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Abstract

Background: Thyroid hormone signaling is essential for development, metabolism, 
and response to stress but declines during aging, the cause of which is unknown. DNA 
damage accumulating with time is a main cause of aging, driving many age-related 
diseases. Previous studies in normal and premature aging mice, due to defective DNA 
repair, indicated reduced hepatic thyroid hormone signaling accompanied by decreased 
type 1 deiodinase (DIO1) and increased DIO3 activities. We investigated whether aging-
related changes in deiodinase activity are driven by systemic signals or represent cell- or 
organ-autonomous changes.
Methods: We quantified liver and plasma thyroid hormone concentrations, deiodinase 
activities and expression of T3-responsive genes in mice with a global, liver-specific and 
for comparison brain-specific inactivation of Xpg, one of the endonucleases critically 
involved in multiple DNA repair pathways.
Results: Both in global and liver-specific Xpg knockout mice, hepatic DIO1 activity was 
decreased. Interestingly, hepatic DIO3 activity was increased in global, but not in liver-
specific Xpg mutants. Selective Xpg deficiency and premature aging in the brain did not 
affect liver or systemic thyroid signaling. Concomitant with DIO1 inhibition, Xpg−/− and 
Alb-Xpg mice displayed reduced thyroid hormone-related gene expression changes, 
correlating with markers of liver damage and cellular senescence.
Conclusions: Our findings suggest that DIO1 activity during aging is predominantly 
modified in a tissue-autonomous manner driven by organ/cell-intrinsic accumulating 
DNA damage. The increase in hepatic DIO3 activity during aging largely depends on 
systemic signals, possibly reflecting the presence of circulating cells rather than activity 
in hepatocytes.
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Introduction

Altered neuroendocrine intercellular communication 
is an important integrative hallmark of aging and is 
associated with the functional decline in aging (1). 
In recent years, it has become increasingly clear that  
thyroid state changes during aging (2, 3, 4, 5). In  
humans, thyroid-stimulating hormone (TSH) 
concentrations typically increase with age while 
concentrations of the bioactive T3 (triiodothyronine) 
decrease in the elderly population (3, 5). Whether such 
changes reflect thyroid dysfunction or rather represent 
an adaptive or even protective response during aging  
is yet unknown. Thyroid hormones can negatively 
affect the life span (3, 6, 7). Chronic exposure of excess  
thyroid hormone leads to a reduced life span (7, 8).  
Rats rendered hypothyroid have a prolonged life 
span (9). Snell dwarf mice, which have mutations in 
the pituitary transcription factor Pit1, resulting in  
deficiencies in growth hormone (GH), TSH, and  
prolactin, are for example extremely long-lived (10, 11, 
12). Replacement of thyroid hormone in Snell dwarf  
mice reduces the life span substantially, although their  
life span remains increased compared with untreated 
control mice (13). Basically, all long-lived dwarf mutant 
mice have one or more hormonal deficiencies. However, 
the endocrine connection with longevity has been 
primarily investigated for GH and insulin-like growth 
factor 1 (IGF1) signaling, while the contribution of  
thyroid hormone signaling is still largely unexplored. 
Strikingly, compared to mice in which only the GH–
IGF1 axis is disrupted (deficient in component(s) of the 
GH–IGF1 axis), mice with a combination of GH–IGF1 
deficiency and thyroid hormone deficiency are among  

the most extreme longest lived (Fig. 1A). Also, the 
molecular mechanisms underlying the relationship 
between changes in thyroid hormone signaling and  
aging have not been well studied.

Genomic instability, the accumulation of DNA 
damage throughout life, is another important primary 
hallmark of aging (1, 14). DNA is constantly challenged  
by a wide variety of sources of both exogenous (e.g.  
UV- or X-rays and genotoxic chemicals) and endogenous 
origin (e.g. reactive oxygen species), but most of the  
lesions are repaired by dedicated DNA repair processes 
before they cause cell death or cell malfunction (15, 
16). Genetically determined disturbance of DNA repair 
accelerates the accumulation of DNA damage over time, 
shortens life span, and drives many age-related diseases 
and cancer in mammals (17, 18). For instance, Ercc1Δ/−  
and Xpg−/− DNA repair-deficient mice, harboring 
mutations in key endonucleases excising DNA damage,  
are both defective in multiple DNA repair pathways, 
including nucleotide excision repair (NER) and 
transcription-coupled repair (TCR) and show accelerated 
aging across many organs and tissues (17, 19, 20). These 
mouse models of premature aging (also called progeroid 
mice) can provide important insights into normal 
aging and are very useful to advance understanding 
of mechanisms of aging and to explore therapeutic 
interventions (21, 22). Interestingly, the accelerated  
aging triggers a protective antiaging ‘survival’ response, 
which is similar to the changes observed in long-lived 
dwarf mice (e.g. Ames and Snell mutants) or mice  
exposed to dietary restriction (DR), the only well-
documented universal anti-aging intervention. This 
highly intricate response, boosting resilience and  
defense mechanisms including antioxidant systems at 

Figure 1
Research question and experimental design. (A) 
Life span in mice with reduced somato-, lacto-, 
and/or thyrotropic signaling. The relationship 
between changes in percentage survival (x-axis) 
and log-hazard ratio effect size (y-axis) for median 
life span. Data were obtained from various life 
span cohorts (1) and separated by mutation. 
Mean values ± s.d. of the different cohorts are 
depicted for the various long-lived dwarf mutant 
mouse lines. (B) Schematic representation of the 
research question and experimental design.
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the expense of growth, involves strong suppression of 
the thyrotropic axis and several other key hormonal  
axes (20, 23).

Previously, we investigated thyroid hormone 
signaling in progeroid mice deficient in NER/TCR (24). 
These results indicated that DNA damage may attenuate 
thyroid hormone signaling during aging through 
modulation of deiodinase activity. The hypothyroid 
state in livers of normal and accelerated aging was 
associated with decreased activity of thyroid hormone- 
activating type 1 deiodinase (DIO1) and increased  
activity of thyroid hormone-inactivating DIO3 (24). It 
has been reported that, under certain conditions, DIO3 
changes in a cell-specific manner without affecting 
systemic thyroid state (25). At present, it is unclear if 
aging-related changes in deiodinase activity are driven 
by systemic signals or represent cell-autonomous  
changes (Fig. 1B).

To better understand the governance of thyroid 
hormone signaling, we here investigated mice with a 
global, liver-specific, and brain-specific inactivation of 
Xpg, one of the key endonucleases critically involved in  
the NER/TCR processes and when mutated causing  
three rare, severe (UV-sensitive) human DNA repair 
syndromes: the highly skin cancer-prone disease 
xeroderma pigmentosum (XP), the neurodevelopmental 
accelerated aging disorder Cockayne syndrome (CS),  
and the dramatic early lethal condition cerebro-
oculo-facio-skeletal syndrome (COFS) (19, 26, 27). The 
global Xpg knockout (KO) (Xpg−/−) mouse mutant is  
characterized by a shortened life span of about 18 weeks 
and accelerated the onset of multiple progressive aging 
features, most pronounced in liver and brain (19, 21, 
28). The liver-specific Alb-Xpg and brain-specific Emx-Xpg 
KO mice exhibit only severe tissue-specific features of 
premature aging (19, 29). Our findings suggest that DIO1 
activity during aging is predominantly modified in a 
tissue-autonomous manner driven by organ/cell-intrinsic 
accumulating DNA damage. The increase in hepatic  
DIO3 activity during aging largely depends on systemic 
signals, possibly reflecting the presence of other cells 
rather than activity in hepatocytes.

Methods summary

The generation and characterization of the different  
mouse models have been previously described (19). 
Experiments were performed in accordance with 
the Principles of Laboratory Animal Care and the 

guidelines approved by the Dutch Ethical Committee 
in full accordance with European legislation (permit  
# 139-12-18).

The activities of the deiodinases DIO1 and DIO3 
and concentrations of plasma and liver T3 and T4 were 
measured as reported previously (30, 31, 32).

Quantification of mRNA of T3-responsive genes  
was done according to standard procedures.

All statistical analyses were performed using  
GraphPad Prism (version 9.0.0). Statistical analysis on 
real-time qPCR data was calculated using dCT values. 
P-values expressed as *P < 0.05; **P < 0.01, ***P < 0.001  
were considered to be significant. Comparisons for two 
groups were calculated by unpaired two-tailed Student’s 
t-tests.

A full description of the methods is provided in the 
Supplementary Methods.

Results

We first assessed deiodinase activity levels in livers of  
full-body Xpg−/− DNA repair-deficient progeroid mice.  
We chose two ages: 4 weeks, when these mice only show 
minor symptoms of DNA damage accumulation and 
accelerated aging, and 14 weeks, when the mutant mice 
exhibit numerous progeroid characteristics, including 
prominent signs of premature aging in the neuronal  
system and liver, without being moribund (19, 21, 28). 
Measuring DIO1 activity at 4 weeks of age showed a 
minor trend of reduced activity (Fig. 2A). At the age of 
14 weeks, DIO1 activities in Xpg−/− liver were >6-fold 
(P = 0.0003) lower compared to wild-type (Wt) littermates 
(Fig. 2A). DIO3 activity in liver of Xpg−/− mice changed 
in the opposite manner (Fig. 2B; ~2-fold increase at 
14 weeks, P = 0.041). The pattern of decreased DIO1 
and increased DIO3 activity, with more pronounced 
effects in older animals, was reminiscent of the changes 
previously observed in other accelerated aging models 
(24), suggesting that Xpg−/− mice are relevant for  
exploring changes in thyroid state during aging.

To investigate if these deiodinase changes are 
tissue autonomous or not, we next assessed these  
measurements in Xpg-mutant mice harboring the  
genetic defect only in liver (under the albumin-Cre 
promoter specific to hepatocytes (33); hereafter named 
Alb-Xpg) (19, 29). We employed (fore)brain-specific (under 
the Emx1-Cre promoter specific to neuronal progenitor 
cells (34); see Supplementary Methods) deletion of  
Xpg (hereafter named Emx-Xpg) (19) as a negative control, 
as brain-specific accelerated aging is not expected to  
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affect liver thyroid hormone signaling. Both organs 
are known to display many progressive features 
of premature aging in short-lived full-body Xpg−/− 
mutants (19, 21, 28). Similarly, the tissue-specific 
mice show prominent local premature aging 
features from half a year of age onward, without  
causing early death (19). We therefore assessed thyroid 
state changes in both tissue-specific mutants at 26 weeks  
of age. In 26-week-old Alb-Xpg mice, when accelerated 
aging signs are clearly present in only liver (19, 29), 
liver DIO1 activity appeared decreased, like in Xpg−/−  
mice, while DIO3 activity was similar to that of controls 
(Fig. 2C and D). In livers of Emx-Xpg mice we did not  
find changes in DIO1 and DIO3 activities (Fig. 2E and 
F), arguing against systemic changes in the thyroid 
hormonal axis as a result of brain-specific premature 
neurodegeneration.

To find out whether the changes in enzyme 
activity were controlled at the level of gene expression 
or posttranscriptionally we determined the mRNA  
abundance by qRT-PCR. The observed changes in 
deiodinase activities in livers of full-body Xpg−/− mice and 
liver-specific Alb-Xpg mice were mirrored by alterations 
in Dio1 and Dio3 mRNA levels (Fig. 3A, B, and C), 
indicating that the changes are regulated at least in part 
transcriptionally.

Next, we measured thyroid hormone concentrations 
in both livers and plasma in all three animal models  
and Wt controls (Fig. 4). Liver T3 concentrations were 
only decreased in full-body Xpg−/− mice (Fig. 4A) but not  
in tissue-specific Alb-Xpg or Emx-Xpg mice (Fig. 4B and 
C). No changes in liver T4 concentrations were seen  
(Fig. 4D, E, and F). Overall, decreased plasma T3 and T4 
concentrations were noted in aged Xpg−/− mice (Fig. 4G  
and J), while those values were increased in young Xpg−/− 
and in tissue-specific Alb-Xpg mice (Fig. 4H and K). 
No changes in plasma T3 and T4 concentrations were 
observed in Emx-Xpg mice (Fig. 4I and L), indicating 
that accelerated neurological aging in forebrain does not  
cause systemic changes in the thyroid hormonal system.

To explore the net biological effect of the 
abovementioned changes in hormone concentrations 
and deiodinase activities, we quantified expression  
levels of a panel of genes that have been shown to be 
regulated by thyroid state (24). Consistent with the  
lower T3 concentrations, the decreased DIO1 and  
increased DIO3 activities, many thyroid hormone 
responsive genes were concordantly downregulated 
in livers of Xpg−/− mice, with changes being more  
pronounced in older animals (Fig. 5A and B). While Alb-
Xpg mice showed a similar tendency for downregulation 
(Fig. 5C), no consistent changes in this panel of  
thyroid hormone-responsive genes were seen in Emx-
Xpg mice compared to Wt control mice (Fig. 5D). We 
noted a paradox between the elevated circulating T3 and 
T4 concentrations, but subtle decreased expression of  
thyroid hormone responsive genes in liver of Alb-Xpg  
mice (Fig. 4H and K vs Fig. 5C). Therefore, we quantified 
hepatic expression of thyroid hormone-binding  
proteins for all animal models (Fig. 5E, F, G, and H),  
clearly showing a 3× upregulation of the high-affinity 
binding protein Tbg in Alb-Xpg mice (Fig. 5G), likely 
explaining the rise of total T3 and T4 in plasma.

B CA

Figure 3
Deiodinase gene expression in liver. Dio1 and Dio3 gene expression in 
livers of 4- and 14-week-old male Xpg−/− mice (A), 26-week-old liver-specific 
male Alb-Xpg mice (B), and 26-week-old brain-specific male and female 
Emx-Xpg mice (C). n = 3–4 animals/group. Error bars denote mean ± s.e. 
**P <0.01, ***P < 0.001.
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Figure 2
Deiodinase activity in liver. Deiodinase 1 (DIO1) and 3 (DIO3) activity in 
livers of DNA repair-deficient (indicated in red) 4- and 14-week-old male 
Xpg−/− mice (A, B), 26-week-old liver-specific male Alb-Xpg mice (C, D) and 
26-week-old brain-specific male and female Emx-Xpg mice (E, F). n = 3–4 
animals/group. Wild-type (Wt) littermate controls are indicated in blue. 
Error bars denote mean ± s.e. *P < 0.05, ***P < 0.001.
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As hepatic thyroid hormone levels and DIO3 activity 
differed between Xpg−/− and Alb-Xpg mice, we tested if 
differences in the degree of liver damage could be an 
explanation. At the histological level, both Xpg−/− and 
Alb-Xpg mice showed severe signs of liver aging such 
as hepatocyte polyploidization, seemingly to a greater 
extent in the Alb-Xpg mice (Supplementary Fig. 1A and 
B, see section on supplementary materials given at 
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Figure 4
Thyroid hormone concentrations in liver and plasma. Liver T3 and T4 
concentrations in 4- and 14-week-old male and female Xpg−/− mice (A, D), 
26-week-old liver-specific male Alb-Xpg mice (B, E), and 26-week-old 
brain-specific male and female Emx-Xpg mice (C, F). Plasma T3 and T4 
concentrations in 4- and 14-week-old male and female Xpg−/− mice (G, J), 
26-week-old liver-specific male Alb-Xpg mice (H, K), and 26-week-old male 
and female brain-specific Emx-Xpg mice (I, L). n = 3 animals/group. Error 
bars denote mean ± s.e. *P < 0.05.
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Figure 5
Expression of thyroid hormone responsive genes and thyroid hormone-
binding proteins in liver. Gene expression in livers of 4- and 14-week-old 
male Xpg−/− mice (A, B), 26-week-old liver-specific male Alb-Xpg mice (C), 
and 26-week-old brain-specific male and female Emx-Xpg mice (D). n = 3–4 
animals/group. The dotted line separates genes that are upregulated 
(left) or downregulated (right) in hypothyroidism. Alb, Tbg, and Ttr gene 
expression in livers of 4-week-old male Xpg−/− mice (E), 14-week-old male 
Xpg−/− mice (F), 26-week-old male Alb-Xpg mice (G) and 26-week-old male 
and female Emx-Xpg mice (H). n = 3–4 animals/group. Error bars denote 
mean ± s.e. *P < 0.05, **P < 0.01.
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the end of this article) (19). Alanine aminotransferase  
(ALAT) concentrations as a marker for liver damage 
were elevated in both animal models and even more 
pronounced in Alb-Xpg mice (Fig. 6A and B). In 
contrast, liver function appeared normal using albumin  
production as a proxy marker (Fig. 6C and D).

The noted elevated levels of hepatocyte 
polyploidization in Xpg−/− and Alb-Xpg mice could be a 

sign of cellular senescence (35), which increases during 
aging and was previously observed in various DNA  
repair-deficient accelerated aging mouse models (21, 29,  
36, 37, 38, 39). Based on the observation that IL-6, a 
senescence associated factor, could modify deiodinase 
activity (2, 40, 41), we aimed to measure cellular  
senescence markers by gene expression as a potential 
discriminator between global systemic and local cell-
autonomous changes. Various expression markers 
previously identified for the detection of senescence 
(36, 42) were increased in Xpg−/− and Alb-Xpg mice 
(Fig. 7A and B), with none significantly changed in 
Emx-Xpg mice (Fig. 7C), correlating with the degree 
of polyploidization (Supplementary Fig. 1) and DIO1 
inhibition (Fig. 2 and 3) in a cell-autonomous manner. 
In summary, we observed a reduction in DIO1 activity 
and related thyroid hormone-responsive genes in 
conditions of liver damage, while increased DIO3  
activity was only noted in livers of global Xpg-
deficient mice.

Discussion

The present data indicate that hepatic thyroid hormone 
signaling is changed during aging via tissue-autonomous 
and nonautonomous ways. Liver-specific and full-body 
inactivation of the DNA repair gene Xpg, causing local 
or body-wide accelerated aging, results in decreased 
DIO1 expression and activity, while an increased DIO3 
expression and activity is only present when DNA repair 
is globally hampered. As anticipated, Xpg deficiency  
and accelerated aging in brain does not exert any effect  
on thyroid signaling in liver.

To obtain a better mechanistic understanding of 
changes in thyroid hormone signaling during aging, 
model organisms can be used. Premature aging mice 
with segmental bona fide features of normal aging,  
reflect valuable models to study the normal aging  
process (17, 19, 21, 29, 43, 44, 45). Previously, we 
investigated two different prematurely aged DNA 

Figure 6
Alanine transferase and albumin concentrations in plasma. Alanine 
amino transferase (ALAT) concentration in plasma of 4- and 14-week-old 
male Xpg−/− mice (A), and 26-week-old liver-specific male Alb-Xpg mice (B). 
Albumin concentration in plasma of 4- and 14-week-old male Xpg−/− mice 
(C), and 26-week-old, liver-specific male Alb-Xpg mice (D). n = 2–3 animals/
group. Error bars denote mean ± s.e. **P < 0.01.

Figure 7
Expression of senescence-associated factors in 
liver. P21, IL-6, Mmp12, and Timp1 expression in 
livers of 14-week-old male Xpg−/− mice (A), 
26-week-old liver-specific male Alb-Xpg mice (B), 
and 26-week-old brain-specific male and female 
Emx-Xpg mice (C). n = 3–4 animals/group. Error 
bars denote mean ± s.e. **P < 0.01, ***P < 0.001.
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repair-deficient animal models and Wt aging mice (24). 
The large similarity in changes in thyroid hormone  
regulation between premature and normal aging  
indicated the usefulness of premature aging models in  
this field (24).

Here, we studied mice deficient in Xpg as another  
model for aging (19, 21). A principal finding was that 
we observed a hypothyroid state in liver accompanied 
by decreased DIO1 and increased DIO3 activity. The 
consistency with similar findings in other models 
supports the robustness of the observations (24). However, 
in mice with global inactivation of DNA repair it 
cannot be distinguished to which extent the changes in  
hepatic deiodinase activities result from systemic  
signals or from cell-autonomous processes. Therefore, 
the present study was designed to address this research 
question. In both full-body and liver-specific Xpg KO 
mice, DIO1 activity and expression was decreased  
consistent with reduced liver T3 concentrations. In 
contrast, DIO3 activity and expression was specifically 
increased in full-body Xpg−/− mice, and not subjected 
to changes in liver-specific Alb-Xpg mice. Interestingly, 
even though several features of hepatic accelerated aging 
in 26-week-old liver-specific mutants appeared more 
severe compared to the 14-week-old full-body Xpg mutant  
mice, the magnitude of DIO1 changes were more  
moderate, implying that changes in DIO1 are not solely 
explained by liver-autonomous phenomena. Brain-
specific depletion of Xpg did not result in any significant 
changes in liver DIO1 and DIO3 activity or T3 and  
T4 levels.

The observed changes in DIO3 however rather seem  
to originate from systemic factors as indicated by 
the absence of DIO3 elevation in both tissue-specific  
mutants. However, the age of the Xpg−/− and Alb-Xpg 
mice investigated are not identical as the rate of aging 
differs between systemic and local DNA repair deficient  
mutants (19, 46). Also, we cannot fully rule out a 
contribution of aging Kupfer cells or other liver cell- 
types in DIO3 activation as in the Alb-Xpg mice only 
hepatocytes are affected and thus could, when too 
severely damaged at later ages, be repopulated via yet 
unaffected liver stem cells, in contrast to Xpg−/− mice ((19) 
and unpublished observations). In line with previous 
observations, the activation of DIO3 in our study could 
originate from infiltrating cells (e.g. neutrophils or 
macrophages) invading the aged liver (47). Alternatively, 
metabolic factors could, in several cell-types including 
hepatocytes, elevate DIO3 expression and activity (48), 
which are components affected more in Xpg−/− over Alb-Xpg 

mice (19, 49). It remains however to be identified which  
cell types or conditions are truly responsible for the 
increased expression and activity of DIO3. With the 
current wisdom that DIO3 can be re-activated under 
certain conditions, future studies should explore  
whether tissue DIO3 activity reflects endogenous  
cells or invading cells.

Both global Xpg−/− mice and liver-specific Alb-Xpg  
mice show elevated levels of cellular senescence markers  
in liver, such as hepatocyte polyploidization, p21  
expression and senescence-associated-secretory-
phenotype (SASP) activation, of which at least IL-6 has 
been implicated in DIO3 regulation before. Should this 
be a causal link between aging, senescence and thyroid 
hormonal state, it can be speculated that activity of 
deiodinases may be downstream of inflammation 
pathways that are changed upon aging (2, 40). SASP 
activation is a prominent factor that accumulates with 
aging and upon excessive DNA damage occurring e.g. 
after chemotherapy (2, 36, 50, 51, 52). In this scenario  
the tissue-autonomous thyroid hormonal changes  
might be part of a broad ‘survival’ response to  
(accelerated) aging, driven at least in part by accumulation 
of DNA lesions. This response attempts to counteract  
the accelerated aging by boosting resilience mechanisms 
(e.g. antioxidant defenses) and reducing metabolism 
and growth (IGF1/GH) and strongly resembles the anti-
aging response triggered by DR (20, 23, 53, 54). Since 
we found that DNA repair-deficient progeroid mouse  
models, including Xpg−/− mice respond remarkably 
well to the anti-aging effects of DR (21), the reduced  
thyroid hormonal activity in this mutant may be an 
important component of this protective ‘survival’ 
response. Indeed, the response elicited by DR also 
encompasses attenuation of the thyroid hormonal axis 
(55, 56, 57, 58).

Together, these findings suggest that DIO1 activity 
during liver-aging is predominantly reduced in a tissue-
autonomous manner, while the increased DIO3 activity 
during aging may largely depend on circulating cells 
infiltrating the liver.

We realize our study has several limitations. First, 
the Xpg deficient mouse models used in the present 
study represent models of segmental accelerated aging. 
Although they display an extremely broad variety of 
symptoms and pathologies also observed in normal 
mouse and human aging (17, 21, 44), we cannot exclude 
specific features being more pronounced or lacking. 
Second, the hormone measurements in both tissue and 
plasma are total hormone concentrations, while only the 
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free hormone fraction is available for biological action. 
Indeed, the thyroid hormone binding protein Tbg,  
which carries the majority of circulating T3 and T4, 
was elevated in Alb-Xpg mice, potentially explaining 
why thyroid-responsive genes were downregulated,  
presumably following lower free hormone  
concentrations, while the total T3 plasma concentrations 
are elevated. Third, our study did not address which 
cells in the liver express DIO3. Our attempts so far were 
yet inconclusive but point to potential involvement of 
neutrophils or macrophages as noted before (47). Should 
that be the case, the function of increased DIO3 in  
these cells during aging remains to be elucidated.

Whether the changes in deiodinases during aging 
are beneficial cannot be established at this stage. In the 
context of many metabolic processes being reduced in 
aging, a further reduction of thyroid state might have 
beneficial effects (6, 7). Indeed, observational studies in 
older individuals may hint at increasing healthy lifespan 
in elderly with a lower thyroid state (59). The interplay 
between genetic, metabolic and environmental factors 
determines a unique thyroid biography in individuals. 
(2, 60). Lastly, interventional studies including DR 
in premature aging mice indicate the value of such 
models to explore therapeutic strategies for extending  
healthy lifespan (21, 22). Future studies should  
investigate to which extent the thyrotrophic axis 
influences the rate of aging, age-related multi- 
morbidity and lifespan in order to see whether and how 
this key hormonal axis can be exploited to promote 
healthy aging.
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