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ABSTRACT. Objective. To derive a difference equation

based on mass conservation and on alveolar tidal volumes for

the calculation of Functional Residual Capacity. Derive an

equation for the FRC from the difference equation.

Furthermore, to derive and validate a step response equation

as a solution of the difference equation within the framework of

digital signal processing where the FRC is known

a priori. Methods. A difference equation for the calculation

of Functional Residual Capacity is derived and solved as step

response of a first order system. The step response equation

calculates endtidal fractions of nitrogen during multiple breath

nitrogen clearance. The step response equation contains the

eigenvalue defined as the ratio of FRC to the sum of FRC

and alveolar tidal ventilation. Agreement of calculated nitrogen

fractions with measured fractions is demonstrated with data

from a metabolic lung model, measurements from patients

in positive pressure ventilation and volunteers breathing

spontaneously. Examples of eigenvalue are given and

compared between diseased and healthy lungs and between

ventilatory settings. Results. Comparison of calculated and

measured fractions of endtidal nitrogen demonstrates a high

degree of agreement in terms of regression and bias and limits of

agreement (precision) in Bland & Altman analysis. Examples

illustrate the use of the eigenvalue as a possible discriminator

between disease states. Conclusion. The first order step

response equation reliably calculates endtidal fractions of

nitrogen during washout based on a Functional Residual

Capacity. The eigenvalue may be a clinically valuable index

alone or in conjunction with other indices in the analysis of

respiratory states and may aid in the setting of the ventilator.

KEY WORDS. physiologic monitoring, respiration disorder,

functional residual capacity, nitrogen washout, digital signal

processing, mechanical ventilators.

INTRODUCTION

Functional Residual Capacity, FRC, is the lung volume at
the end of a relaxed expiration to atmospheric pressure.
The FRC is affected by lung diseases and thus is a central
measure for diagnosis, treatment and monitoring in
anesthesia and intensive care. The calculation of FRC
from measurement of multiple breath nitrogen washout
(MBNW) when abruptly changing the fraction of inspired
oxygen (FIO2) was introduced by Darling [1]. The
method entailed the measurement of the mixed expiratory
fraction of nitrogen before and after a step increase in
oxygen and can be explained with the following simple
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example. Start with a person spontaneously breathing
room air. The inspired fraction of oxygen, FIO2, is 0.21
and the balance is N2, i.e. FIN2 = 0.79. Assume dry
alveolar fractions of O2 = 0.16, FAO2, of N2 = 0.79,
FAN2, and of CO2 = 0.05, FACO2. If the equilibrium
between FIN2 and FAN2 is disrupted by having the person
inhale at FIO2 of 1 while exhaling into a bag, eventually
all alveolar nitrogen will be transferred to the bag. FRC
equals VN2 divided by the change in fraction of nitrogen
that was in the lung:

FRC ¼ VN2bag

DFAN2

; DFAN2¼ 0:79: ð1Þ

VN2bag can be found by multiplying the bag nitrogen
fraction with the total volume accumulated in the bag.
With the advent of the nitrogen analyzer [2], the mass
spectrometer [3] and the use of high precision spirometers
the washout could be followed on a breath-by-breath
basis [4]. This refinement eliminated the need for the bag
and replaced the numerator in Equation (1) with the
expired volumes of nitrogen summed over the number of
breaths. The modification is heavily reliant on the exact
synchronization of analysis of FN2 and expired volume for
the calculation of breath-by-breath volume of nitrogen.
Modern modifications of MBNW have utilized flow
measurement synchronized with measurement of nitrogen
fractions [5]. The next refinement allows for any step
change in nitrogen. The example above utilized FIO2 to
step FAN2 from 0.79 to 0. Instead, any step change in
FIO2 could be used to create a corresponding step change
in nitrogen.

Later, Darling et al. [6] established the ratio of func-
tional residual air, R, divided by the sum of functional
residual air and effective tidal volume, T ¢, as ‘dilution
rate’, r, describing the nitrogen clearance curve:

r ¼ R

R + T 0
: ð2Þ

This factor multiplied by initial alveolar fraction of
nitrogen and raised to the power of breath number al-
lowed for the calculation of fraction of nitrogen in the
expired volume of air. Fowler [7] expanded the concept
of the alveolar dilution factor to encompass three lung
phases and introduced the term ‘pulmonary nitrogen
clearance delay’, adding another characterization of the
nitrogen clearance curve. The list has since been extended
by investigators in pulmonary physiology, see [8, 9].

Recently, a modification of the MBNW method has
been introduced [10], implicitly utilizing a first order
difference equation for the calculation of FRC based on
mass conservation and a change in FIO2 of 0.1. In the
present study, the difference equation is solved for the step

response using basic digital signal processing (DSP) tech-
niques [11] where the step is interpreted as the nitrogen
fraction change initiating the measurement. The resulting
step response equation by comparing calculated clearance
data to experimental and clinical washout data. Finally, we
discuss technical and clinical limitations in addition to
characteristics of the measurement.

METHODS AND MATERIALS

The modified MBNW and difference equation

The first order difference equation based on mass con-
servation of nitrogen over one breath after a step change
in inhaled N2 fraction is described in Equation (3).

VTI � FIN2low + FRC � FAN2n�1

= VTE � F�EN2n
+ FRC � FAN2n

ð3Þ

The step change in nitrogen occurs at breath index
n = 0.The step is from FIN2high to FIN2low which will
lead to N2 washing out. F�EN2 is an average breath frac-
tion of expired gas which includes gas from anatomical
(series) dead space. FAN2n depends on the fraction of the
immediately preceding breath FAN2n�1 :VTI and VTE

designate inspiratory and expiratory tidal volumes. In all
equations the notation ‘FRC’ designates relaxed end-
expiratory volume regardless of PEEP. A refinement is to
measure the lung volume to the exclusion of tidal ana-
tomical dead space, VDTanat. Thus, the VTE and VTI of
Equation (3) must be replaced by the alveolar tidal vol-
umes, VATE and VATI. Also, using endtidal CO2 fraction,
FETCO2, as approximating alveolar fraction, FACO2, the
following equations can be used to calculate the alveolar
tidal volumes:

VATE =
VTCO2

FETCO2
; ð4Þ

where VTCO2 is the tidal excretion of CO2.

VATI = VATE +
VTCO2

RQ
� VTCO2

� �
ð5Þ

RQ is the respiratory quotient defined as RQ=
VTCO2

VTO2
:

The value of RQ depends on the composition of substrate
being metabolized. For example, RQ = 1 when carbo-
hydrates are being metabolized and RQ = 0.7 when fat is
being metabolized. The range of RQ is typically from 0.7
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to 1.0 with reservation for gluconeo- and lipogenesis [12].
A fixed value of RQ of 0.8 is used in Equation (5).

For the purpose of accumulating the in- and expired
volumes of nitrogen, the fractions of nitrogen are calculated
as residue. This obviates the need of a nitrogen analyzer.

FIN2 = 1 � FIO2 ð6Þ

FETN2 = 1 � FETCO2 � FETO2 ð7Þ

Substituting for alveolar volumes and endtidal fractions,
Equation (3) becomes:

VATI � FIN2low + FRC � FETN2n�1

= VATE � FETN2n
+ FRC � FETN2n

ð8Þ

This is a first order difference equation. This difference
equation represents sampling of a continuous process. The
FIN2 and FETN2 are based on samples from the contin-
uous FCO2 and FO2 signals according to Equations 6 and
7, see Figure 1. VATI and VATE are calculated according
to Equations (4) and (5).

In the presence of alveolar (parallel) dead space,
FETCO2 \ FACO2 and, as a result, the equations include
alveolar dead space.

Two solutions to Equation (8) will be given. First, the
FRC is found by summing both sides of Equation 8 over
the total number of breaths,

FRC ¼
P
ðVATE � FETN2 � VATI � FIN2lowÞ

FETinitN2 � FETlatestN2

¼
P

(VAEN2 � VAIN2)

FETinitN2 � FETlatestN2
¼
P

dVAN2

dFETN2
:

ð9Þ

FETinitN2 denotes the initial condition at time n equals
)1 which is the time sample before the step ( FETinitN2 ¼
FETN2�1 ). FETlatestN2 represents FETN2n when n equals
the most recent breath. In general, VATE, VATI and
FIN2low can vary with n and may be replaced by VATEn

;
VATIn and FIN2n respectively. Second, Equation 8 is
solved for the step response using the FRC calculated by
Equation (9)

FETN2n
=

VATI � FIN2low

VATE + FRC
� 1� knþ1

1� k

� �

+ knþ1 � FETinitN2

k =
FRC

FRC + VATE

ð10Þ

In this solution, the values, VATI, VATE and FIN2low are
assumed to remain constant during the washout. For a full

derivation, see Appendix A. This is an equation that gives
the FETN2 for a particular breath without iteration and
can be used to determine the applicability of a first order
model. Some implications of Equation 10 are immedi-
ately apparent:

(1) k is related to the time constant of the N2 clearance.
(2) As the VATE increases, FETN2ndecays faster consistent

with a faster lung washout at larger tidal breaths.
(3) If the FRC becomes large compared to the VATE,

then k approaches 1 and there is very slow decay
consistent with a small tidal breath requiring more
breaths to change the concentration of a large lung
volume (FRC).

Fig. 1. Sampling at two frequencies, the waveform sampling rate and two
samples per breath sampling rate. Lower frame: the continuous sampling of
FO2 (left y-axis) and FCO2 (right y-axis) during a N2 washout procedure.
From these tracings (enlarged in upper frame) two samples of FO2 and
FCO2 are sampled once during inspiration and as endtidal values for
entering into Equations 6 and 7.

Choncholas et al.: FRC Step Response Equation 3



(4) As n fi ¥, FETN2n !
VATI�FIN2low

VATE
: The FETN2n

will not reach FIN2low when RQ „ 1 since VATI

„ VATE.

One would expect a good match between the measured
FETN2 sequence compared to the calculated values if the
system being measured is indeed first order.

Experimental and clinical validation

The modified MBNW has been extensively validated in a
metabolic lung model [10]. In this paper, the prediction of
FETN2 by the FRC step response equation was validated
by comparing calculated to measured values of FETN2

from washout procedures in one experimental and two
clinical settings. The clinical measurements were made as
part of two other studies for which the Ethical Committee
of the Medical Faculty at Göteborg University approved
the studies and informed consent was obtained from the
patients, next of kin or volunteers, respectively. Thus,
they represent examples and are not the result of a
selection powered to demonstrate differences between the
normal and disease categories.

Model. An experimental setup using an O2-consuming/
CO2-producing metabolic lung model previously de-
scribed [10, 13]. The model was ventilated in volume
controlled ventilation with a GE Engström Carestation
ventilator (Madison, WI, USA). Settings comprised two
FRCs (1.8, 2.9 L), two tidal volumes (500, 750 mL) and
two steps of FIO2 (0.1, 0.3) at _VCO2 200 mL/min and
RQ 1. FRC measurements were computed with the
commercial software algorithm based on Equation 9 de-
tailed above. Simultaneously, data were collected and
entered into Equation 10.

Patients. Patient recordings were performed either in the
operating theater using GE ADU/5 ventilator or in the
intensive care unit (ICU) using a Servo 900C or Servo
300 ventilator (Siemens Elema, Solna, Sweden). Subjects
with assumed normal lungs were measured peroperatively
and patients with diseased lungs in the intensive care unit,
where positive pressure ventilation was instituted due to
respiratory failure. The eigenvalues, k, were calculated for
one patient with Acute Respiratory Distress Syndrome
(ARDS), one with heart failure (HF), two patients with
chronic obstructive pulmonary disease (COPD), and one
obese patient with normal lungs (perioperative registra-
tion). Mono- vs biexponential fits were examined in one
of the ICU patients (COPD) and in the bariatric patient.

Volunteers. Recordings in healthy volunteers (two female
and one male) spontaneously breathing while attached to a
high flow CPAP system via a snorkeling mouthpiece and
equipped with a nose clip in supine, sitting and standing
position.

In patients and volunteers, respiratory monitoring and
gas sampling were performed with Datex-Ohmeda spi-
rometry module in an AS/3 intensive care monitor. Data
were collected using Datex-Ohmeda S/5 Collect version
4 software (Datex-Ohmeda, Helsinki, Finland) and ana-
lyzed using Lung Monitor (plug-in to Datex-Ohmeda S/
5 Collect) or proprietary software programmed in Test-
Point (Measurement Computing Corporation, Norton,
MA, USA). The TestPoint program previously formed
part of the validation study [10].

Statistics

Agreement between calculated and measured values of
FETN2 was assessed by Bland & Altman analysis [14] in
terms of bias and limits of agreement.1 An error percent-
age, calculated according to [15] below 30 was accepted as
sign of good agreement. Calculated and measured values
were analyzed by means of regression and R2. Patient
and volunteer characteristics and results are reported in
Table 1.

RESULTS

Model. There was an excellent correspondence between
178 pairs of measured and calculated values of FETN2 in
six washout procedures using the step response equation,
see Figure 2. Bland & Altman analysis showed bias of 0,
upper and lower limits of agreement of 0.49 and )0.5 and
error 1.3%, see Figure 3. The regression equation showed
a slope of 1.0, intercept )0.12 and R2 0.98 with a
p < 0.001.

Patients. We analyzed 35 washout procedures from five
patients. PEEP levels varied from 0 to 20 cm H2O, FRC
ranged from 600 to 3000 mL, dFETN2 from 0.1 to 0.3 and
baseline FIO2 from 0.2 to 0.5. Individual tidal volumes
were unchanged during manipulation of PEEP. There
was good agreement between 1222 pairs of measured and
the calculated values of FETN2. Bland & Altman analysis
showed bias of 0.3, upper and lower limits of agreement
of 2 and )2.6, error 4.9%, see Figure 4. The regression
equation showed a slope of 1.07, intercept )3.0, R2 0.98
with a p < 0.001. At comparable PEEP levels k in ARDS
(kARDS) patient was 0.734, in patient with heart failure
(kHF) 0.846, in COPD patients 0.842 and 0.889 (kCOPD)
and in perioperative normal adult lung (bariatric patient)
0.654 (kperiop). Standard deviations omitted due to paucity

1Bland & Altman analysis is utilized in spite of the methods, mea-

sured and calculated values of FETN2, are not independent but math-

ematically linked.
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of measurements at PEEP level. Eigenvalues showed as
expected clear relationship to PEEP levels, see Figure 5.

In the analysis of mono- vs. bicompartmental analysis
we found a difference between mono- and biexponential
fit to measured FETN2 in the ICU (COPD) patient
whereas there was no notable difference in the bariatric
patient. The number of patients and measurements pre-
clude consideration statistical significance.

Volunteers. A total of 16 washout procedures were
analyzed. PEEP levels varied from 0, 5 to 10 cm H2O,
FRC ranged from 1400 to 2900 mL, dFETN2 0.2 to 0.45
and baseline FIO2 from 0.21 to 0.3. There was good
agreement between 524 pairs of measured and the cal-
culated values of FETN2 using the step response equation.
Bland & Altman analysis showed bias of )0.16, upper and
lower limits of agreement at 3.2 and )3.5 and an error
6.4%. The regression equation showed a slope of 0.97,
intercept 1.9 and R2 0.98 with a p < 0.001 (Figure 6).

80 70 60 50 40 30 20
-15

-10

-5

0

5

10

lower limit of agreement -2.6

upper limit of agreement 2

F detaluclac-derusae
m( x 001

T
E

N
2)

100 x (measured+calculated F
ET

N
2
)/2

bias 0.3

Fig. 4. Bland & Altman plot of agreement between pairs of measured and
calculated FETN2 according to step response derivation in 35 N2 washout
procedures in five patients. Bias of 0.3, upper and lower limits of agreement
of 2 and )2.6. The regression equation showed a slope of 1.07, intercept
)3 and R2 0.98 with a p < 0.001.

Fig. 5. k as a function of PEEP in five patients.

Fig. 2. Calculated and measured FETN2 during N2 washout in metabolic
lung model. DFN2 0.3, FRC 1800 mL, VAT 270 mL, eigenvalue
0.86, _VCO2 187 mL/min. The regression equation has a slope of 1.02
and a R2 of 0.999.
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Fig. 3. Bland & Altman plot of agreement between pairs of measured and
calculated FETN2 according to step response derivation in metabolic lung
model. The FRC of the lung model was 1800 mL. Bias 0, upper and
lower limits of agreement of 0.25 and )0.5.
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DISCUSSION

We take as a starting point the mathematical derivation of a
modified version of the multiple breath nitrogen washout
method for calculation of FRC. Using the result of the FRC
calculation, a step response equation was derived based on
techniques from DSP and used to calculate the course of
FETN2 during washout. These calculated values were then
compared to measured data from an experimental setup,
patients and volunteers. We found excellent alignment
between measured and calculated nitrogen clearance using a
single compartment, first order metabolic lung model. The
first order model also fitted measurements in patients with
various respiratory conditions and in healthy, spontane-
ously breathing volunteers. The eigenvalue of the step re-
sponse was shown to be dependent on PEEP level and to be
different among healthy and diseased states of the lung. The
sample size, however, does not allow for any statistically
significant inferences, but the results may indicate a diag-
nostic and prognostic method to be verified in further
studies. Technical and clinical characteristics and limitations
of the modified MBNW method and first order step re-
sponse equation are addressed in the following.

Nitrogen clearance in the framework of Digital Signal

Processing

The present study is – to our knowledge – the first attempt
at deriving the equivalent of the alveolar dilution ratio first
introduced by Darling [6] by solving the underlying first
order difference equation based on mass conservation of

alveolar contents of N2. The eigenvalue, k, is equal to
Darling’s r in Equation (2). This ratio was revived by
Wagner [8] as a term in Linear Programming of ventila-
tion/volume ratios and by Rossing [16]. Wagner and
Rossing published their research before Oppenheim and
Schaffer published their work [11] on DSP, which forms
the basis of this study. Using techniques made popular by
the field of DSP, enables one to frame the problem in the
form of a difference equation and solve for the step re-
sponse. DSP has entered the mainstream subsequent to
many of the early works on MBNW. Reformulating the
subject in a DSP framework should allow algorithms from
that field to improve or extend MBNW algorithms. The
present study details nitrogen clearance as a first order
process characterized by an eigenvalue, k and compares
actual values of FETN2 to values predicted by the step
response equation. The degree of agreement confirms that
the nitrogen washout is dominated by a first order process
and the tools of DSP are applicable in this setting.

Clinical impact and uses for k. The term k = FRC/
(FRC+VATE) is the eigenvalue for the first order system.
This paper provides an alternative derivation for k in the
more general framework of DSP. Results in the present
study showed higher k in healthy adult lungs and in pa-
tients with COPD and lower values in patients with
ARDS. k by definition reflects FRC and this capacity in
turn is influenced by PEEP. In addition, k is reminiscent
of the strain relationship (VT/FRC) which according to
the ‘baby lung’2 concept [17] should not exceed 0.8 to
+1. In terms of k this corresponds to a value of 0.55–0.5 at
PEEP of 0 cm H2O. For the bariatric patient (see Fig-
ure 5) the strain is perilously close to this limit. It may not
be clinically justifiable to measure k by setting PEEP at
zero (ZEEP), but as the value is linearly related to PEEP
by virtue of the lung compliance, a series measurement at
PEEP levels above zero can be used to extrapolate to a
value of k corresponding to ZEEP. The k or the strain
relationship could be considered a discriminator for clas-
sifying lung states but may not be sufficient in isolation.
Since k has a dependency on the ventilator settings
through FRC (and as a corollary PEEP) and VATE, cal-
culation of k at several tidal volumes would likely be a
better discriminate. Further, these ratios in conjunction
with other features such as hemodynamics would be an
excellent start for a feature vector that could be used for
pattern classification. The pattern classifier would be used
to distinguish between different lung states and act as a
guide for optimal ventilation therapy. There seems to be a
vast field for further studies in this respect.

Fig. 6. Bland & Altman plot of agreement between pairs of measured and
calculated FETN2 according to step response derivation in 16 N2 washout
procedures in three healthy volunteers. Bland & Altman analysis showed
bias of )0.16, lower and upper limits of agreement at 3.2 and )3.5. The
regression equation showed a slope of 0.97, intercept at 1.9 and R2 0.98
with a p < 0.001.

2The ‘baby lung’ concept requires the strain to be calculated at FRC

without PEEP (ZEEP).
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Sensitivity of FRC to varying or fixed RQ. The washout
procedure posits that the O2-consumption and CO2-
excretion, the end-expiratory lung volume as well as
hemodynamics are stable at baseline before washout and
that no interventions are undertaken during the washout
period which will alter this, e.g. changes in inotropic
support with inherent thermogenic effects or changes in
ventilatory settings. In our formulation, RQ is fixed at
0.8, although in reality RQ can be between 0.7 and 1.0
depending on the metabolic state of the patient. In this
context it can be shown that for a FIO2 of 0.5, a DFETN2

of 0.1, a DRQ of 0.1 and _VCO2 200 mL/min the error in
FRC amounts to approximately 180 mL bias.

Tissue contribution to nitrogen clearance. Equality in
Equation 3 assumes that N2 is neither taken up nor ex-
creted from blood and tissues. Estimates of tissue nitrogen
uptake and excretion do, however, exist [18, 19]. The
modified MBNW utilizes a DFN2 of 0.1 and accordingly
the volume excreted will be diminished to approximately
10 mL. However, repeating the DFN2 with an identical
change in opposite direction and averaging the results for
FRC compensates for this error [10].

Approximation of gas fractions. The FIN2 and FETN2 are
calculated as residue after subtraction of appropriate frac-
tions of O2 and CO2 and entered into the calculation of
VN2 by multiplication with VA. This assumes that the
dead spaces of O2, CO2 and N2 are identical within the
clinical range of expired volume, which is supported by
the findings in [20, 21]. Likewise, it is assumed that the
DFIO2 equals the calculated DFETN2 and DFAN2. Fur-
thermore, FETO2 and FETCO2 measurements are used to
approximate FAO2 and FACO2 although there is evidence
to the contrary in the case of FETCO2 [22, 23]. Typically,
the FETCO2 will be lower than FACO2 and FETO2 will be
higher than FAO2 due to imperfect mixing and alveolar
dead space. These differences partially compensate each
other in calculation of FETN2.

Fixed VTI and VTE in Equation 10 vs. variable VTI and
VTE in Equation 9. The modified MBNW method
incorporates breath-by-breath measurement and calcula-
tion of VATI, and VATE allowing for variation of tidal
volumes during the washout. In the step response deri-
vation these volumes are assumed to be constant. The
discrepancy becomes obvious when examining FRC
measurements performed during spontaneous ventilation
where breath-to-breath variation of inspiratory and
expiratory tidal volumes in quiet breathing typically
amounted to 50–100 mL during the washout procedure.
The potential of using k from the step response solution of
the difference equation to classify lung pathologies applies
more to mechanical ventilation where the volumes are
constant.

Mono- vs. multiexponential washout. Washout was clearly
not monoexponential in the case of emphysematous
(COPD) lung with compartments of differing mechanical
properties. A better curve fit was accomplished by a
biexponential equation, which in the framework of DSP
translates into a second order difference equation. The
modified MBNW method based on a first order differ-
ence equation, however, will still be able to calculate the
FRC given the measurement period is extended to allow
for slow compartments to empty in the case of COPD
lungs. The first order difference equation solution to a
step input assumes that washout is monoexponential and
deviations from this will cause increased lack of agreement
between measured and calculated values. This was dem-
onstrated in the fitting of washout data to a mono- vs. a
biexponential equation in the case of the COPD/ICU
and the perioperative bariatric patient.

CONCLUSION

We have presented a modified MBNW method in terms
of a first order difference equation which was solved for
the step response of FETN2 to a step change in FIO2. The
step response prediction of FETN2 was validated under
experimental and clinical conditions. We found excellent
agreement between measured and calculated values of
FETN2. A central concept of the step response equation,
the eigenvalue, showed different values in healthy and
diseased lungs. The MBNW difference equation has some
interesting implications for the roles of serial and parallel
dead spaces. The step response equation opens up research
avenues within digital signal processing and the charac-
terization of ventilatory states.

The authors are indebted to Robert Q. Tham, MS, PhD, GE

Healthcare, Madison, Wisconsin for constructive comments to early

drafts of the manuscript, to Professor Paul Myles, Department of

Anaesthesia and Perioperative Medicine, Alfred Hospital

Melbourne for advice on Bland & Altman analysis and to Cecilia

Olegård, MD, Department of Anaesthesia and Intensive Care,

Sahlgrenska University Hospital, Gothenburg for providing

examples of patient and volunteer FRC recordings.

APPENDIX A

The derivation of the step response solution is as follows. In
Equation (8), define the step response as a = VATI �
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FFIN2low for n ‡ 0, e = VATE + FRC, b = FRC, Fn =
FETN2nand the initial condition as FETinitN2: Utilizing a
substitution technique:

n = 0: F0 ¼ ða þ b� FETinitN2)/e ð11Þ

n = 1: F1 = a/e + b � ((a + b � FETinitN2)/e2) ð12Þ

n = 2: F2 = a/e + b � a/e2 + a � b2/e3

� + FETinitN2 � b3/e3
ð13Þ

In general,

Fn =
a

e

Xn

i¼0

b

e

� �i

+
b

e

� �nþ1
� FETinitN2 ð14Þ

Let k = b/e and Equation 13 simplifies into:

Fn =
a

e

1� knþ1

1� k

� �
+ k nþ1 � FETinitN2 ð15Þ

Substitute back to the original variables:

Fn =
VATI � FIN2low

VATE + FRC
� 1�knþ1

1�k

� �
þ k nþ1

�FETinitN2;k =
FRC

FRC + VATE

ð16Þ
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