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Limited generalizability of single 
deep neural network for surgical 
instrument segmentation 
in different surgical environments
Daichi Kitaguchi1,2, Toru Fujino1, Nobuyoshi Takeshita1,2, Hiro Hasegawa1,2, Kensaku Mori3 & 
Masaaki Ito1,2*

Clarifying the generalizability of deep-learning-based surgical-instrument segmentation networks 
in diverse surgical environments is important in recognizing the challenges of overfitting in surgical-
device development. This study comprehensively evaluated deep neural network generalizability for 
surgical instrument segmentation using 5238 images randomly extracted from 128 intraoperative 
videos. The video dataset contained 112 laparoscopic colorectal resection, 5 laparoscopic distal 
gastrectomy, 5 laparoscopic cholecystectomy, and 6 laparoscopic partial hepatectomy cases. Deep-
learning-based surgical-instrument segmentation was performed for test sets with (1) the same 
conditions as the training set; (2) the same recognition target surgical instrument and surgery type 
but different laparoscopic recording systems; (3) the same laparoscopic recording system and surgery 
type but slightly different recognition target laparoscopic surgical forceps; (4) the same laparoscopic 
recording system and recognition target surgical instrument but different surgery types. The mean 
average precision and mean intersection over union for test sets 1, 2, 3, and 4 were 0.941 and 0.887, 
0.866 and 0.671, 0.772 and 0.676, and 0.588 and 0.395, respectively. Therefore, the recognition 
accuracy decreased even under slightly different conditions. The results of this study reveal the limited 
generalizability of deep neural networks in the field of surgical artificial intelligence and caution 
against deep-learning-based biased datasets and models.

Trial Registration Number: 2020-315, date of registration: October 5, 2020.

Minimally invasive surgery (MIS), including robotic surgery, has become increasingly  common1. MIS that uses 
scopes to observe internal anatomy is preferred for many surgical procedures because a magnified surgical 
field of view can be obtained through the scope. Furthermore, surgical procedures can be stored as video data; 
therefore, this approach facilitates not only surgical training and education but also surgical data  science2, such 
as computer vision using deep learning.

Computer vision is a research field that describes the machine understanding of images and videos, and 
significant advances have resulted in machines achieving human-level capabilities in areas such as object and 
scene  recognition3. The main healthcare-related work in computer vision is computer-assisted diagnosis, such as 
colonic polyp  detection4,5 and skin cancer  detection6,7; however, the application of computer-assisted surgery has 
also  accelerated8,9. In particular, surgical-instrument segmentation and the tracking of their tips are important 
underlying technologies because they can be applied to surgical skill  assessment10,11, and they are essential for 
the achievement of automatic and autonomous  surgery12.

Segmentation is a computer-vision task in which whole images are divided into pixel groups that can be 
labeled and classified. In particular, semantic segmentation attempts to semantically understand the role of each 
pixel in  images13. Instance segmentation, which extends semantic segmentation, segments different instances of 
classes, i.e., labeling five individuals with five different colors; therefore, it can identify the boundaries, differences, 
and relations between objects for multiple overlapping  objects14.
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These computer-vision approaches have great applicability to surgical-instrument recognition in intraop-
erative videos for MIS, and, in recent years, there have been numerous efforts to develop surgical-instrument 
 segmentation15,16. Among them, the Medical Image Computing and Computer Assisted Interventions Society 
has held international challenges based on recognition accuracy for surgical-instrument segmentation and the 
Endoscopic Vision  Challenge15,17–19; novel deep neural networks have broken the record for state-of-the-art 
segmentation accuracy. However, these efforts have been performed on video datasets corresponding to the same 
type of surgery using a fixed type of surgical instrument and the same type of laparoscopic recording system, 
unlike real-world surgical settings. Practically, there are many different conditions in real-world surgical situa-
tions. For example, different types of laparoscopic recording systems and laparoscopic surgical instruments are 
used in different hospitals; in addition, surgical devices are upgraded, and their shapes slightly change every few 
years. When considering the general-purpose properties of a single surgical-instrument recognition network, it 
is also important to verify the applicability of the network to other types of surgery, i.e., to clarify the difference 
in the recognition accuracy when a recognition network that was developed based on the data of a certain type 
of surgery is applied to another type of surgery. Although such conditions related to recognition accuracy can 
clarify that constructing an intraoperative video dataset with diversity is important, no comprehensive study 
on the generalizability of a single surgical instrument recognition network has been reported. Therefore, the 
results of this study are important because they provide valuable information for future surgical development 
and implementation.

This study aimed to evaluate the generalizability of a single deep neural network for comprehensive surgical-
instrument segmentation, thereby clarifying the difference in segmentation accuracy when a single network is 
applied to different situations, such as the type of laparoscopic recording system, recognition target surgical 
instrument, and surgery.

Material and methods
Study design. This research involved a retrospective experimental observational study using a five-institu-
tional intraoperative video dataset. A total of 5238 images, which were randomly extracted from 128 intraopera-
tive videos, were utilized. The image selection criteria were that the target surgical instrument must be clearly 
visible, and out-of-focus images and/or images with mist were excluded. The video dataset contained 112 lapa-
roscopic colorectal resection (LCRR), 5 laparoscopic distal gastrectomy (LDG), 5 laparoscopic cholecystectomy 
(LC), and 6 laparoscopic partial hepatectomy (LPH) cases.

This study followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) 
reporting  guidelines20. The protocol for this study was reviewed and approved by the Ethics Committee of 
National Cancer Center Hospital East, Chiba, Japan (Registration No.: 2020-315). Informed consent was obtained 
in the form of an opt-out on the study website, and data from those who rejected participation were excluded. 
The study conformed to the provisions of the Declaration of Helsinki established in 1964 (and revised in Brazil 
in 2013).

Training and test sets. The training set contained 4074 images, which were randomly extracted from 85 
intraoperative videos of LCRR, and at least one of the following three types of surgical instruments was captured 
in each image: (T1) Harmonic Shears (Ethicon Inc., Somerville, NJ, USA), (T2) endoscopic surgical electrocau-
tery (Olympus Co., Ltd., Tokyo, Japan), and (T3) Aesculap AdTec atraumatic universal forceps (B Braun AG, 
Melsungen, Germany). Representative images of T1–3 are shown in Fig. 1A. Every intraoperative video was 
recorded using an Endoeye laparoscope (Olympus Co., Ltd., Tokyo, Japan) and Visera Elite II system (Olympus 
Co., Ltd, Tokyo, Japan).

The validation set contained 345 images from nine intraoperative videos, and the conditions, which included 
the type of laparoscopic recording system, recognition target surgical instrument, and surgery, were the same 
as those for the training set.

Test set 1 contained 369 images from 10 intraoperative videos, and the conditions were the same as those of 
the training set.

Test set 2 contained 103 images, including surgical instruments extracted from five intraoperative videos. 
Although the recognition target surgical instrument and surgery types were the same as those in the training 
set, the videos were recorded using different types of laparoscopic systems, including a 1488 HD 3-Chip camera 
system (Stryker Corp., Kalamazoo, MI, USA) and Image 1 S camera system (Karl Storz SE & Co., KG, Tuttlingen, 
Germany).

Test set 3 contained 124 images that captured surgical instruments extracted from three intraoperative videos. 
Although the laparoscopic recording system and surgery types were the same as those of the training set, the 
types of recognition target were the following laparoscopic surgical forceps with slightly different tip shapes than 
T3: (T4) Maryland (Olympus Co., Ltd., Tokyo, Japan); (T5) Croce-Olmi (Karl Storz SE & Co., KG, Tuttlingen, 
Germany); (T6) needle holder (Karl Storz SE & Co., KG, Tuttlingen, Germany). T4–T6 were not included in the 
training set, and we tested whether they could be recognized as T3. Representative images of T4–T6 are shown 
in Fig. 1B.

Test set 4 contained 223 images that captured surgical instruments extracted from 16 intraoperative videos 
of different types of surgery, including LDG, LC, and LPH. The other conditions, including the types of laparo-
scopic recording system and recognition target surgical instrument, were the same as those for the training set.

Every image included in every set for training, validation, and test captured at least one type of surgical 
instrument. The characteristics of the training set, validation set, and each test set are summarized in Table 1.
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Annotation. Annotation was performed by 14 nonphysicians under the supervision of surgeons, and all the 
annotated images were double-checked by surgeons. The annotation labels were manually assigned pixel by pixel 
by drawing directly on the area of each surgical instrument in the images using Wacom Cintiq Pro (Wacom Co., 
Ltd., Saitama, Japan) and Wacom Pro Pen 2 (Wacom Co., Ltd., Saitama, Japan). The representative annotated 
images are shown in Supplementary Fig. 1.

Data pre-processing. Every intraoperative video was converted into MP4 video format with a display reso-
lution of 1280 × 720 pixels and frame rate of 30 frames per second (fps), and neither upsampling nor downsam-
pling was performed.

The data split was performed on the per-case level instead of the per-frame level; thus, no image extracted 
from an intraoperative video in the training set appeared in the test sets.

Model optimization. A mask region-based convolutional neural network (R-CNN) with a deformable 
 convolution14,21 and  ResNet5022 were utilized as the instance-segmentation model and backbone network, 

Figure 1.  Representative images of recognition target surgical instruments in this study. (A) Surgical 
instruments contained in the training set (T1: harmonic shears; T2: endoscopic surgical electrocautery; T3: 
Aesculap AdTec atraumatic universal forceps). (B) Laparoscopic surgical forceps not contained in the training 
set (T4: Maryland; T5: Croce-Olmi; T6: needle holder).

Table 1.  Dataset characteristics. T1 harmonic shears, T2 endoscopic surgical electrocautery, T3 Aesculap 
AdTec atraumatic universal forceps, T4 Maryland, T5 Croce-Olmi, T6 needle holder; LCRR  laparoscopic 
colorectal resection, LDG laparoscopic distal gastrectomy, LC laparoscopic cholecystectomy, LPH laparoscopic 
partial hepatectomy.

Number of videos
Number of annotated 
images

Laparoscopic recording 
system

Recognition target 
surgical instruments Type of surgery

Training set 85 4788

Olympus T1, T2, T3 LCRR Validation set 9 345

Test set 1 10 369

Test set 2 5 103 T1, T2, T3 LCRR 

Sub test set 2.1 2 40 Stryker

Sub test set 2.2 3 63 Karl Storz

Test set 3 3 124 LCRR 

Sub test set 3.1 1 31

Olympus

T4

Sub test set 3.2 1 74 T5

Sub test set 3.3 1 19 T6

Test set 4 16 223 T1, T2, T3

Sub test set 4.1 5 65

Olympus

LDG

Sub test set 4.2 5 81 LC

Sub test set 4.3 6 77 LPH
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respectively, and every annotated image in the training set was input into the model. The model architecture and 
workflow of the deep neural network are shown in Supplementary Fig. 2. The network weight was initialized to 
a pre-trained one on the  ImageNet23 and  COCO24 datasets, and fine-tuning was then performed for the training 
set. ImageNet is a large visual database designed for use in visual object recognition tasks. It contains more than 
14 million images with labels of more than 20,000 typical categories, such as “balloon” and “strawberry.” COCO 
is a large-scale dataset for object detection, segmentation, and captioning. It contains more than 120,000 images 
with more than 880,000 labeled instances for 80 object types.

The model was trained and tested to distinguish between T1, T2, and T3. For test set 3, the model was tested 
for if T4, T5, and T6 could be recognized as T3. The best epoch model based on the model performance on the 
validation set was selected. Horizontal and vertical flips were used for data augmentation. The hyperparameters 
used for the model training are listed in Supplementary Table 1.

Code and computer specification. The code was written using Python 3.6 (Python Software Foundation, 
Wilmington, DE, USA), and the model was implemented based on  MMDetection25, which is an open-source 
Python library for object detection and instance segmentation.

A computer equipped with an NVIDIA Quadro GP100 GPU with 16 GB of VRAM (NVIDIA, Santa Clara, 
CA, USA) and  Intel®  Xeon® CPU E5-1620 v4 @ 3.50 GHz with 32 GB of RAM was utilized for network training.

Model performance. The intersection over union (IoU) and average precision (AP) were utilized as met-
rics to assess the model performance for the surgical-instrument-segmentation task.

The IoU was calculated for each pair of X (the area annotated as the ground truth) and Y (predicted area 
output by the model), which simply measures the overlap of the two areas divided by their union, as follows:

The mean AP (mAP) is a metric that is widely used for object-detection and instance-segmentation  tasks23,24,26. 
It is calculated from the area under the precision–recall curve that is described based on the number of true 
positives (TP), false negatives (FN), and false positives (FP). Assigned pairs of X and Y were defined as TP and 
FN when their IoU was more and less than 0.75, respectively, and they were defined as FP when no pairs could 
be assigned.

To confirm the reproducibility of the results, we trained five models for each test set with different random 
seeds and reported the metrics averaged over the five models as the mean (± standard deviation).

Ethical approval. Ethics Committee of National Cancer Center Hospital East, Chiba, Japan (Registration 
No.: 2020-315).

Informed consent. Informed consent was obtained in the form of an opt-out on the study website.

Consent for publication. The authors affirm that the human research participants provided informed con-
sent for the publication of the images in the figures.

Results
The results for test set 1 are shown in Fig. 2A. The mAP and mean IoU (mIoU) for test set 1 were 0.941 (± 0.035) 
and 0.887 (± 0.012), respectively, and the AP and IoU for T1, T2, and T3 were 0.958 and 0.892, 0.969 and 0.895, 
and 0.895 and 0.876, respectively (Fig. 2A). These results were utilized as control values for comparison in this 
study.

The mAP and mIoU for test set 2 were 0.866 (± 0.035) and 0.671 (± 0.082), respectively. These results indicate 
that when different laparoscopic recording systems were utilized, the mAP and mIoU slightly deteriorated as 
compared with the control values, even though the other conditions were the same as for the training set. The 
mIAP and mIoU values that were acquired when using the laparoscopic recording systems produced by the 
Stryker and Karl Storz cameras were 0.893 and 0.608 and 0.839 and 0.735, respectively (Fig. 2B). The repre-
sentative images recorded by each laparoscopic recording system are shown in Fig. 3. Each color tone is slightly 
different, even in the macroscopic observation.

The mAP and mIoU for test set 3 were 0.772 (± 0.062) and 0.676 (± 0.072), respectively. Although T4–T6 are 
also classified as laparoscopic surgical forceps in a broad sense, the recognition accuracy for T4–T6 deteriorated 
as compared with that for T3. The AP and IoU for T4, T5, and T6 were 0.715 and 0.678, 0.756 and 0.592, and 
0.846 and 0.758, respectively (Fig. 2C).

The mAP and mIoU for test set 4 were 0.588 (± 0.151) and 0.395 (± 0.127), respectively. For a different type of 
surgery, the mAP and mIoU values significantly deteriorated as compared with the control values, even though 
the other conditions were the same as for the training set. The mAP and mIoU for LDG, LC, and LPH were 0.782 
and 0.565, 0.468 and 0.300, and 0.513 and 0.319, respectively (Fig. 2D). The representative images for each type 
of surgery are shown in Fig. 4. The foreground surgical instruments are the same, especially in LC and LPH; 
however, the background is significantly different from the LCRR case, even for the macroscopic observation.

The surgical-instrument segmentation accuracy and representative segmentation results for each test set are 
shown in Table 2 and Supplementary Fig. 3, respectively.

IoU = |X ∩ Y |/|X ∪ Y |.
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Discussion
In this study, we demonstrated that our surgical-instrument-segmentation network possesses high accuracy 
(mAP: 0.941, mIoU: 0.887). However, the generalizability of a single deep neural network applied to laparo-
scopic surgery has limitations, i.e., a minor change in the laparoscopic surgery conditions significantly affects 
the recognition accuracy of the surgical instrument.

First, these results suggest that the intraoperative video dataset recorded by a single laparoscopic recording 
system is insufficient to generalize a deep neural network. The recognition accuracy for test set 2 slightly deterio-
rated because the color tone was slightly different between the images recorded by each system even though the 
same objects were captured in each image. Second, because there are numerous types of surgical instruments, 
differences between hospitals, and updates to the versions of surgical devices produced by each company every 
several years, the training set needs to be updated as the device lineups and versions at the hospitals change. 
Third, even if a highly accurate surgical-instrument recognition network is successfully developed for one type 
of surgery, it cannot be applied to other types of surgery with similar accuracy. In particular, the more different 

Figure 2.  Surgical-instrument recognition-accuracy results (AP average precision, IoU intersection over union, 
mAP mean average precision, mIoU mean intersection over union). (A) AP and IoU under the same condition 
as the training set (T1: harmonic shears; T2: endoscopic surgical electrocautery; T3: Aesculap AdTec atraumatic 
universal forceps). (B) mAP and mIoU for different types of laparoscopic recording systems. (C) AP and IoU for 
different types of laparoscopic surgical forceps (T3: Aesculap AdTec atraumatic universal forceps; T4: Maryland; 
T5: Croce-Olmi; T6: needle holder). (D) mAP and mIoU for different types of surgery (LCRR  laparoscopic 
colorectal resection, LDG laparoscopic distal gastrectomy, LC laparoscopic cholecystectomy, LPH laparoscopic 
partial hepatectomy).

Figure 3.  Representative images recorded by each laparoscopic recording system. (A) Endoeye laparoscope 
(Olympus Co., Ltd., Tokyo, Japan) and Visera Elite II system (Olympus Co., Ltd, Tokyo, Japan). (B) 1488 HD 
3-Chip camera system (Stryker Corp., Kalamazoo, MI, USA). (C) Image 1 S camera system (Karl Storz SE & 
Co., KG, Tuttlingen, Germany).
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the image background from the training set, the lower the recognition accuracy. In summary, diversity in the 
training set in terms of the type of laparoscopic recording system, types and versions of surgical instruments, 
and type of surgery used as the image background are considered crucial when applying a deep neural network 
to multi-institutional surgery in a real-world surgical setting.

Several previous scholars have investigated the generalizability of deep neural networks, specifically, the so-
called “domain shift”, which refers to the training of a network on data from one domain and applying it to data 
from another. Zech et al. investigated the training of a CNN for pneumonia screening on chest X-rays general-
ized to new cohorts, and they identified significantly lower performance when the network was applied to X-ray 
images collected from hospitals that were not included in the training  set27. Previous researchers have investigated 
CNN-based brain magnetic resonance imaging (MRI) image recognition performance and demonstrated that 

Figure 4.  Representative images of each type of surgery. (A) LCRR; (B) LDG; (C) LC; (D) LPH.

Table 2.  Surgical-instrument segmentation accuracy for each test set. Mean (± SD). AP: average precision, 
IoU intersection over union, T1 harmonic shears, T2 endoscopic surgical electrocautery, T3 Aesculap AdTec 
atraumatic universal forceps, T4 Maryland, T5 Croce-Olmi, T6 needle holder, LDG laparoscopic distal 
gastrectomy, LC laparoscopic cholecystectomy, LPH laparoscopic partial hepatectomy, SD standard deviation.

AP IoU

Test set 1

T1 0.958 (± 0.015) 0.892 (± 0.011)

T2 0.969 (± 0.011) 0.895 (± 0.011)

T3 0.895 (± 0.009) 0.876 (± 0.001)

Mean 0.941 (± 0.035) 0.887 (± 0.012)

Test set 2

Sub test set 2.1 (Stryker) 0.893 (± 0.021) 0.608 (± 0.068)

Sub test set 2.2 (Karl Storz) 0.839 (± 0.021 0.735 (± 0.019)

Test set 3

Sub test set 3.1 (T4) 0.715 (± 0.010) 0.678 (± 0.014)

Sub test set 3.2 (T5) 0.756 (± 0.020) 0.592 (± 0.008)

Sub test set 3.3 (T6) 0.846 (± 0.041) 0.758 (± 0.020)

Test set 4

Sub test set 4.1 (LDG) 0.782 (± 0.013) 0.565 (± 0.025)

Sub test set 4.2 (LC) 0468 (± 0.071) 0.300 (± 0.022)

Sub test set 4.3 (LPH) 0.513 (± 0.051) 0.319 (± 0.022)
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the performance of a CNN trained on MRI images from homogeneous research cohorts generally decreases 
when it is applied to other  cohorts28,29. However, to the best of our knowledge, the present study is the first in 
which the generalizability of a single deep neural network for surgical instrument segmentation has been com-
prehensively investigated.

Automatic surgical-instrument recognition can be applied to the following two major research fields: robotics 
and skill assessment. Visual servoing is “actively controlled”, which means that it uses visual information to con-
trol the pose of the robot end effector relative to a target  object30. Laparoscope-holder robots with visual servoing 
may assist surgeons in fully concentrating on the surgical task. In laparoscope-holder robots, the key to visual 
servoing is the marker-free tracking framework of the surgical  instruments31,32. Therefore, in the future of the 
surgical field, automatic surgical-instrument recognition technology will play a pivotal role in the development 
of laparoscope-holder robots and the realization of autonomous MIS. Surgical skill assessment tools, such as 
the Objective Structured Assessment of Technical  Skills33 and the Global Operative Assessment of Laparoscopic 
 Skills34, have been utilized to objectively evaluate the basic surgical skills of surgical trainees; however, these tools 
rely on the observations and judgments of an  individual35, which are inevitably associated with subjectivity and 
bias. Therefore, fair and objective automatic surgical skill assessment without a time-consuming video-review 
process has attracted attention in recent years. Automatic surgical-instrument recognition also plays a pivotal 
role in extracting kinematic data associated with surgical skills in MIS.

In supervised deep-learning research, the expense and time consumption of the manual annotation process 
used to construct large-scale datasets that are representative of real-world settings are major limitations. Moreo-
ver, even if a deep neural network that can demonstrate high performance under specific conditions is developed 
for a surgical-instrument-segmentation task, its usefulness is limited because real conditions are diverse and 
variable, and it is almost impossible to consider all of them. Therefore, clarifying the conditions to which a single 
surgical-instrument segmentation network can be applied is highly important for future development and imple-
mentation in terms of reducing annotation cost and time. Because the results of this study demonstrated that 
even slight changes in the image background affect the surgical-instrument recognition accuracy, the omission 
of the annotation step is not recommended. Considering the characteristics of deep neural networks, especially 
CNN-based image recognition approaches wherein the extraction of features from every pixel in an image is 
attempted, these results appear reasonable. However, it might be possible to eliminate the man-hours required 
for annotation by introducing a semi-supervised segmentation network even in different surgical environments, 
and this should be verified in future studies.

There are several limitations to this study. First, the objective of this study was to clarify how the generaliz-
ability of deep neural networks was limited in the surgical artificial intelligence research field, and the caution 
against biased datasets and models based on them was also implied. The generalizability may be improved by 
introducing different data-augmentation methods or different model architectures; however, because it was not 
the primary objective of this study, it was not considered. Second, although the video dataset utilized in this 
study contained relatively large multi-institutional data, it was a retrospective experimental observational study, 
and prospective validation was not performed. Further, because the dataset contained only images with surgi-
cal instruments, the FP in images without surgical instruments was not reflected in the results. Third, although 
the study results are considered to be highly important benchmarks for future research and development using 
deep neural networks in surgery, they provide no direct clinical benefit at the moment because we are still in 
the initial phase.

In conclusion, in a surgical-instrument segmentation task, the generalizability of a single deep neural network 
is limited, i.e., the recognition accuracy deteriorates even under slightly different conditions. Consequently, to 
enhance the generalization ability of a deep neural network, it is crucial to construct a training set that considers 
the diversity of the surgical environment in a real-world surgical setting.

Data availability
The datasets generated and analyzed during the present study are available from the corresponding author upon 
reasonable request.

Code availability
Available via GitHub upon reasonable request.
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