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LETTER TO THE EDITOR

WDR26 and MTF2 are therapeutic targets 
in multiple myeloma
Fumou Sun1†, Yan Cheng1†, Jesse D. Riordan2, Adam Dupuy2, Wendy Dubois3, Michael Pisano1,4, Jing Dong1,5, 
Beverly Mock3, Fenghuang Zhan6, Parameswaran Hari1,5 and Siegfried Janz1,5*   

Abstract 

Unbiased genetic forward screening using retroviral insertional mutagenesis in a genetically engineered mouse 
model of human multiple myeloma may further our understanding of the genetic pathways that govern neoplastic 
plasma cell development. To evaluate this hypothesis, we performed a tumor induction study in MYC-transgenic mice 
infected as neonates with the Moloney-derived murine leukemia virus, MOL4070LTR. Next-generation DNA sequenc-
ing of proviral genomic integration sites yielded rank-ordered candidate tumor progression genes that accelerated 
plasma cell neoplasia in mice. Rigorous clinical and biological validation of these genes led to the discovery of two 
novel myeloma genes: WDR26 (WD repeat-containing protein 26) and MTF2 (metal response element binding tran-
scription factor 2). WDR26, a core component of the carboxy-terminal to LisH (CTLH) complex, is overexpressed or 
mutated in solid cancers. MTF2, an ancillary subunit of the polycomb repressive complex 2 (PRC2), is a close functional 
relative of PHD finger protein 19 (PHF19) which is currently emerging as an important driver of myeloma. These find-
ings underline the utility of genetic forward screens in mice for uncovering novel blood cancer genes and suggest 
that WDR26-CTLH and MTF2-PRC2 are promising molecular targets for new approaches to myeloma treatment and 
prevention.
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To the Editor,
Multiple myeloma (MM) is a common blood cancer 
derived from terminally differentiated B-lymphocytes 
called plasma cells (PCs). Despite recent advancements 
in treatment options, MM remains incurable in the great 
majority of cases, with no more than half of patients sur-
viving past 5 years [1]. Reasons for poor outcome include 
tumor heterogeneity and severe limitations in our knowl-
edge base on genetic pathways that drive neoplastic PC 
development from an early progenitor stage to frank 

malignancy. Unbiased genetic forward screening using 
proviral insertional mutagenesis [2] in a dedicated mouse 
model of human myeloma may lend itself to attacking 
this knowledge gap. Here, we employ this approach, for 
the first time, to discover two candidate genes that may 
yield new opportunities for molecularly targeted mye-
loma treatments: WDR26 (WD repeat-containing protein 
26) and MTF2 (metal response element binding tran-
scription factor 2).

Our experimental strategy for detecting presump-
tive therapeutic targets in MM is depicted in Fig.  1a. 
The first step was a tumor induction study in iMycΔEµ 
mice, a gene-insertion model of the chromosomal 
T(12;15) translocation that results in deregulated expres-
sion of Myc in B-lineage cells [3]. Because T(12;15) is a 
tumor-initiating event in mouse plasmacytoma [4] and 
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upregulation of MYC is a well-established mechanism of 
tumor progression in human myeloma [5], the iMycΔEµ 
transgene served as an ideal “sensitizer” for skewing the 
oncogenic potency of the murine leukemia virus (MuLV), 
MOL4070LTR, to plasmablasts and PCs. MOL4070LTR 
is a modified Moloney-MuLV that contains the LTR U3 
enhancer region from the amphotropic MuLV, 4070A [6]. 
Infection of newborn iMycΔEµ mice with MOL4070LTR 
resulted in accelerated tumor development (Fig.  1b): 
51 of 68 (75%) virus-treated mice developed tumors by 
210 days of age, whereas less than a quarter of untreated 
mice demonstrated malignant growth by 505 days. Histo-
pathological tumor classification relied on immunostain-
ing for T cell (CD3), B cell (Pax5, B220) and PC (CD138) 
markers to assign tumor-bearing mice with virus-accel-
erated neoplasms to the B-lineage (31%) or T-lineage 
(44%). A quarter of mice (25%) contained both B- and 
T-cell tumors (Fig. 1c). From all mice carrying B-lineage 
tumors (n = 21), eight individual tumor samples (spleen 
plus peripheral and deep lymph nodes) were collected 
on average. Most tumors were categorized as plasmacy-
toma (Fig. 1d, left) or plasmablastic lymphoma (Fig. 1d, 
right) in accordance with the Bethesda proposal of lym-
phoid tumors in mice [7]. A total of 168 tumor specimens 
were analyzed for common retroviral insertion sites (CIS) 
as depicted in Additional file 1: Fig. S1. From nearly half 
a million mapped sequence reads, approximately 45 
thousand proviral integration events were extracted. To 
unequivocally identify CIS, we used a biocomputational 
algorithm based on Monte Carlo statistics that consid-
ered both the number of independent integration sites 
in a given DNA window and the distance between the 

sites. We defined a CIS as the minimum genomic region 
in which 5 to 7 unique insertions were found to be sig-
nificant at p < 0.05, provided that no more than two inser-
tions were derived from the same tumor. CIS windows 
ranged from 10 to 40 kb, corresponding to the size of the 
transcriptional unit of the average mouse gene (~ 30 kb). 
A total of 171 CIS-tagged candidate genes were identi-
fied and rank ordered according to proviral insertion fre-
quency. The top 100 genes are shown in Fig. 1e. Included 
are many genes one might have expected in a forward 
genetic screen of neoplastic PC development; e.g., Ccnd2 
on Chr 6, Hras on Chr 7 and Myc on Chr 15.

Bioinformatics analysis of the top 100 genes using 
STRING (string-db.org) demonstrated their tight associ-
ation with the oncogenic MYC network (Fig. 1f ). KEGG 
analysis (www.​kegg.​jp) revealed significant enrichment 
in cancer-relevant pathways including blood cancers 
such as AML and CML (Fig. 1g). GO analysis of biologi-
cal processes (geneontology.org) demonstrated strong 
enrichment in pathways of hematopoiesis, hematopoietic 
or lymphoid organ development, and regulation of leuko-
cyte differentiation (Fig.  1h). These results underscored 
the relevance of the top 100 genes for MM and encour-
aged us to narrow them down to the most promising can-
didates. This process began with two steps denoted “Filter 
1” in Fig. 1a, top right. The first step asked the question 
whether upregulation of the human orthologs of the top 
100 mouse genes predicted to be upregulated by provi-
ral insertion might be associated with inferior survival 
in human myeloma. We chose the MMRF CoMMpass 
study to test for associations of gene expression and 
survival because this study evaluates outcomes in over 

(See figure on next page.)
Fig. 1  Discovery of WDR26 and MTF2 in unbiased genetic forward screen using Myc-transgenic mice. a Schema of workflow that led to the 
nomination of WDR26 and MTF2 as candidate myeloma genes. Filters used to pare down the list of 100 input genes to 2 candidate genes 
are indicated on the right. b Accelerated tumor development in iMycΔEµ gene-insertion mice treated with MOL4070LTR (mean tumor onset 
178 ± 94 days; range 46–348 days) compared to mice not infected with virus (mean tumor onset 384 ± 86 days; range 245–505 days). Virus 
was injected IP (5 × 104 colony forming units/10 µL) using a 30-gauge needle. c Tumor pattern in virus-infected mice from b. d Tissue section 
of plasmacytoma (left) and B lymphoma exhibiting plasmablastic differentiation (right) stained according to hematoxylin and eosin (H&E) and 
immunostained using antibody to CD138, respectively. e Ideogrammatic representation of mouse autosomes plus chromosome X indicating the 
genomic location of the top 100 candidate B cell and plasma cell tumor genes detected. Genes that passed Filters 1, 2 and 3 in a are labeled using 
orange, green and red dots, respectively. Thin red or blue lines denote whether cRIS mapping predicts increased or decreased gene expression due 
to proviral insertion. f Network of MYC-interacting proteins visualized by STRING (Search Tool for the Retrival of Interacting Genes). Proteins (n = 27) 
that interact with MYC directly or indirectly are depicted in red or blue, respectively. The minimum required interaction score was 0.5. Red and black 
lines within the network circle denote direct and indirect interactions with MYC, respectively. The symbols for WDR26 and MTF2 are enlarged for 
enhanced visibility. Network visualization relied on Cytoscape 3.8.2. g KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis of the 
top 100 candidate genes. Enrichment scores are denoted by ovals which indicate both the number of pathway genes involved (count) and level 
of statistical significance (blue saturation). h GO (Gene Ontology) term enrichment analysis of biological processes using the top 100 candidate 
genes from a as input. i Magnitude of RNAi-dependent knockdown (KD) of WDR26 and MTF2 expression in three different HMCLs relative to HMCLs 
transfected with scrambled message (control). j Programmed cell death in HMCLs exhibiting low WDR26 or MTF2 expression (KD) compared to 
HMCLs cells containing normal message levels (control). Gene knockdown relied on Sigma MISSION® Endoribonuclease-prepared siRNAs (esiRNAs, 
50 ng), a heterogeneous mix of siRNAs that target the same message. k Growth inhibition (PrestoBlue™) of HMCLs harboring low levels of WDR26 or 
MTF2 message. Genes were knocked down using Mission EHU esiRNAs 150,671 (WDR26) and 042,951 (MTF2)

http://www.kegg.jp
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one thousand patients in a publicly accessible fashion 
(https://​resea​rch.​themm​rf.​org). The second filtering 
step relied on the DepMap data explorer tool (depmap.
org/portal), which provides CRISPR and RNAi depend-
ency scores that indicate whether a gene of interest is 
important and functionally non-redundant in myeloma 
in vitro. Twenty-two of the top 100 mouse genes (labeled 
with colored dots in Fig.  1e) passed Filter 1. Next, we 
performed a rigorous PubMed analysis of the 22 genes 
for published evidence on their involvement in MM and 
related diseases (“Filter 2” in Fig.  1a). Only eight genes 
(green and red in Fig. 1e) promised novelty for myeloma. 
These candidates proceeded to “Filter 3” in Fig. 1a, which 
assessed whether shRNA-mediated knockdown (KD) of 
gene expression inhibited myeloma in cell culture. Three 
HMCLs were transfected with eight different Mission 
EHU esiRNAs, and gene KD was verified by qPCR in 8 
of 8 cases (not shown). However, significant (p < 0.01) and 
consistent inhibition (in 3 of 3 cell lines) was only seen in 
two cases: WDR26 and MTF2 (Fig. 1i–k).

To validate WDR26 and MTF2 in greater depth, we 
gathered additional clinical and biological data (Fig.  2). 
Clinical results in support of the contention that 
WDR26 and MTF2 are important in MM include the 
circumstance that gene expression was upregulated in 
smoldering and frank myeloma (Fig.  2a), that message 
levels in the DREAM Challenge study [8] were elevated 
in high-risk compared to standard-risk myeloma (Fig. 2b) 
and that high amounts of mRNA in myeloma cells of 
CoMMpass patients predicted inferior overall survival 
(Fig.  2c). To strengthen the biological evidence on the 
impact of WDR26 and MTF2 in MM, we complemented 
the KD data shown in Fig.  1i–k with loss-of-function 
studies using CRISPR-Cas9 engineered gene knockouts 

(KO) in myeloma cells (Fig. 2d). WDR26 or MTF2 defi-
ciency compromised the growth of myeloma in both 
bulk suspension (Fig.  2e) and clonogenic soft-agar cul-
ture (Fig. 2f ). KO led to a significant increase in apoptotic 
cell death measured with the help of annexin V immu-
noreactivity (Fig.  2g, h). In  vivo studies using HMCL-
in-mouse xenografts added further confidence to these 
results: WDR26 or MTF2 deficient tumors grew more 
slowly than their normal counterparts (Fig. 2i, j) and thus 
permitted longer survival of host mice (Fig. 2k). Employ-
ment of GFP as reporter of malignant growth produced 
similar results; e.g., the abundance of tumor cells in the 
bone marrow of mice harboring WDR26 or MTF2 defi-
cient myeloma was cut in half compared to controls 
(Fig. 2l, m).

In conclusion, this study used a sensitized forward 
genetic screen in laboratory mice to nominate WDR26 
and MTF2 as candidate myeloma genes. WDR26 is a 
component of the CTLH complex that is mutated or 
upregulated in many solid cancers [9]. WDR26 has not 
been implicated in blood cancers, yet its significance as 
therapeutic target in carcinomas has been recognized 
[10]. MTF2, an accessory unit of the PRC2 complex 
involved in gene repression and growth promotion of 
various cancers [11], is a validated molecular target in 
AML [12]. MTF2 is new in myeloma, but PHF19, another 
accessory unit of PRC2, has emerged as a major player in 
MM [8, 13–15]. Both MTF2 and PHF19 are preferentially 
overexpressed in high-risk myeloma. Additional research 
is warranted to elucidate the oncogenic networks of 
WDR26 and MTF2 in myeloma because this may point 
to new avenues for molecularly targeted treatments and 
preventions.

Fig. 2  Clinical and biological validation of WDR26 and MTF2 in myeloma. a WDR26 (top) and MTF2 (bottom) expression levels (GSE 2658 and 
5900 datasets) in bone marrow plasma cells from healthy individuals (BMPC, n = 22) or patients with monoclonal gammopathy of undetermined 
significance (MGUS, n = 44), smoldering myeloma (SMM, n = 12) or frank myeloma (MM, n = 559). MM data are from GSE2658, all others from 
GSE5900. b Comparison of mean mRNA levels of WDR26 (top) or MTF2 (bottom) in patients with standard-risk myeloma (SR, n = 690) or high-risk 
myeloma (HR, n = 287), using data from the Multiple Myeloma DREAM Challenge study. c Overall survival (OS) of patients with myeloma in 
the MMRF CoMMpass study stratified according to WDR26 (top) or MTF2 (bottom) message levels in malignant plasma cells. The top quartile 
(n = 194, red) and bottom quartile (n = 194, blue) are compared. HR, hazard ratio. d Western analysis of WDR26 (left) or MTF2 (right) in normal 
(N) or gene-targeted (KO) myeloma cell lines, OPM2, H929 and MM1.S. KO protocols including gRNA sequences are available upon request. e 
Growth of HMCLs in bulk suspension culture. Cells deficient in WDR26 (blue) or MTF2 (red) are compared to parental cells (black) used as control. 
f Clonogenic growth of OPM2 (top), H929 (center) and MM1.S cells (bottom) lacking WDR26 (blue) or MTF2 (red) or containing the proteins 
(black). Representative images of soft-agar plates are shown to the left. The bar diagram to the right displays mean colony numbers ± SD based 
on three independent experiments. g Representative flow cytometric scatter plots of apoptotic death (red, labeled rectangles) of WDR26 or MTF2 
deficient HMCLs compared to normal cells. h Mean values of apoptosis based on three independent measurements. Standard deviations are 
indicated by short vertical lines (***p < 0.001). i Bioluminescence images of NSG mice on days 10, 20, 30 and 40 following challenge with OPM2 
cells (upper panel) or H929 cells (lower panel) deficient of WDR26 (center column) or MTF2 (right column). Parental cells proficient of these proteins 
served as control (left column). j Quantitative analysis of bioluminescence signal strength in mice from h. k Kaplan–Meier survival curves of mice 
depicted in h. Statistical comparison relied on log rank analysis. l Flow cytometry histogram distinguishing GFP-expressing tumor cells in the bone 
marrow of xenotransplanted mice from h (smaller peaks, right) from bone marrow cells not expressing GFP (larger peaks, left). m Abundance of 
GFP-expressing tumor cells in the bone marrow of mice from h 

(See figure on next page.)

https://research.themmrf.org
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AAD: 7-Aminoactinomycin D; AML: Acute myeloid leukemia; CML: Chronic 
myeloid leukemia; CIS: Common retroviral insertion site; CTLH: Carboxy-
terminal to LisH; GFP: Green fluorescent protein; HMCL(s): Human myeloma 
cell line(s); LTR: Long terminal repeat; KD: Knockdown; KO: Knockout; LTR: Long 
terminal repeat; MM: Multiple myeloma; MMRF: Multiple Myeloma Research 
Foundation; MOL4070LTR: Moloney derived MuLV; MTF2: Metal response 
element binding transcription factor 2; MuLV: Murine leukemia virus; NGS: 
Next-generation sequencing; PC(s): Plasma cell(s); PRC2: Polycomb repressive 
complex 2; WDR26: WD repeat-containing protein 26.
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Additional file 1. Fig. S1. Identification of proviral integration sites and 
candidate driver genes. Genomic DNA was extracted from malignant 
tissues harvested from MOL4070LTR-infected mice. Approximately 1 μg 
of genomic DNA was then digested using either MseI or NlaIII. Next, 200 
ng of digested DNA was ligated to double-stranded adaptors (NlaIII linker: 
5’-GTA ATA CGA CTC ACT ATA GGG CTC CGC TTA AGG GAC CAT G-3’ and 
5’-Phos-GTC CCT TAA GCG GAG-C3spacer-3’, MseI linker: 5’-GTA ATA CGA 
CTC ACT ATA GGG CTC CGC TTA AGG GAC-3’ and 5’- Phos-TAG TCC CTT 
AAG CGG AG-C3spacer-3’). Following adaptor ligation, DNA was digested 
with EcoRV to eliminate the internal proviral fragment (indicated by red 
cross). EcoRV-digested DNA was then amplified (primary PCR) using 
primers annealing to the adaptor (5’-GTA ATA CGA CTC ACT ATA GGG 
CTC CG-3’) and the proviral LTR (5’-GCT AGC TTG CCA AAC CTA CAG GTG 
G-3’). PCR products were diluted 1:50 in sterile water. Two microliters of 
diluted PCR product was re-amplified (secondary PCR) using nested prim-
ers annealing to the adaptor (5’-AGG GCT CCG CTT AAG GGA C-3’) and 
proviral LTR (5’-CCA AAC CTA CAG GTG GGG TCT TTC-3’). Amplicons from 
the second round of PCR were purified to remove unincorporated primers 
and nucleotides and directly sequenced on an Illumina platform. Raw 
sequences were trimmed to remove adaptors and viral sequences and 
mapped to the mouse reference genome. Candidate driver genes were 
identified using Monte Carlo simulation as previously described (PMID: 
21931803).
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