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1 |  INTRODUCTION

Kidney cancer has gradually become a commonly diagnosed 
cancer type worldwide both in men and in women. Globally, 

there are approximately 380 000 people who are diagnosed 
with kidney cancer and 143 000 patients who die from kid-
ney cancer per year.1 Kidney renal papillary cell carcinoma 
(KIRP) comprises 15% to 20% of kidney cancers, which 
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Abstract
The kidney renal papillary cell carcinoma (KIRP) is a relatively rare type of kidney 
cancer. There has been no investigation to find a robust signature to predict the sur-
vival outcome of KIRP patients in the aspect of tumor immunology. In this study, 
285 KIRP samples from The Cancer Genome Atlas (TCGA) were randomly divided 
into training and testing set. A total of 1534 immune‐related genes from The 
Immunology Database and Analysis Portal (ImmPort) were used as candidates to 
construct the signature. Using univariate Cox analysis, we evaluated the relationship 
between overall survival and immune‐related genes expression and found 272 im-
mune‐related genes with predicting prognostic ability. In order to construct an effi-
cient predictive model, the Cox proportional hazards model with an elastic‐net 
penalty was used and identified 23 groups after 1000 iterations. As a result, 15‐genes 
model showing more stable than other gene groups was chosen to construct our im-
mune‐related risk signature. In line with our expectations, the signature can indepen-
dently predict the survival outcome of KIRP patients. Patients with high‐immune 
risk were found correlated with advanced stage. We also found that the high‐immune 
risk patients with higher PBRM1 and SETD2 mutations, increasing chromosomal 
instability, together with the gene set enrichment analysis (GSEA) results showing 
intensive connection of our signature with immune pathways. In conclusion, our 
study constructs a robust 15‐gene signature for predicting KIRP patients’ survival 
outcome on the basis of tumor immune environment and may provide possible rela-
tionship between prognosis and immune‐related biological function.

K E Y W O R D S
elastic net, papillary renal cell cancer, prognosis, tumor immunology

Zhongyu Wang, Qian Song and Zuyi Yang authors contributed equally to the article. 

www.wileyonlinelibrary.com/journal/cam4
https://orcid.org/0000-0002-5767-1492
mailto:﻿
http://creativecommons.org/licenses/by/4.0/
mailto:juwenuu@sina.com
mailto:shangjunv@163.com


290 |   WANG et Al.

stems from the proximal nephron, the same origin with clear 
cell type.2 However, KIRP is considered as a more hetero-
geneous disease in the aspects of disease progression and 
patients’ survival outcomes.3 Targeted therapies such as the 
mTOR inhibitor and VEGF receptor inhibitor just provide 
modest benefit for those with metastasis.4,5 In addition, due 
to the limited number of KIRP cases, KIRP patients are 
often excluded from molecular investigations and random-
ized clinical trials for kidney cancer.6 Therefore, there is still 
lack of solid data for further investigation the molecular pro-
filing of KIRP, which may unearth novel targets for diagno-
sis, treatment, and prognosis of KIRP.

Immunotherapies such as programmed death‐1 (PD‐1)/
programmed death ligand 1 (PD‐L1) inhibitors or tumor 
vaccine are becoming favorable novel treating approach 
for KIRP. The PD‐1/PD‐L1 blockade demonstrated modest 
antitumor activity in KIRP patients, with the response rate 
being approximately 30%,7 which are much higher than 
that of clear cell type. Besides, other studies found that a 
tumor vaccine called TroVax® which expressed the 5 T4 
tumor‐associated antigen exhibited robust efficacy and 
safety in renal cell cancer patients including KIRP patients 
in clinical trials.8,9 These shed lights on the importance of 
tumor immune environment characterization and the treat-
ment efficacy of immunotherapy for KIRP.11,12 Studies 
have shown that the components of tumor immune envi-
ronment are correlated with patients’ survival outcomes. 
Stéphane Chevrier et al13 found the immune cell compo-
sition of tumor environment was associated with renal cell 
carcinoma patients’ progression‐free survival. Hirokazu 
Matsushita et al14 demonstrated that neoantigens together 
with β2M or HLA‐A expression were able to predict the 
clinical outcomes of patients with kidney cancer. However, 
these investigations mainly focus on clear cell renal car-
cinoma. The tumor immune environment for KIRP is still 
poorly understood. Besides, feasible immune biomarkers 
for the prediction of KIRP patients’ prognosis and possible 
new immune targets for KIRP treatment are very lacking. 
Therefore, it is essential to find a robust immune signature 
for KIRP which can serve as a predictor for KIRP patients’ 
survival from the perspective of tumor immunology and 
may become targets for immunotherapy of KIRP.

In this study, we utilized the transcriptome data from 
The Cancer Genome Atlas (TCGA) to develop and val-
idate an immune‐related risk signature consisting of 15 
immune‐related genes for KIRP. To evaluate the clinical 
value of the immune signature, we analyzed the correla-
tion between the signature and clinical factors. And in 
order to further investigate the molecular and immune 
profiling of the signature, we conducted researches on the 
relationship of the immune signature with PBRM1 and 
SETD2 mutations, copy number variation (CNV), and im-
mune‐related phenotypes.

2 |  METHODS

2.1 | Patient samples and immune‐related 
genes
Clinical and transcriptomic data of KIRP samples were col-
lected from UCSC‐TCGA (http://xena.ucsc.edu/), as shown 
in Table S1. The dataset was divided into training (n = 205) 
and testing set (n = 80). The transcriptome profiling of RNA 
expression was obtained by RNA‐seq and measured by frag-
ments per kilobase of exon model per million mapped reads 
or FPKM values. Log2‐based transformation was used for 
the normalization of RNA expression profiles. In order to 
make sure of the detection reliability, genes with FPKM val-
ues being equal to 0 in more than 50% of the samples were 
removed from further analysis. The Immunology Database 
and Analysis Portal (ImmPort) comprehensive list of im-
mune‐related genes were downloaded from the ImmPort 
database (https://immport.niaid.nih.gov),15 containing a total 
of 1534 immune‐related genes (Table S2). These immune‐re-
lated genes function as a variety of roles in immune pathways 
including antigen processing and presentation, B‐cell recep-
tor signaling pathway, chemokine, chemokine receptors, cy-
tokines, cytokines receptors, interferons, interferon receptors, 
interleukins, interleukin receptors, natural killer cell cytotox-
icity, T‐cell receptor signaling pathway, transforming growth 
factor‐b (TGF‐b) family member, TGF‐b family member 
receptor, tumor necrosis factor (TNF) family members, and 
TNF family member receptors. These immune‐related genes 
were used to analyze the possible elected genes for construct-
ing the immune‐related risk signature.

2.2 | Construction of the immune‐related 
risk signature
All patients were randomly assigned to a training set 
(n = 205) (70% for identifying key immune‐related genes) 
and a testing set (n = 80) (30% for validating the immune‐re-
lated genes signature). Univariate analysis was used to iden-
tify immune‐related genes with prognostic ability (P < 0.05). 
The Cox proportional hazards model with an elastic‐net pen-
alty (iteration = 1000) was performed using the R package 
called “glmnet” in order to identify the best gene model for 
predicting the prognosis in KIRP patients.16,17 We estimated 
the penalty parameter by 10‐fold cross‐validation in training 
dataset. Genes weighted value was calculated based on a lin-
ear combination of Cox coefficient and gene expression.19-21

N, Expi, and Coei represented the number of signature genes, 
gene expression level, and coefficient value, respectively. 

Risk score=

N
∑

i=1

(Expi*Coei)

http://xena.ucsc.edu/
https://immport.niaid.nih.gov
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The formula was used to calculate risk score, and the cutoff 
value of high and low risk was set as the median.

2.3 | Performance assessment
To validate the prognostic capability of the immune‐re-
lated risk signature, we calculated the area under the curve 
(AUC) with R package “survivalROC” to evaluate the sig-
nificance of the survival difference between high‐risk group 
and low‐risk group.22 Harrell’s c‐index was utilized to in-
dicate the predictive ability of the risk signature in train-
ing, testing, and the total cohort. The Kaplan‐Meier (K‐M) 
survival curves together with the Cox proportional hazards 
model were performed using the R package called “sur-
vival” (https://CRAN.R-project.org/package=survival)23 
and “BhGLM” (https://www.soph. uab.edu/ssg/software/

bhglm).24 The multivariate analysis was performed to as-
sess the independent prognostic ability of the immune‐re-
lated risk signature.

2.4 | Mutation analysis
The mutation data available for 281 TCGA KIRP patients 
with mutation information were downloaded from Genomic 
Data Common (GDC) (https://portal.gdc.cancer.gov/). The 
analysis data containing somatic variants were stored in the 
form of Mutation Annotation Format (MAF).We calculated 
each gene mutation rate of patients in high risk or low risk 
as follows:

Gene mutation rate =
Gi

Pi

F I G U R E  1  The workflow describing the schematic overview of the project

https://CRAN.R-project.org/package
https://)
https://www.soph
https://portal.gdc.cancer.gov/
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Gi represented the number of patients with the gene mutation 
in each group; Pi represented the total number of patients. 
Survival analysis was performed in top 20 significantly mu-
tation genes with R packages maftools.25 Gene mutation pro-
files were also shown with maftools.

2.5 | CNV analysis
We downloaded whole genome microarray contained gene‐
level copy number variation (GISTIC‐preanalyzed data) and 
SNP array data contained Masked Copy Number Segment. 

F I G U R E  2  Construction and validation of the immune‐related risk signature. A, Results of elastic net. After 1000 iterations, there were 23 
gene groups, of which 15 immune‐related genes were significantly higher frequency than other gene groups. B, The c‐indexes for training, testing, and 
total cohort were 0.891, 0.790, and 0.861, respectively. C‐E, Time‐dependent ROC curve analysis of the signature in training set, testing set, and all 
set. 1‐year AUC, 3‐year AUC, and 5‐year AUC in training set, testing set, and all set is 0.934, 0.756, 0.88, 0.796, 0.695, 0.766, 0.662, 0.714, and 0.678, 
respectively. F‐H, Principal component analysis of the training, testing, and total KIRP cohort with the 15‐immune‐related gene expression. The high‐
risk patients were marked by red dots, and the low‐risk patients were marked by blue dots
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The metadata information of UCSC‐TCGA database shown 
that GISTIC2 further thresholded the estimated values to 
−2, −1, 0, 1, 2, representing homozygous deletion, single 
copy deletion, diploid normal copy, low‐level copy num-
ber amplification, or high‐level copy number amplification. 
Therefore, we considered amplifications (GISTIC value 1 
and 2) and deletions (GISTIC value −1 and −2) together as 
a general index for CNVs represented. t test was performed 
between CNV and no‐CNV genes to assess differential 
risk score (P < 0.05). CNV rates of high risk and low risk 
were calculated based on this reference.26 R package “copy-
number” is available for visualization of the segmentation 
results.27,28

2.6 | Gene set enrichment analysis
To analyze the immune‐related gene ontology (GO) terms of 
the immune‐related risk signature, gene set enrichment anal-
ysis (GSEA) was performed between high‐risk and low‐risk 
phenotypes (https://pypi.org/project/gseapy/).29 Gene ontol-
ogy gene sets were downloaded from Molecular Signatures 
Database (MSigDB) (http://software.broadinstitute.org/gsea/
downloads.jsp). We considered the enriched gene sets to be 
statistically significant in GSEA when the nominal P value 
was less than 0.05, and the false discovery rate (FDR) was 
less than 0.25.

2.7 | Statistical analysis
The heatmaps were generated by applying R package 
“ComplexHeatmap” R package.30 The boxplots were con-
ducted using the R package called “ggplot2”.31 We calcu-
lated c‐index with R package “survcomp”.32 The Student’s 
t test was used for statistical comparison of paired data. The 
ANOVA test was conducted for comparison of more than 
two scores. Pearson’s chi‐square tests were performed for 
comparison of categorical variables. Exact test was per-
formed using R package “stats” version 3.5.1. The statisti-
cal analysis of this research was conducted by R language 
(https://www.r-project.org/). A P value <0.05 was thought to 
be statistically significant.

3 |  RESULTS

3.1 | Construction and validation of the 
immune‐related risk signature
The workflow of our study is illustrated in Figure 1. The 
training set was used for construction of the immune‐re-
lated risk signature. The testing set was used for validation. 
Using univariate analysis, we identified 272 genes with pre-
dicting prognosis ability from a total of 1534 immune‐re-
lated genes. Then, the 272 genes underwent the elastic net 

to construct an immune‐related risk signature. After 1000 
iterations, there were 23 gene groups, of which 15 immune‐
related genes were elected to form an immune‐related risk 
signature. The characteristics of the 23 gene groups were 
shown in Table S3. The 15 immune‐related genes were cho-
sen because of its significantly higher frequency than other 
gene groups, as shown in Figure 2A. This 15‐gene model 
achieved the frequency of 221 times, which accounted for 
more than 20% in 1000 iterations. The univariate analysis 
of the 15 genes is demonstrated in Table 1, and the K‐M 
analysis of the genes is demonstrated in Figure 3. Risk score 
was estimated as follows:

Risk score = (−0.006*HLA‐DOA) + (0.634*PSMD11) 
+ (0.388*ULBP1) + (0.143*CCL19) + (0.154*PLXNB3) 
+ (0.341*CHGA) + (0.208*CMTM8) + (0.350*CSPG5) + 
(0.355*FGF18) + (0.330*OSTN) + (−0.003*PTN) + (0.13
7*RETN) + (0.398*GLP2R) + (0.593*IL1RAP) + (0.928*
RORB).

Then, the c‐index for the training, testing, and total set 
was 0.891, 0.790, and 0.861, respectively (Figure 2B, 
P < 0.0001). The ROC curve analysis of the signature in 
training set demonstrated the promising predictive value of 
it for KIRP‐specific survival (1‐year AUC = 0.934, 3‐year 
AUC = 0.796, 5‐year AUC = 0.662, Figure 2C). After that, 
we validated the signature in the testing set. In the testing 
set, the 1‐year AUC was 0.756, 3‐year AUC was 0.695, and 
5‐year AUC was 0.714 (Figure 2D). As for the total cohort, 
the 1‐year AUC was 0.88, 3‐year AUC was 0.766, and 5‐year 
AUC was 0.678 (Figure 2E). Principal component analysis 
of the training, testing, and total KIRP cohort demonstrated a 

T A B L E  1  Univariate Cox analysis for overall survival of 15 
immune‐related genes in training set

Gene name HR 95% CI P value

HLA‐DOA 0.552 0.309‐0.985 0.044

PSMD11 439.498 27.710‐6970.830 <0.001

ULBP1 7.636 3.389‐17.205 <0.001

CCL19 2.208 1.591‐3.065 <0.001

PLXNB3 3.136 2.000‐4.919 <0.001

CHGA 2.338 1.594‐3.429 <0.001

CMTM8 21.090 6.769‐65.709 <0.001

CSPG5 14.031 6.296‐31.269 <0.001

FGF18 11.878 4.671‐30.200 <0.001

OSTN 4.081 1.032‐16.134 0.045

PTN 0.645 0.471‐0.883 0.006

RETN 1.971 1.137‐3.418 0.016

GLP2R 4.584 2.095‐10.033 <0.001

IL1RAP 6.319 3.167‐12.606 <0.001

RORB 3.480 1.191‐10.171 0.023

CI, confidence interval; HR, hazard ratio.

https://pypi.org/project/gseapy/)
http://software.broadinstitute.org/gsea/downloads.jsp
http://software.broadinstitute.org/gsea/downloads.jsp
https://www.r-project.org/
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different distribution pattern of high risk and low risk based 
on 15 immune‐related gene expression, indicating their dif-
ference in immune phenotype (Figure 2F‐G).

3.2 | Correlation of the immune‐related risk 
signature with clinicopathologic features
The 15 immune‐related genes formed the signature ex-
hibited distinct expression diverse expression patterns, 
including four relatively high‐expression genes (PTN, 
PSMD11, HLA‐DOA, and CMTM8) and 11 relatively 
low‐expression genes (CCL19, RETN, IL1RAP, CHGA, 

PLXNB3, RORB, FGF18, CSPG5, ULBP1, OSTN, and 
GLP2R), as shown in Figure 4A,B, and 5A. Afterward, 
we assessed whether there was statistically different in 
the distribution of clinicopathologic factors between low‐
risk and high‐risk groups. The heatmap demonstrated that 
the high‐risk group was correlated with female, advanced 
stage, and tumor recurrence in training, testing, and total 
cohorts (Figure 4A,B and 5A). The relationship between 
the signature and staging and tumor type further found that 
patients with higher level of T, N, M stages, and type 2 
KIRP tended to have higher risk score. (P < 0.05, Figure 
6A‐E, Table S4).

F I G U R E  3  The K‐M analysis of the 15 immune‐related genes used to construct the immune‐related risk signature for KIRP, including 
CCL19, CHGA, CMTM8, CSPG5, FGF18, GLP2R, HLA‐DOA, IL1RAP, OSTN, PLXNB3, PSMD11, PTN, RETN, RORB, and ULBP1. The 
expression of CCL19, CHGA, CMTM8, CSPG5, FGF18, IL1RAP, PLXNB3, PSMD11, and ULBP1 was positively related with KIRP patients’ 
prognosis. The expression of PTN was negatively with KIRP patients’ prognosis. The expression of GLP2R, HLA‐DOA, OSTN, RETN, and RORB 
showed no significantly correlated with KIRP patients’ prognosis
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3.3 | Association between the immune‐
related risk signature and patients’ 
survival outcomes
The K‐M analysis demonstrated that patients with high‐
risk score were correlated with a trend toward worse sur-
vival outcomes in training (P < 0.001, Figure 4D), testing, 
(P < 0.01, Figure 4G), and total sets (P < 0.001, Figure 
5B). Then, we further conducted the K‐M analysis for stage 
III‐IV KIRP patients, considering the positive correlation 
between the immune‐related risk signature and tumor stage. 
We found that the overall survival (OS) of advanced stage 
patients was also positively correlated with high‐risk score 
in all of the three cohorts (P < 0.05, Figure 4E,H, Figure 
7A). We also demonstrated that the risk signature could pre-
dict the OS of subgroup of KIRP, including patients with 
recurrence (Figure 7B, P < 0.001), no recurrence (Figure 

7C, P < 0.001), M0 stage (Figure 7D, P < 0.001), N0 stage 
(Figure 7E, P < 0.001), T3 stage (Figure 7F, P < 0.001), 
T2 stage (Figure 7G, P < 0.001), female (Figure 7H, 
P < 0.001), male (Figure 7I, P < 0.001), and type 2 KIRP 
(Figure 7K, P < 0.001). However, there was no correlation 
between the risk score and patients’ OS in type 1 KIRP 
patients (Figure 7J). The univariate Cox analysis of risk 
signature and clinical parameters in training, testing, and 
total group is demonstrated in Table 2. In the multivariate 
analysis, the signature was able to serve as an independ-
ent prognostic factor for OS with a HR of 4.800 in training 
group (95% confidence interval [95%CI] = 2.941‐7.836, 
P < 0.001, Figure 4C, Table 3), 2.079 in testing group 
(95%CI = 1.035‐4.176, P < 0.05, Figure 4F, Table 3), and 
2.613 in the total cohort (1.826‐3.738, P < 0.001, Figure 
5B, Table 3). But we found that the signature just exhib-
ited prognostic ability in training and total group after we 

F I G U R E  4  15 immune‐related gene predictor‐score analysis of KIRP patients in both the training and testing cohorts. A and B, Heatmap 
showed the 15‐immune‐related gene expression distribution in training, testing cohorts. Each column represented the same patient corresponded to 
the below point showing risk score distribution, survival status, and time in KIRP patients. Each point represented one patient sorted by the rank 
of the risk score. Red, blue, black, and gray represented patient high risk, low risk, dead, and alive, respectively. The patients in female, advanced 
stage, and tumor recurrence showed high‐risk score. C and F, The multivariate Cox analysis in training and testing cohorts. The 15 immune‐related 
genes signature was able to serve as an independent prognostic factor for OS. D and G, The survival analysis in training and testing cohorts without 
stratification. Survival curve showed that patients with high‐risk score were correlated with a trend toward worse survival outcomes. E and H, The 
survival analysis in stage III‐IV patients in training and testing cohorts. Survival curve showed that patients with high‐risk score were correlated 
with a trend toward worse survival outcomes
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included the T, N, and M stages as independent clinical pa-
rameters (Tables S5 and S6). This might be caused by the 
small sample size since we excluded cases with unknown T, 
N, or M stages. Clinicopathologic features (age, stage, and 
gender) failed to exhibit a constantly independent role for 
predicting KIRP survival outcomes in all of the three sets.

3.4 | Involvement of mutations in the 
immune‐related risk signature
In order to investigate whether the mutations of genes were 
associated with the immune‐related risk signature, we first 
identified mutations with prognostic ability in KIRP. The 
mutational analysis was conducted on the 20 highest fre-
quently mutated genes in 281 TCGA patients with mutation 
information (Figure S1)). Among the 20 highest frequently 
mutated genes, PBRM1 and SETD2 mutations were strongly 
associated with patients’ poor survival outcomes compared 
the wide type (Figure 8A,B). For PBRM1, the mutation rate 
for high‐risk patients was 2.49%, while 1.78% for low‐risk 

patients (P = 0.361). For SETD2, the mutation rate for high‐
risk patients was 4.27%, while 1.78% for low‐risk patients 
(P < 0.01). The mutation profiles of the two genes between 
high‐ and low‐risk groups were presented in Figure 8C, 
which indicated that high‐risk group achieved higher muta-
tion frequency than low‐risk group.

3.5 | Correlation of the immune‐related risk 
signature with copy number variations (CNV)
To elucidate whether there was a relationship between the 
signature and CNV, we analyzed the CNV data in the TCGA. 
In high‐risk group, clustering of somatic copy number altera-
tions showed the more significant chromosome aberrations 
than low risk (Figure 9A). High‐risk group had higher CNV 
rate than low‐risk group (high risk vs low risk：4305/141 vs 
10545/142, P < 0.001). t test was performed between CNV 
and no‐CNV genes to assess differential risk score. We iden-
tified 2957 genes with differential risk score between CNV 
and no‐CNV (P < 0.05). Clustering of these gene somatic 

F I G U R E  5  15 immune‐related gene 
predictor‐score analysis of KIRP patients 
in all cohort. A, Heatmap showed the 15 
immune‐related gene expression distribution 
in all cohort. Each column represented the 
same patient corresponded to the below 
point showing risk score distribution, 
survival status, and time in KIRP patients. 
Each point represented one patient sorted 
by the rank of the risk score. Red, blue, 
black, and gray represent patient high risk, 
low risk, dead, and alive, respectively. The 
patients in female, advanced stage, and 
tumor recurrence showed high‐risk score. 
B, (Left)The multivariate Cox analysis 
in all cohort. The 15 immune‐related 
genes signature was able to serve as an 
independent prognostic factor for OS 
(P < 0.001). (Right) The survival analysis 
in all cohort without stratification. Survival 
curve showed that patients with high‐risk 
score were correlated with a trend toward 
worse survival outcomes (P < 0.001)
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F I G U R E  6  (Left)The K‐M analysis of (A) T stage, (B) N stage, (C) M stage, and (D) staging. (right) The boxplots of the relationship 
between the signature and (A) T stage, (B) N stage, (C) M stage, (D) staging, and (E) tumor type. Patients with higher level of T, N, M stages, 
advanced staging, and type 2 KIRP tended to have higher risk score
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F I G U R E  7  The K‐M analysis of the risk signature grouping according to patients with (A) stage III‐IV, (B) recurrence, (C) no recurrence, 
(D) M0 stage, (E) N0 stage, (F) T3 stage, (G) T2 stage, (H) female, (I) male, (J) type 1 KIRP, and (K) type 2 KIRP
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copy number alterations showed significant chromosome de-
letion aberrations in high‐risk group (Figure 9B).

3.6 | Involvement of immune‐related 
gene ontology terms by the immune‐related 
risk signature
The GSEA was performed for functional annotation of the 
immune‐related risk signature. The results demonstrated 
that there was a total of 40 immune‐related gene ontology 
terms with FDR <0.25 (Figure 10A, Table S7). We further 
demonstrated the GSEA results of the top 10 immune‐related 

gene ontology terms in Figure 10B, including immune ef-
fector process, adaptive immune response, B‐cell activation 
involved in immune response, immune response regulating 
cell surface receptor signaling pathway, immunoglobulin 
production involved in immunoglobulin‐mediated immune 
response, production of molecular mediated immune re-
sponse, positive regulation of adaptive immune response, 
somatic diversification of immune receptors, regulation of 
adaptive immune response, and innate immune response ac-
tivating cell surface receptor signaling pathway. The GSEA 
results demonstrated that genes within the 10 immune‐related 
pathways were shown to enrich in the group with high‐risk. 

Variable HR 95% CI P value

Training Risk score (low risk vs high 
risk)

5.824 3.708‐9.147 <0.001

Age (≤60 vs >60) 1.012 0.977‐1.049 0.4901

Stage (I and II vs III and IV) 4.837 2.292‐10.209 <0.001

Gender (male vs female) 0.459 0.196‐1.075 0.073

Testing Risk score (low risk vs high 
risk)

1.930 1.334‐2.793 <0.001

Age (≤60 vs >60) 0.995 0.965‐1.027 0.771

Stage (I and II vs III and IV) 22.461 2.873‐175.59 0.003

Gender (male vs female) 0.818 0.238‐2.817 0.750

All Risk score (low risk vs high 
risk)

2.613 2.100‐3.252 <0.001

Age (≤60 vs >60) 0.996 0.969‐1.025 0.794

Stage (I and II vs III and IV) 6.473 3.362‐12.462 <0.001

Gender (male vs female) 0.591 0.297‐1.178 0.135

CI, confidence interval; HR, hazard ratio.

T A B L E  2  Univariate Cox analysis for 
overall survival of risk signature and clinical 
parameters in training, testing, and all 
groups

Variable HR 95% CI P value

Training Risk score (low risk vs high 
risk)

4.800 2.941‐7.836 <0.001

Age (≤60 vs >60) 1.610 1.073‐2.416 0.021

Stage (I and II vs III and IV) 1.967 0.837‐4.618 0.121

Gender (male vs female) 1.183 0.426‐3.288 0.747

Testing Risk score (low risk vs high 
risk)

2.079 1.035‐4.176 0.040

Age (≤60 vs >60) 1.245 0.737‐2.103 0.413

Stage (I and II vs III and IV) 14.686 1.635‐131.906 0.016

Gender (male vs female) 5.003 0.771‐32.46 0.092

All Risk score (low risk vs high 
risk)

2.613 1.826‐3.738 <0.001

Age (≤60 vs >60) 1.230 0.902‐1.679 0.191

Stage (I and II vs III and IV) 2.531 1.135‐5.641 0.023

Gender (male vs female) 3.048 1.105‐8.408 0.031

CI, confidence interval; HR, hazard ratio.

T A B L E  3  Multiple Cox analysis for 
overall survival of risk signature and clinical 
parameters in training, testing, and all 
groups
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Therefore, we suggested that the immune‐related risk signa-
ture demonstrated an intensive immune phenotype. In order 
to further investigate more immune‐related mechanism of 
the signature, we evaluated the relationship between the risk 
score and the expression of T‐cell markers including CD4 
and CD8A and immune checkpoints including PD‐1 and cy-
totoxic T‐lymphocyte associated protein 4 (CTLA‐4). We 
found that patients in high‐risk group tended to have more 
CD8+ (P < 0.001, Figure S2A) and CD4+ T‐cell infiltration 
(P < 0.001, Figure S2B). Besides, high‐risk group patients 
expressed higher level of programmed cell death ligand 2 
(PD‐L2) (P < 0.001, Figure S2C), PD‐1 (P < 0.05, Figure 
S2D), and CTLA‐4 (P < 0.01, Figure S2E). The expression 
of PD‐L1 was also higher in high‐risk group patients than 

those in low‐risk group, while there was no statistical signifi-
cance (Figure S2F).

4 |  DISCUSSION

The KIRP is always less studied than clear cell type in renal 
cancer, considering its low incidence. This leads to the dif-
ficulty of in‐depth investigation for the treatment strategies 
and prognostic prediction of KIRP. Taking into account the 
importance of immune environment in the progression of 
cancer,33 it is essential to find out immune‐related biomarker 
for the prognosis of KIRP patients, which may also serve as 
a significant role in immunotherapy. Our study established 

F I G U R E  8  Significant mutation genes with prognostic value in KIRC in 281 TCGA patients with mutation information (137 high‐risk 
patients and 138 low‐risk patients and six patients without expression data). A and B, The mutant status of PBRM1 and SETD2 was closely related 
with patients’ prognosis. C, The mutation profiles of PBRM1 and SETD2 between high‐ and low‐risk groups. High‐risk group achieved higher 
mutation frequency than low‐risk group (SETD2: high risk 4.27% vs low risk 1.78%; PBRM1: high risk 2.49% vs low risk 1.78%) 
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a robust immune‐related risk signature for KIRP using the 
TCGA KIRP datasets that was able to predict the patients’ 
survival outcomes and was significantly correlated with clin-
icopathologic features. More importantly, we found this sig-
nature was associated with CNV and was involved in many 
immune‐related gene ontology terms. These findings suggest 
the value of our signature for KIRP patients’ prognosis and 
possible immune targets for immunotherapy.

The immune‐related signature consisted of 15 immune‐
related genes with prognostic ability. In our signature, we 
found 11 of the 15 genes were cytokines or cytokine recep-
tors, functioning as significant parts in inflammatory process 
of tumor initiation and progression.34,35 This can be further 
understood by the explanation that cytokines and their re-
ceptors can activate potential oncogenic transcription factors 
in STAT and NFκB families to promote the pathogenesis of 
cancer.36 Therefore, KIRP patients with high‐immune risk of 
our established signature can reflect to an increased tumor 
inflammatory microenvironment, which facilitates the pro-
gression of KIRP and leads to the poor OS of patients. More 
interestingly, in the 15 immune‐related genes that consist of 
the signature, PSMD11 was the most significant factor in 
the univariate analysis (HR = 439.498). The PSMD11 pro-
tein consists of part of 26S proteasome which is involved in 
protein homeostasis through removing misfolded proteins.37 
Hence, PSMD11 participates in the antigen processing pro-
cess. Besides, PSMD11 was one of the suggested mechanisms 
for several neurodegenerative disorders such as Alzheimer’s 
and Parkinson’s disease.38 Therefore, we suggested the in-
triguing intersection of neuroscience and immuno‐oncology 
bridging by PSMD11. PTN was another gene in the signature 

that attracts our attention. There have been studies showing 
that PTN can promote the tumor microenvironment remod-
eling and transdifferentiation of macrophages.39,40 This can 
further highlight the importance of our immune signature in 
the KIRP microenvironment.

In order to figure out the clinical values of this signature, 
the associations between the signature and clinicopatholog-
ical factors and patients’ OS were evaluated. Patients with 
high‐immune risk score tended to be female, advanced stage, 
tumor recurrence, and type II KIRP. Our investigation was 
the first to find the immune‐related differences between the 
different clinical cohorts in KIRP. It can also be referred that 
the differences in tumor immunity may reflect the OS of dif-
ferent clinical cohorts. Patients with high‐immune risk may 
own a tumor immune microenvironment that can promote 
the development and recurrence of KIRP, which leads to ad-
vanced stage and relapse of tumor. Therefore, our signature 
can not only predict patients’ survival outcomes but predict 
the possibility of disease progression and relapse. The multi-
variate analysis can further confirm the immune‐related risk 
signature to be an independent predictor for clinical KIRP 
patients. Thereby, combining this signature with other clini-
cal factors could serve as a promising tool for the prognosis 
of KIRP patients in the future.

Furthermore, we tried to investigate the molecular mech-
anisms of the immune‐related risk signature. Our results 
demonstrated that high‐risk patients tended to have PBRM1 
and SETD2 mutations than those of low‐risk, which also 
indicates that the prognostic ability of our signature. 
Interestingly, our study found there was a positive relation-
ship between the risk signature and chromosome deletion 

F I G U R E  9  Correlation of the immune‐related risk signature with copy number variations. A, Chromosome location and segment mean data 
are presented. The clustering of somatic copy number alterations showed that the high‐risk patients had more significant chromosome aberrations. 
B, Gene‐level copy number variation. Clustering of gene somatic copy number alterations showed significant chromosome deletion aberrations in 
high‐risk group
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aberrations. Chromosome aberrations contain many im-
mune system genes, such as chemokine (CXC‐motif) ligand 
1 (CXCL1), CXCL10, cytokine‐dependent hematopoietic 
cell linker (CLNK), and alpha‐protein kinase 1 (ALPK1) 
(https://www.uniprot.org/docs/humchr04. txt).17 Hence, we 
consider that there may exist a connection between the 15 
immune‐related genes of the signature and the immune sys-
tem genes in chromosome deletion aberrations. The copy 
number loss of these immune system genes in chromosome 
may affect the expression or function of the 15 immune‐re-
lated genes and patients’ survival outcomes. Further stud-
ies are needed to verify our hypothesis. Finally, our GSEA 
can further prove the robust connection of the signature 
with immune systems. Patients with high‐risk score were 
more associated with immune‐related pathways, especially 
the adaptive immune response. Besides, high‐risk group 

patients had more CD8+ and CD4+ T‐cell infiltration, 
which reflect an immunological microenvironment of KIRP. 
Further study showed that high‐risk group patients tended 
to have higher PD‐L2, PD‐L1, PD‐1, and CTL‐4 expres-
sion in tumor environment. This indicates that despite the 
high infiltration of T cells in KIRP microenvironment, the 
function of T cells is inhibited by PD‐1‐ or CTL‐4‐mediated 
suppression pathways. Therefore, high‐risk patients were 
more likely to benefit from immune checkpoint blockade 
targeting PD‐1 and CTLA4. This also accords with the study 
of Yu‐Pei Chen et al41 their study also suggest that tumors 
with pre‐existing intratumor T cells that express high level 
of PD‐L1 and are suppressed by PD‐1/PD‐L1 pathway are 
most likely to benefit from immune checkpoint blockade. 
Nevertheless, further investigations are needed to evaluate 
the relationship between the signature and immunotherapy.

F I G U R E  1 0  Gene set enrichment analysis for comparing immune phenotype between high‐risk group and low‐risk group. A, 40 significant 
immune‐related GO terms enrichment between high‐risk group and low‐risk group with FDR <0.25. B, Significant enrichment of 10 immune‐
related GO terms in high‐risk group

https://www.uniprot.org/docs/humchr04
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Taken together, our study was the first to identify and val-
idate a 15 immune‐related gene‐based risk signature with the 
ability of being an independent prognosis predictor for KIRP 
patients. This could indicate the immune response intensity 
in the KIRP microenvironment, as suggested by the GSEA 
results. Our signature can also provide novel clinical appli-
cations for KIRP considering immune targets and immune‐
related treatment. Our investigations have the advantages of 
using the massive cohort from TCGA database to find and 
validate the signature and the robust method of developing 
the immune‐related risk score. Nevertheless, our research has 
limitations of being a retrospective study with limited sample 
size, which may lead to the problem of overfitting. Therefore, 
a cohort with more patients is needed to solve this. Besides, 
our immune‐related signature should be applied to clinical 
environment to test its predictive ability, and the 15 immune‐
related genes also need further functional analysis for their 
possible clinical usage.
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