered as one
of the most promising treatments for FXS (89, 90). It has
different mechanisms of action, depending on dosage and
treatment time, including inhibition of mammalian/mechanistic
target of rapamycin complex 1 (mTORC1) and mitogen-
activated protein kinase/extracellular signal regulated kinase
(MAPK/ERK) pathways, both hyperactivated due to the lack of
FMRP in FXS humans and mice (91, 92). As a consequence,
metformin also affects the proteins downstream to these
cascades, reducing specifically the eIF4E phosphorylation and
the translation of MMP-9 (93), which in the pathological
condition is the cause for the degradation of proteins essential
for synaptic maturation and activity (27). Preclinical studies
were performed on Fmr1-KO flies and mice models of
FXS, showing a rescue of dendritic spine morphology, long-
term depression (LTD) of synapses, but also improvement in
cognitive, intellectual and social deficits (90, 94). These findings
paved the way for treatments in humans, where clinical trials
starting in 2018 have been conducted with promising benefits
both in terms of behavior and safety of treatment (93, 95–
97). Currently 3 trials aimed to evaluate safety, tolerability,
and efficacy of metformin in FXS patients are ongoing
(ClinicalTrials.gov Identifier: NCT04141163, NCT03862950,
NCT03479476). Another interesting therapeutic target in FXS is
represented by phosphodiesterases (PDEs), a family of enzymes
that regulate the cellular levels of cAMP and cGMP. Among
PDEs, PDE1A, PDE2A, and PDE10A have been identified as
mRNA targets of FMRP (98). Accordingly, decreased cAMP
levels were observed in fly and mouse FXS models and a
deregulation of cAMP and cGMP was also identified as a
molecular hallmark in FXS patients (99, 100). Hence, several
inhibitors have been tested, starting from Drosophila model of
fragile X, passing through Fmr1-KOmice, finally to human trials.
Interestingly, inhibiting PDE4 (101, 102), PDE2A (103, 104),
PDE4D (105, 106), or synergistically PDE2 and PDE4 (107)

demonstrated beneficial effects in terms of rescue of social and
behavioral impairments and in dendritic spines morphology in
fly andmouse models. Cognitive enhancements were pointed out
from FXS trials (105, 106), suggesting that PDEs are candidate
targets to develop FXS therapeutic strategy.

PEPTIDES/PEPTIDOMIMETICS: A
FEASIBLE STRATEGY FOR FXS
TREATMENT

All the strategies mentioned so far target different pathways,
whose uncontrolled activity seems to be crucial in the
pathology of FXS, but also in other neurological disorders
and types of cancer (108, 109), leading to pleiotropic effects.
Accordingly, the lack of specificity and selectivity, together with
bioavailability and safety problems, could be the main drawbacks
of these approaches.

In this scenario, a novel and feasible option in
FXS pharmacotherapy could be the use of peptides
or peptidomimetics.

Since the last 30 years, and especially in the past decade,
severe pathologies are being treated with peptides (110) and
this class of molecules have attracted the attention of either
academia researchers or pharmaceutical industries. Indeed,
the global Peptide Therapeutics market reached USD 25.35
billion in 2018 and is expected to achieve USD 50.60 billion
by the year 2026. To date, 400–600 peptides are in the
preclinical phase of development and more than 60 peptides
are FDA-approved (111). The main fields in which therapeutic
peptides are currently in development are oncology, metabolic
diseases and inflammation (110). Peptides represent an attractive
pharmaceutical source due to their excellent properties, namely
high selectivity, safety and tolerability (112). However, this kind
of approach has never been applied to FXS to restore the
imbalance in protein synthesis. Very recently novel structural
information opened new possibilities for developing inhibitors
acting on the mRNAs translation initiation complex with high
specificity and efficiency.

Among these compounds, the 4EGI-1 is one of the most
promising inhibitors of the translation activation complex and
it has been already tested in different cancer models (113–
116). This molecule was also proved to reduce the eIF4E-eIF4G
interaction in a FXS mouse model (117). However, the lack
of drug-like characteristics, such as poor target specificity and
selectivity, high toxicity, several off-targets, severe side effects,
poor metabolic stability, poor membrane permeability and rapid
proteolysis, make this molecule fairly unsuitable candidates for
therapeutic applications.

Furthermore, the putative molecules effective in disrupting
the FMRP-CYFIP1-eIF4E or eIF4E-eIF4G complexes formation,
are required to target protein-protein interaction (PPI) interfaces,
that are large, flat and hydrophobic binding surfaces considered
as “undruggable” by small compounds (118–120). One solution
could be represented by antibodies, more powerful in targeting
PPI, but anyway scarcely able to cross the cell membrane to
perform their specific function. In light of this, peptides are

Frontiers in Psychiatry | www.frontiersin.org 3 November 2021 | Volume 12 | Article 754485

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Romagnoli and Di Marino Peptides for FXS Treatment

TABLE 1 | Treatments for Fragile X syndrome.

Approach Name Agent class Mechanism of action

Fmr1 gene activity

restoration

5-azadeoxycytidine (5-azadC) Chromatin-modifying enzymes inhibitor Affects DNA methylation levels and

epigenetic modifications

Non-coding RNA (miRNAs and lncRNAs) Affect DNA methylation state and histones

modification

Viral-vectors or CRISPR-technology Gene editing or gene replacement

Targeted therapy AFQ056/Mavoglutarant, Fenobam, MPEP,

STX107, CTEP, RO4917523

Group 1 metabotropic glutamate

receptors 5 (mGluR5) antagonists

Block mGluRI signaling

OV101/gaboxadol, Ganaxolone GABAa and GABAb agonists Modulate GABA receptors

Sertraline Serotonin reuptake inhibitor Normalizes serotonin and dopamine

levels, stimulation of BDNF

Cannabidiol Cannabinoid receptors inhibitor Regulates endocannabinoid signaling

pathway

Lovastatin RAS signaling inhibitor Regulates RAS-MAPK-ERK1/2 pathway

Minocycline Semi-synthetic tetracycline derivative Regulates MMP-9 activity

Metformin Derivative of guanidine Normalizes mTOR and MAPK/ERK

pathways, phosphorylates eIF4E, and

lowers expression of MMP9

Bay 60–7550, BNP14770, Roflumilast PDE4, PDE2A, PDE4D inhibitors Normalize cAMP and cGMP signaling

Symptomatic treatment Risperidone and aripiprazole Antipsychotics Impacts dopaminergic and serotonergic

neurotransmission to treat irritability

now considered as the most appropriate candidates to regulate
disease-associated PPIs. However, peptides have intrinsic weak
points, and they did not provide encouraging results in vivo,
likely due to their physical, chemical and structural instability
and low membrane permeability (112, 119, 121). To overcome
these possible limitations several strategies have been developed,
such as amino acids substitution with residues mimicry,
termini protection or introduction of chemical modifications
aimed at stabilizing their active conformation and increasing
cellular permeability (119, 121). These advances in the peptides
technology results in the development of an alternative class of
compounds called peptidomimetics, that is recently emerging as
a class of new potential therapeutic molecules able to target PPIs
in the treatment of different pathologies (112). Peptidomimetics
are organic molecules with physico-chemical features and
structural characteristics comparable with classical oligopeptides,
but guarantee enhanced protection against peptidases, improved
systemic delivery and cellular uptake, high target specificity and
poor immune response (122), and for these reasons their use
is under investigation for the treatment of cancer, ischemia,
Alzheimer’s disease (123–127) and other neurodegenerative
disorders (128–131).

On the contrary, the use of peptides/peptidomimetics has
never been investigated in the FXS context, but it could represent
a viable solution as it might result in a compensation of FMRP
absence. Indeed, restoring the FMRP-CYFIP1 deficiency via a
small chimeric peptide acting on the dysregulation of protein
synthesis could be central for the new FXS pharmacological
therapy development.

Although the 3D structure of FMRP-CYFIP1 or FMRP with
other interacting proteins are still not available, there is a growing
number of structures, from different organisms, of complexes

belonging to the translation initiation pathway, in particular
eIF4G/eIF4E and eIF4E/4E-BPs, and of their regulatory proteins
(43, 44, 132, 133). The plethora of structural information,
together with the increasing power of computational facilities
and refinement of binding prediction tools (110, 112, 119), open
the possibility to design peptides/peptidomimetics able to target
the translation complexes, with the aim to decrease protein
synthesis of specific neuronal mRNAs and rescuing a healthy
phenotype in individuals affected by FXS.

For instance, peptides could target and affect the assembly of
the eukaryotic Initiation Factor 4F (eIF4F) complex (composed
by eIF4E, the DEAD-box helicase eIF4A and the scaffold protein
eIF4G) (41, 42), and the formation of 43S pre-initiation complex
(43S PIC), composed by small ribosomal subunit 40S and the
eukaryotic translation initiation factors (eIFs): eIF1, eIF1A, eIF3,
eIF5 (41, 42) (Figure 1). In addition to those already mentioned,
the PPIs that could be targeted and disrupted by peptides, could
be for instance, eIF4E/cap, eIF4A/eIF4G or eIF4G/eIF3 dimers
(Figure 1). Alternatively, peptides/peptidomimetics could be
designed to target the eIF4E-upstream regulators, as the PI3K–
mTOR pathway, likely inhibiting the interactions of mTORC1
with Raptor and other partners, affecting the activity of
the downstream S6K or 4E-BP proteins (Figure 1) (134).
Furthermore, not only protein synthesis but also actin dynamic
imbalance concurs to the pathophysiology of FXS, leading to
defects in dendritic spines morphology (135, 136). Although
much information is still lacking, there are indications that Rac1–
PAK pathway and FMRP are linked (137, 138). Active Rac1,
the Rho-family of small GTPases, activates p21-activated kinases
(PAKs) which in turn phosphorylates Cofilin, an actin-binding
protein that regulates actin turnover. Rac1 also activates the
Wave Regulatory Complex (WRC, composed by five proteins:
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FIGURE 1 | Proposed examples of protein-protein interactions that could be targeted by peptides/peptidomimetics in Fragile X Syndrome. Left panel: In wild-type

neurons FMRP plays a key role in down-regulating the translation of FMRP targets, by forming a complex with CYFIP1 and the eukaryotic initiation factor 4E (eIF4E).

Furthermore, CYFIP1 can bind and inhibit the WAVE regulatory complex, thereby regulating actin remodeling. Right panel: In FXS neurons the absence of FMRP leads

to increased local protein synthesis in neurons, due to the lack of the formation CYFIP1-FMRP-eIF4E complex, that represses the translation initiation. Consequently, a

bigger amount of eIF4E is bound to eIF4G, while CYFIP1 interacts mostly with WRC-Rac1-GTP, resulting in higher levels of protein synthesis an altered actin

remodeling at dendritic spines. Examples of macromolecular complexes that could be disrupted by peptides/peptidomimetics with the aim to restore the FMRP

activity are highlighted by a red box.

CYFIP1, NCKAP1, Abi2, HSPC300, and WAVE1) by directly
binding CYFIP1 and leading to Arp2/3 complex-mediated actin
polymerization (139–141). The release of the X-ray structure
of WRC (140), together with data coming from computational
analyses that highlighted structural-dynamical features of
CYFIP1 (39, 40), may provide useful details to be exploited
for the CYFIP1-based peptidomimetics design (Figure 1). To
offer some realistic examples, using different regions of CYFIP1
as templates, CYFIP1-derived peptidomimetics could interfere
with the eIF4F complex formation by sequestering eIF4E from
the binding with eIF4G. Similarly, impeding the CYFIP1/Rac1
interaction or the CYFIP1/NCKAP1 dimer formation, could
have a dual beneficial effect in concomitantly restoring normal
levels of protein synthesis and actin dynamics, both processes
being dysregulated in FXS. Aside from CYFIP1, other 4E-BPs
structures in complex with eIF4E are available and represent an
attractive template for peptides design. For example, 4E-BP1,
4E-BP2, and Angel1-based peptides were developed and tested
in different cancer cell lines (142–144). Furthermore, Lama et
al. developed a set of peptides with chemical modifications that
increase the pharmacological properties and binding affinity to

eIF4E, providing a strong starting point for future oncological
preclinical studies (145–147).

On the basis of the knowledge acquired in cancer research,
we assume that the peptides/peptidomimetics approach could
also be applied to other diseases, in particular in the
FXS pharmacotherapeutic.

DISCUSSION

In the last decade many efforts were employed in research and
development of new pharmacological treatments of FXS and
simultaneously great advances were made in developing peptides
therapeutics against several diseases. With this perspective we
speculate that these two roads might cross, starting a new era
of the pharmacotherapeutic approach for patients with FXS.
To date, chemical compounds that inhibit several pathways
deregulated in FXS represent the most studied approaches for
FXS management. However, the cause of FXS is a genetic defect
(the Fmr1 silencing) and to effectively correct the absence of
FMRP protein is still a challenge. Moreover, although several
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available treatments are effective in animal models, many
clinical trials testified lack of success of these approaches. The
emerging peptides technology, in combination with increasingly
advanced computational approaches and number of proteins
structures deposited in databases, provide an alternative and
powerful method to develop a more specific and safe molecules
targeting those protein complexes that could be considered as
the major players in the FXS pathology. The main point of
strength of the use of peptides include selectivity, tolerability,
predictable metabolism, ability to target PPIs and lower synthesis
complexity that in turn leads to lower production costs compared
to others pharmaceutical molecules (119, 121). However, as
mentioned above, peptides in general, and thus their possible
application against FXS, have several weaknesses that is necessary
to discuss. Poor in vivo stability, membrane impermeability,
and toxicity are widely accounted as major drawbacks in
peptides technology. Nevertheless, several of these aspects
have been successfully sorted out over recent years through
the new technologies available in peptides design field: new
bioinformatics tools in combination with other approaches
such as virtual screening, structure-based drug design, high
throughput screening (HTS) and chemical strategies, provide a
comprehensive pharmacological description of putative peptides,
improving their chemical and physical features (119, 121, 148).
Moreover, the treatment of neurodevelopmental disorders, as
FXS, require the delivery of molecules to the brain, accounting
for the crossing of the blood–brain barrier (BBB), that could
limit the access of peptides to the central nervous system (CNS).
In this respect, a strategy to overcome these issues could be
the exploration of other drugs administration methods, e.g., the
non-invasive intranasal delivery (129, 131). The direct access to
CNS allows to overcome limitations linked to the degradation,
bioavailability problems and also to possible systemic side effects

onset that occur if peptides are present in blood vessels after
intravenous administration. Additionally, several strategies have
been developed to specifically deliver peptides to target regions of
the CNS, such as cyclodextrins, PEI or others (129), resulting in a
lower dosage of peptides, also decreasing the toxicity issues which
have been demonstrated toward eukaryotic cells (149, 150).

Furthermore, peptides therapy would not be a
chronic intervention, but these molecules would be
administered only in a limited period of time during
the 1st years of life of FXS children, when brain is
still remodeling, to allow proper formation of the
synaptic network.

Hence, we propose that peptides/peptidomimetics could
compensate the FMRP deficiency restoring the imbalance of
protein synthesis and actin dynamics, suggesting a new and
promising strategy for treating FXS.
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