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Abstract: Tumor necrosis factor (TNF)-α is elevated during the acute phase of Kawasaki 

disease (KD), which damages vascular endothelial cells to cause systemic vasculitis. In the 

current study, we investigated the potential role of cordycepin on TNFα expression in both 

lipopolysaccharide (LPS)-stimulated macrophages and ex vivo cultured peripheral blood 

mononuclear cells (PBMCs) of KD patients. We found that cordycepin significantly 

suppressed LPS-induced TNFα expression and production in mouse macrophages (RAW 

264.7 cells and bone marrow-derived macrophages (BMDMs)). Meanwhile, cordycepin 

alleviated TNFα production in KD patients’ PBMCs. PBMCs from healthy controls had a 

much lower level of basal TNF-α content than that of KD patients. LPS-induced TNF-α 

production in healthy controls’ PBMCs was also inhibited by cordycepin. For the 

mechanism study, we discovered that cordycepin activated AMP-activated protein kinase 

(AMPK) signaling in both KD patients’ PBMCs and LPS-stimulated macrophages, which 

mediated cordycepin-induced inhibition against TNFα production. AMPK inhibition by its 

inhibitor (compound C) or by siRNA depletion alleviated cordycepin’s effect on TNFα 

production. Further, we found that cordycepin inhibited reactive oxygen species (ROS) 

production and nuclear factor kappa B (NF-κB) activation in LPS-stimulate RAW 264.7 

cells or healthy controls’ PBMCs. PBMCs of KD patients showed higher basal level of 
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ROS and NF-κB activation, which was also inhibited by cordycepin co-treatment. In 

conclusion, our data showed that cordycepin inhibited TNFα production, which was 

associated with AMPK activation as well as ROS and NF-κB inhibition. The results of this 

study should have significant translational relevance in managing this devastating disease. 

Keywords: Kawasaki disease; cordycepin; TNFα (tumor necrosis factor α); AMPK 

(AMP-activated protein kinase); LPS (lipopolysaccharide)  

 

1. Introduction 

Kawasaki disease (KD), the acute febrile disease in children, is characterized by systemic vasculitis, 

which will lead to coronary artery lesions and other serious cardiovascular complications [1–3]. The 

abnormal activation of immunocompetent cells (i.e., monocytes, macrophages and lymphocytes) is the 

main feature of KD. These inflammatory cells could synthesize and secrete various pro-inflammatory 

cytokines and chemokines, i.e., tumor necrosis factor (TNF)-α, interferon (IFN)-γ and interleukin 6 

(IL-6), to activate endothelial cells causing vasculitis [4–7].  

Despite appropriate therapies, coronary artery aneurysms continue to develop in many affected KD 

patients, it is also the leading cause of acquired heart disease in children. The role of TNFα in the 

vascular inflammation of KD is well-established: TNFα content is significantly increased in the 

peripheral blood of KD patients during the acute phase [4–7]. TNFα is a potent inflammatory cytokine 

that causes damage to vascular endothelial cells, it is becoming an important contributor of the 

pathogenesis of both the immune activation and endothelial cell damage in KD patients [4–7].  

TNF-α could activate endothelial cells through the increased expression of adhesion molecules 

including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), 

and E-selectin [8–10]. TNF-α is also shown to up-regulate the expression of chemokines such as 

macrophage inflammatory protein 1α (MIP-1α) and RANTES; these chemokines are important in the 

orchestration of leukocyte-endothelial interactions leading to vascular endothelium activation [8,9,11,12]. 

In an animal model of KD, it has been shown TNFα is required for the development of coronary artery 

lesions [13]. Mice treated with the TNF-α-blocking agent (etanercept), or depleted with the TNF-α 

receptor, were resistant to development of both coronary arteritis and coronary aneurysm formation in 

the KD mice model [13]. 

TNFα blocking agents have been investigated in isolated cases of KD patients [14]. Burns et al. [15] 

showed KD patients responded rapidly and completely to a single infusion of the anti-TNF-α 

monoclonal antibody, infliximab. Oishi et al. [16] administered infliximab to a one-month-old girl  

with refractory KD and coronary artery aneurysm; the authors found that the coronary artery aneurysm 

improved and KD was controlled without complications 20 months after the onset. These results suggest 

a critical role of TNF-α in KD pathogenesis. Our previous study has demonstrated that perifosine,  

a novel Akt inhibitor, significantly inhibited TNFα production via activating of AMP-activated protein 

kinase (AMPK) signaling and inhibiting Erk activation [17]. 

Cordycepin (3'-deoxyadenosine) is a bioactive compound present in species of fungi belonging to 

the genus Cordyceps [18–21]. Cordycepin is reputed to exert a large variety of biological functions, 
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including cell proliferation inhibition, apoptosis induction, platelet aggregation inhibition, cell 

migration and invasiveness interference and inflammation suppression [18–24]. In the current study, 

we explored the role of cordycepin on TNFα production in both lipopolysaccharide (LPS)-stimulated 

macrophages and KD patients’ peripheral blood mononuclear cells (PBMCs). 

2. Results and Discussion 

2.1. Sub-Cytotoxic Cordycepin Inhibits LPS (Lipopolysaccharide)-Induced TNFα (Tumor Necrosis 

Factor α) Production in RAW 264.7 Mouse Macrophages 

Since cordycepin has been investigated as an anti-cancer drug [25,26], we here explored the 

potential role of cordycepin on LPS-induced TNFα production in macrophages. Thus, we first 

examined whether cordycepin affects the cell survival of RAW 264.7 mouse macrophages. Cordycepin 

did not show a significant cytotoxic effect in RAW 264.7 cells except at high doses (50–100 μM) 

(Figure 1A).  

Figure 1. Sub-cytotoxic cordycepin inhibits LPS (lipopolysaccharide)-induced TNFα 

(tumor necrosis factor α) production in RAW 264.7 mouse macrophages. RAW 264.7 

mouse macrophages were either left untreated (“C”), or treated with the indicated 

concentration of cordycepin (0–100 μM) for 24 h, cell viability was analyzed by MTT 

(Thiazolyl Blue Tetrazolium Bromide) assay (A); RAW 264.7 cells were stimulated with 

the indicated concentration of LPS, co-supplemented with the indicated cordycepin for  

24 h; TNFα in culture supernatant was measured with an ELISA kit (R&D Systems, 

Shanghai, China) (B,C); TNFα mRNA expression in RAW 264.7 cells with the indicated 

treatment was analyzed by real-time PCR (D,E). The results presented were representative 

of three independent experiments. The values were expressed as the means ± SD.  

* p < 0.05 compared with “C” group (A); ** p < 0.05 compared with LPS only group 

(C,E); # p < 0.05 (B,D). 
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Figure 1. Cont. 

 

TNFα ELISA results in Figure 1B demonstrated that cordycepin (10 μM) significantly inhibited 

LPS (0.1–1.0 μg/mL)-induced TNFα production in RAW cells, and the effect of cordycepin on  

TNFα production was dose-dependent (Figure 1C). Further, as shown in supplementary Figure 1A, 

cordycepin (10 μM) inhibited LPS (0.1 μg/mL)-induced TNFα production over a 72-h period, and the 

24-h time point was the optimal duration of treatment. No cell viability decrease was noted over the 

72-h cordycepin (10 μM) + LPS (0.1 μg/mL) treatment in RAW cells (Figure S1B). Meanwhile, as 

shown in Figure 1D, cordycepin dramatically suppressed LPS-induced TNFα mRNA up-regulation in 

RAW cells, and the effect of cordycepin was again dose-dependent (Figure 1E). These results show 

that sub-cytotoxic cordycepin attenuates LPS-induced TNFα mRNA expression and production in 

RAW 264.7 mouse macrophages. 

2.2. Cordycepin Inhibits TNFα Production in ex-Vivo Cultured Peripheral Blood Mononuclear Cells 

(PBMCs) of KD (Kawasaki Disease) Patients 

Increased TNFα production from PBMCs of acute KD patients is the main cause of vasculitis. Next, 

we tested if cordycepin affected TNFα levels in PBMCs of KD patients. Again, viability of PBMC 

cells was not affected by low-doses of cordycepin treatment (<50 μM) (Figure 2A). Similarly to what 

we have previously reported [17], the ELISA results in Figure 2B demonstrated a high basal TNFα 

content in the medium of ex vivo cultured PBMCs of acute KD patients. Significantly, sub-cytotoxic 

cordycepin dose-dependently decreased TNFα content in the medium of the PBMCs (Figure 2B). 

PBMCs from healthy controls showed a much lower level of basal TNF-α content than that of KD 

patients (Figure 2C). Further, LPS-induced TNF-α production in the PBMCs froom healthy controls 

was also inhibited by cordycepin (Figure 2C). We also tested the effect of cordycepin on LPS-induced 

TNFα expression and production in primary cultured mouse bone marrow derived macrophages 

(BMDMs), and results clearly demonstrated that cordycepin inhibited LPS-induced TNFα mRNA 

expression (Figure 2D) and protein secretion (Figure 2E) in BMDMs.  
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Figure 2. Cordycepin inhibits TNFα production in ex vivo cultured peripheral blood 

mononuclear cells (PBMCs) of KD (Kawasaki disease) patients. The ex vivo cultured 

PBMCs of acute KD patients were either left untreated (“C”) or treated with indicated 

concentrations of cordycepin for 24 h; cell viability was analyzed by MTT assay (A); 

TNFα in culture supernatant was measured with the ELISA kit (B); The ex vivo cultured 

PBMCs from healthy controls or the primary BMDMs (bone marrow derived macrophages) 

were stimulated with LPS (0.1 or 1.0 μg/mL) in the presence or absence of cordycepin  

(10 μM). TNFα content in culture supernatant was measured with the ELISA kit 24 h  

after treatment (C,D); and TNFα mRNA expression was examined 6 h after stimulation  

(E, for BMDMs). The results presented are representative of three independent experiments.  

The values are expressed as the means ± SD. * p < 0.05 compared with “C” group (A,B);  
# p < 0.05 (C–E). 

 

2.3. AMPK (AMP-Activated Protein Kinase) Activation Is Required for Cordycepin’s Effect of 

LPS-Induced TNFα Production  

Activation of AMPK is known to exert an anti-inflammatory effect [27,28]. Our previous study 

showed that AMPK activation by its activators AICAR and A769662, or by perifosine, significantly 

inhibited LPS-induced TNFα production in mouse macrophages and KD patients’ PBMCs [17].  

To exclude the off-target effect of these reagents, we introduced the constitutively-active (T172D) 

AMPKα (CA-AMPKα) [29] into RAW cells, and created a stable cell line (Figure 3A). ELISA results 

in Figure 3B showed that CA-AMPK suppressed LPS-induced TNFα production, further supporting 

the inhibitory role of AMPK activation on TNFα production [17]. It has been shown that cordycepin 

activates AMPK mainly in cancer cells [30]. Thus, we tested its effect in macrophages. As shown in 

Figure 3C, cordycepin induced significant AMPK and its upstream LKB1 phosphorylation in RAW 

cells, while LKB1 reduction by siRNA (causing more than 87% reduction of LKB1 expression) 
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inhibited cordycepin-induced AMPK phosphorylation, indicating that LKB1 might be the upstream 

kinase for AMPK activation by cordycepin (Figure 3D). Importantly, AMPK siRNA knockdown 

dramatically attenuated cordycepin’s effect on TNFα production in RAW cells (Figure 3F). Note that 

we utilized two non-overlapping siRNAs against different mRNA sequence of AMPK (siRNA-1, 

siRNA-2), and observed similar results (Figure 3E). These results suggest that activation of AMPK is 

required for cordycepin-induced inhibition of TNFα production induced by LPS. 

Figure 3. AMPK (AMP-activated protein kinase) activation is required for cordycepin’s 

effect of LPS-induced TNFα production. The stable RAW 264.7 cells expressing empty 

vector (GFP) or constitutively-active (CA)-AMPKα-GFP (T172D) were stimulated with 

LPS (1.0 μg/mL) for 24 h, expression of p-AMPKα, AMPKα, p-LKB1 and LKB1 was 

tested by Western blots (A); TNFα in culture supernatant was also measured (B);  

RAW 264.7 cells were treated with cordycepin (10 μM) for the indicated time; p-AMPKα, 

AMPKα, p-LKB1 and LKB1 were tested (C); RAW 264.7 cells transfected with scramble 

siRNA (100 nM, 48 h) or LKB1 siRNA (100 nM, 48 h) were treated with cordycepin  

(10 μM) for 4 h, p-AMPKα; AMPKα, p-LKB1 and LKB1 were tested (D); RAW 264.7 

cells transfected with scramble siRNA (100 nM, 48 h) or AMPKα siRNAs (−1 and −2) 

(100 nM, 48 h) were treated with LPS (1.0 μg/mL), or plus cordycepin (10 μM,  

LPS + cordycepin); expression of p-AMPKα, AMPKα and LKB1 was tested 4 h after LPS 

stimulation (E); and TNFα in culture supernatant was also measured 24 h after LPS 

stimulation (F). Results presented are representative of three independent experiments; the 

values are expressed as the means ± SD. # p < 0.05 (B,F). 
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2.4. Cordycepin Activates AMPK to Inhibit TNFα Production in PBMCs of KD Patients 

Next, we tested the effect of cordycepin in PBMCs of KD patients. As shown in Figure 4A,B, 

cordycepin activated AMPK signaling in PBMCs of KD patients, as p-AMPKα/p-LKB1/p-ACC 

(acetyl-CoA carboxylase) was induced in cordycepin-stimulated cells, which was inhibited by its 

inhibitor compound C or AMPKα siRNA (Figure 4B) in PBMCs of KD patients. Significantly 

compound C and AMPKα siRNA alleviated cordycepin’s inhibitory effect on TNFα production in 

PBMCs of KD patients (Figure 4C). Together, these results indicate that AMPK activation is 

important for cordycepin-mediated anti-TNFα production effect in PBMCs of KD patients.  

Figure 4. Cordycepin activates AMPK to inhibit TNFα production in PBMCs of KD 

patients. The ex vivo cultured PBMCs of acute KD patients were either left untreated (“C”), 

or treated with cordycepin (10 μM) for indicated time; expression of p-AMPKα, AMPKα, 

p-LKB1, LKB1 was tested by Western blots (A); The effect of compound C (10 μM,  

1 h pretreatment), and AMPK siRNA-1 (100 nM, 48 h) on cordycepin (10 μM)-induced 

AMPK/ACC phosphorylation (4 h) and TNFα production (24 h) in KD patients’ PBMCs 

were tested by western blots (B) and ELISA (C), respectively. The results presented  

are representative of three independent experiments. The values are expressed as the  

means ± SD. # p < 0.05 (C). 

 

2.5. Cordycepin Inhibits ROS (Reactive Oxygen Species) Production and NF-κB (Nuclear Factor 

Kappa B) Activation in Both LPS-Stimulated RAW 264.7 Cells and PBMCs from KD Patients 

LPS is known to induce ROS production, which plays an important role in subsequent NF-κB 

activation and TNF-α production [31–33]. A recent study by Jeon et al. [34] has established the 

anti-oxidant function of AMPK activation. Activated AMPK phosphorylates and inhibits its 

downstream target ACC, thus decreasing nicotinamide adenine dinucleotide phosphate (NADPH) 

consumption in fatty-acid synthesis and increasing NADPH generation by means of fatty-acid  

oxidation [34]. Thus, AMPK activation could serve as an important mechanism of anti-oxidant. We have 

shown that cordycepin activated AMPK and inhibited LPS-induced TNF-α production. Here, we found 

that LPS-induced ROS production and NF-κB activation were also inhibited by cordycepin, and by 

CA-AMPKα (Figure 5A,B) in RAW cells. In ex vivo cultured PBMCs of KD patients, we observed high 
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base levels of ROS production and NF-κB activation (as compared to PBMCs of healthy controls), 

which were both inhibited by cordycepin (Figure 5C,D). Meanwhile, LPS-induced ROS production and 

p-NFkB induction in PBMCs from healthy controls were also inhibited by cordycepin (Figure 5C,D). 

Note that NF-κB activation was reflected by p-NFκB (Figure 5B,D). Based on these results, we propose 

that cordycepin-induced inhibition of TNF-α might be associated with its functions on ROS scavenging 

and NF-κB in-activation. 

Figure 5. Cordycepin inhibits ROS (reactive oxygen species) production and NF-κB 

activation in both LPS-stimulated RAW 264.7 cells and KD patients’ PBMCs. RAW 264.7 

cells were pretreated with cordycepin (10 μM, 1 h) or CA-AMPK (2 μg/mL, 48 h), 

followed by LPS (1.0 μg/mL) stimulation for 2 h, ROS production and p-NFκB/tubulin 

expression were tested by FACS (A) and western blotting (B), respectively. The ex vivo 

cultured PBMCs of KD patients/healthy controls were treated with cordycepin (10 μM), 

with or without LPS (1.0 μg/mL) for 2 h; ROS production and p-NFκB/tubulin expression 

were tested (C,D). The results presented were representative of three independent experiments. 

The values were expressed as the means ± SD. # p < 0.05 (A,B). 

 

3. Material and Methods 

3.1. Chemical and Regents 

Cordycepin, LPS and compound C were purchased from Sigma (Shanghai, China). LPS was 

dissolved in sterile, pyrogen-free water with repeated vortexing to yield a stock solution of 1 mg/mL and 

this was stored at −20 °C. Cordycepin was dissolved in sterile PBS (phosphate-buffered saline) at 5 mM. 

Both agents were diluted to the indicated concentrations of culture medium. 
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3.2. Antibodies 

Anti-AMPKα1, tubulin, acetyl-CoA carboxylase (ACC), LKB1, rabbit and mouse horseradish 

peroxidase (HRP)-conjugated IgG antibodies were purchased from Santa Cruz (Santa Cruz, CA, 

USA). Antibodies against phospho (p)-AMPKα (Thr 172), p-ACC (Ser 79), p-nuclear factor kappa B 

(NF-κB, Ser 536) and p-LKB1 (Ser 428) were purchased form Cell Signaling Tech (Denver, MA, 

USA). The dilution of the primary antibodies used in this study was 1:500–1:1000.  

3.3. RAW 264.7 Mouse Macrophage Culture  

As previously reported [17], RAW 264.7 cells (ATCC, Rockville, MD, USA) were cultured in 

Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS),  

100 U/mL streptomycin, and 2 mM glutamine at 37 °C in a 5% CO2 humidified incubator.  

3.4. Bone Marrow–Derived Macrophages (BMDMs) Culture 

As previously reported [17], the bone marrow was flushed from femurs of mice (2 month old) with 

7 mL of DMEM supplemented with 10% FBS. Cell pellets were resuspended in ACK hypotonic buffer 

(Hao-ran Biotech, Shanghai, China) to remove red blood cells, and were subsequently washed with 

DMEM with 10% FBS and cultured at the concentration of 107 cells/mL in DMEM supplemented with 

20% FBS and 30% L929 cell conditioned media. Six to seven days later, adherent macrophages were 

trypsinized, counted, and re-plated for experimental use. Prior to stimulation, BMDMs were cultured 

overnight in DMEM supplemented with only 0.5% FBS. 

3.5. Ex Vivo Culture of Peripheral Blood Mononuclear Cells (PBMCs)  

As previously reported [17], PBMCs of three acute KD patients (each patient at the acute phase, 

and each patient’s PBMCs were used for one set of experiments) and three comparable healthy 

controls (same age, same sex) were isolated by centrifugation over lymphocyte separation medium 

(Biotyme, Shanghai, China). After three washes in PBS, the PBMCs were counted and cultured in 

DMEM supplemented with 10% FBS, 2 μg of phytohemagglutinin (PHA) per mL, 10 ng of phorbol 

12-myristate-13-acetate per mL, nonessential amino acids, 5 mM β-mercaptoethanol, 10 mM HEPES, 

2 mM glutamine, 1 mM sodium pyruvate, 100 U of penicillin per mL, and 100 μg of streptomycin  

per mL. The study was approved by the institutional review board of the authors’ institutions, and 

written informed consent was obtained from each acute KD patient. All patients’ investigations were 

conducted according to the principles expressed in the Declaration of Helsinki. 

3.6. Cell Viability Assay 

Cell viability was measured by the 3-[4,5-dimethylthylthiazol-2-yl]-2,5diphenyltetrazolium 

bromide (“MTT”) assay as reported [17]. Briefly, cells were cultured and seeded in 96-well plates. 

After treatments, twenty μL/well of MTT working solution (5 mg/mL) was added to each well, and 

were incubated continuously at 37 °C for 3 h. The culture supernatant was removed from the wells 

very carefully, and DMSO (150 μL/well) was added to dissolve the formazan crystals. The absorbance 
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of each well was measured at 490 nm with an ELISA reader (Molecular Devices, Sunnyvale, CA, 

USA). The value of treated group was normalized to that of the control group. 

3.7. TNFα ELISA (Enzyme-Linked Immunosorbent Assay) Assay 

After treatment, TNFα protein content in culture supernatant was measured with a TNFα ELISA kit 

(R&D Systems), according to the manufacturer’s instructions. The concentrations of TNFα in each 

sample were calculated from a standard curve prepared using known concentrations of recombinant 

TNFα (R&D Systems). 

3.8. Western-Blots 

Cells with the indicated treatment were harvested in the lysis buffer (Jing-mei Biotech, Shanghai, 

China). The protein concentration was determined by Bio-Rad protein assay (Bio-Rad, Beijing, 

China). Aliquots of 30 µg of lysates were electrophoresed on 10% SDS-PAGE gel and transferred to a 

PVDF (polyvinylidene fluoride) membrane. The blot was incubated in the blocking buffer (10% milk 

in PBS + 0.05% Tween 20 (PBST)), and then incubated with the primary antibody at 4 °C overnight 

with PBST. Appropriate secondary antibody conjugated to horseradish peroxidase (HRP) was then 

added. Antigen-antibody complex was detected by using enhanced chemiluminescence (ECL) reagent. 

All Western-blots in this study were subjected to different exposures: from 10 s to 30 min, the best 

exposures were selected for data presentation. When indicated, the blot intensity was quantified through 

the Image J software (National Institute of Healthy, Bethesda, MD, USA) before normalization to the 

corresponding loading control. 

3.9. Total RNA Isolation and Real-Time Reverse Transcriptase Polymerase Chain Reaction (RT-PCR)  

After treatment, cells were washed with 1 mL of PBS, and RNA was extracted using the 

RNA-TRIZOL extraction reagent (Gibco, Shanghai, China), according to the manufacturer’s 

instructions. Extracted RNA was quantified using a NanoDrop ND1000 spectrophotometer (Labtech 

International, Ringmer, UK), and the purity of each sample was determined by the ratio A260/A280. An 

A260/A280 ratio of between 1.8 and 2.1 was considered suitable for further investigation. For cDNA 

synthesis, RNA samples were treated with DNase I and reverse-transcribed into cDNA using oligo-dT 

primers (Oligo, Warsaw, Poland). Reverse transcription was performed through the TOYOBO 

ReverTra Ace RT-PCR kit (TAKARA BIO Inc., Tokyo, Japan) using SYBR Green I as detection dye, 

according to the manufacturer’s protocols. To create a standard curve, six 10-fold serial dilutions of the 

1 × 106 of cDNA were used. The cycle threshold was recorded and plotted as a function of the dilution to 

generate a straight line with a slope that was related to the doubling efficiency. The efficiency raised to 

the value of the intercept of the line at no dilution is a measure of the relative copy number of cDNA  

for each gene in samples. The primers (forward: 5'-ATGAGCACTGAAAGCATGATC-3';  

reverse: 5'-CAGATGACCTAGTAACGGACT-3') were for TNFα. The primers (forward: 

5'-CAATGACCCCTTCATTGACC-3'; reverse: 5'-GACAAGCTTCCCGTTCTCAG-3') were for 

glyceraldehyde-3phosphate dehydrogenase (GAPDH). A typical reaction (50 μL) contained 1/50 of 

reverse transcription–generated cDNA and 200 nM of primer in 1× SYBR Green RealTime Master 
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Mix buffer (Toyobo, Shanghai, China). The PCR reactions were carried out on a Bio-Rad IQ5 

multicolor detection system by using 2 μg of synthesized cDNA under the following conditions: 95 °C 

for 5 min, 40 cycles at 95 °C for 15 s, 60 °C for 15 s, and 72 °C for 30 s. One RNA sample of each 

preparation was processed without RT-reaction to provide a negative control in subsequent PCR. After 

amplification, melt curve analysis was performed to analyze product melting temperature. The GAPDH 

gene was chosen as the reference gene for normalization, and the 2−ΔΔCt method [35] was applied to 

quantify TNFα mRNA change within samples. The fold change of TNFα mRNA expression = 2−ΔΔCt; 

Where ΔΔCt = (Ct TNFα − Ct GAPDH) of treatment group − (Ct TNFα − Ct GAPDH) of control 

group. (n = 3).  

3.10. siRNA  

The RNAi sequences (5'-GCAUAUGCUGCAGGUAGAU-3' [21] and 5'-AAGGAAAGTGAAGGT 

GGGCAA-3' [22]) against human AMPK-α1/2 were synthesized by GENEWIZ, Inc. (Suzhou, China). 

The LKB1 siRNA was purchased from Santa Cruz. Non-sense control RNAi was also purchased from 

Santa Cruz, and was used as RNAi-negative control. Transient transfections were performed on  

6-well plates using FuGENE6 reagent (Roche Molecular Biochemicals, Shanghai, China) according to 

the manufacturer’s instructions, see [17]. 

3.11. Constitutively Active-AMPK (CA-AMPK) Transfection and Stable Cell Line Selection 

The adenoviral vector expressing a constitutively active mutant of AMPKα1 (T172D, 

Ad-CA-AMPKα1-GFP-puromycin) and the empty vector expressing green fluorescence protein 

(Ad-GFP) were gifts from Zheng et al. [29]. Preliminary studies revealed that within 48 h of transfection 

with control Ad-GFP, 35%–45% of RAW cells expressed GFP. CA-AMPKα1 or the control vector  

(2 μg/mL) was transfected by Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) according to the 

manufacturer’s protocol. The stable cell lines were selected by puromycin (1 μg/mL) for 10 days. 

After selection, more than 95% of cells were GFP positive. Western blots were also utilized to test the 

transfection efficiency in stable cells. 

3.12. Reactive Oxygen Species (ROS) Assay 

Intracellular ROS generation was measured by flow cytometry using dichlorofluorescin (DCF) 

oxidation assay. DCFH-DA enters passively into cells and is cleaved by nonspecific cellular esterases 

and oxidized in the presence of ROS. The cells were first seeded onto 6-cm culture plates and allowed to 

grow overnight to reach an approximate confluence of 80%. After treatment, the cells were first seeded 

onto 6-cm culture plates and allowed to grow overnight to reach an approximate confluence of 80%. 

After treatment, the cells were further incubated with 25 μM DCFH-DA at 37 °C in a CO2 incubator for 

30 min. The cultured cells were washed, trypsinized and resuspended in PBS. The fluorescence intensity 

was quantified using a FACSVantage flow cytometric analyzer (BD Bioscience, Heidelberg, Germany), 

with an excitation wavelength of 488 nm and emission wavelength of 525 nm. For each assay, 10,000 events 

were analyzed. The fluorescent value of treatment group was normalized as fold changes of the control 

group, and was presented as the mean ± SD of at least three experiments. 
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3.13. Data Analysis 

Data were collected using a minimum of three experiments and used to calculate the mean ± SD. 

Statistical differences were analyzed by one-way analysis of variance (ANOVA) followed by multiple 

comparisons performed with post hoc Bonferroni test (SPSS version 18, John Wiley & Sons, Inc., 

New York, NY, USA). Values of p < 0.05 were considered statistically significant. The significance of 

any differences between two groups was tested using paired-samples t test. 

4. Conclusions 

In the current study, we found that cordycepin inhibited LPS-induced TNFα expression and 

production in mouse macrophages (RAW cells and primary BMDMs). Meanwhile, TNFα content from 

ex vivo cultured PBMCs of acute KD patients was also suppressed by cordycepin. Cordycepin 

activated AMPK signaling in both patients’ PBMCs and LPS-stimulated macrophages, while inhibition 

of AMPK (by compound C or siRNA) alleviated cordycepin’s effect on TNFα production. We 

observed that cordycepin inhibited ROS production and NF-κB activation in both LPS-stimulated 

RAW 264.7 cells and PBMCs of KD patients, which might be attributed to its inhibitory role on  

TNFα production. 

TNF-α expression is increased in the peripheral blood of KD patients during the acute phase to cause 

coronary artery lesions [4,6,7]. TNFα blocking agents have been used as salvage therapy in isolated 

cases of KD patients, and have shown promising results [14,16,36]. In a murine model of KD, TNF-α 

was rapidly produced by the PBMCs localized to affected coronary vessel walls [13]. The TNF-α 

production in affected coronary arteries was correlated with the development of the local inflammatory 

response in the vessel wall [13]. Increased production of TNF-α by PBMCs in the coronary arteries was 

shown to cause lymphocytes recruitment, leading to a sustained local immune responses coupled with 

elastin degradation, vessel wall damage, and the characteristic coronary artery lesions seen in KD [13]. 

On the other hand, blocking TNF-α activity by administration of etanercept, or by TNF receptor 

depletion, resulted in complete resistance to both inflammation and elastin breakdown in the coronary 

arteries [13]. Thus, TNF-α activity is necessary for both local inflammation and tissue damage of the 

coronary arteries in the murine model of KD. The results of this study, that cordycepin significantly 

decreased TNFα content of ex vivo cultured PBMCs of acute KD patients, suggest that cordycepin 

might be investigated as a possible anti-TNFα agent for KD therapy.  

AMPK acts as a sensor of cellular energy status capable of regulating vital metabolic pathways in 

the cell [37]. AMPK is activated by conditions that increase the AMP/ATP ratio [37]. Recent studies 

including ours [17] have explored the potential role of AMPK in modulating inflammatory responses, 

and have established AMPK as an anti-inflammatory molecule [17,27,38,39]. AICAR and A769662, 

the AMPK activators, are shown to suppress LPS-mediated pro-inflammatory cytokines production by 

inhibiting NF-κB nuclear translocation [17,27]. Meanwhile, metformin attenuates the cytokine-induced 

expression of pro-inflammatory and adhesion molecule genes by activation of AMPK and inhibiting 

NF-κB activation [28]. Our recent study showed that AMPK activation is involved in perifosine’s 

inhibitory effect on TNF-α production. In the current study, we found that AMPK was activated by 

cordycepin in both patients’ PBMCs and LPS-stimulated macrophages, which was important for its 
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role on TNF-α production. The results of this study provide further evidence to support the theory of 

AMPK signaling regulation for possible KD control [17,27]. 

Recent studies have shed lights on how AMPK activation attenuates oxidative stress. Activated 

AMPK could promote NADPH synthesis while limiting its consumption [34]. Thus, in addition to its 

function in ATP homeostasis, the AMPK/ACC signaling axis works as an anti-oxidant through 

maintaining NADPH level, and to decrease ROS accumulation [34]. Since cordycepin induced AMPK 

activation significantly, it was not surprising to see that ROS production was inhibited by cordycepin 

in both KD patients’ PBMCs and LPS-stimulated macrophages. Further, ROS plays an important role 

in LPS-induced NF-κB activation and pro-inflammatory factor production [40,41], which might 

explain why we observed cordycepin’s inhibition on NF-κB activation, and TNF-α production. Thus, 

we propose that cordycepin induces AMPK activation, which reduces ROS production and suppresses 

subsequent NF-κB activation, eventually inhibiting TNF-α production.  

We conclude that cordycepin significantly inhibits TNFα production in monocytes, probably via 

regulating AMPK signaling pathways. The results of this study should have significant translational 

relevance in managing KD.  
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