
1Scientific RepoRts | 6:37444 | DOI: 10.1038/srep37444

www.nature.com/scientificreports

A Nonparametric Regression 
Approach to Control for Population 
Stratification in Rare Variant 
Association Studies
Qiuying Sha, Kui Zhang & Shuanglin Zhang

Recently, there is increasing interest to detect associations between rare variants and complex traits. 
Rare variant association studies usually need large sample sizes due to the rarity of the variants, 
and large sample sizes typically require combining information from different geographic locations 
within and across countries. Although several statistical methods have been developed to control for 
population stratification in common variant association studies, these methods are not necessarily 
controlling for population stratification in rare variant association studies. Thus, new statistical 
methods that can control for population stratification in rare variant association studies are needed. In 
this article, we propose a principal component based nonparametric regression (PC-nonp) approach to 
control for population stratification in rare variant association studies. Our simulations show that the 
proposed PC-nonp can control for population stratification well in all scenarios, while existing methods 
cannot control for population stratification at least in some scenarios. Simulations also show that 
PC-nonp’s robustness to population stratification will not reduce power. Furthermore, we illustrate 
our proposed method by using whole genome sequencing data from genetic analysis workshop 18 
(GAW18).

Recently, there is increasing interest to detect associations between rare variants and complex traits. The variant 
by variant methods used to detect associations of common variants may not be optimal for detecting associations 
of rare variants due to allelic heterogeneity as well as the extreme rarity of individual variants1. Many statistical 
methods for testing the association of rare variants have been developed by using joint information of multiple 
variants in a genomic region. These methods can be roughly divided into three groups: burden tests, quadratic 
tests, and combined tests.

Burden tests1–5 collapse rare variants in a genomic region into a single burden variable and then regress the 
phenotype on the burden variable to test for the cumulative effects of rare variants in the region6. Burden tests 
implicitly assume that all rare variants are causal and directions of effects are all the same. Quadratic tests include 
tests with statistics of quadratic form of score vector7–9 and also adaptive weighting methods10–13. Quadratic tests 
are robust to directions of effects of causal variants and are less affected by neutral variants than burden tests do. 
If most of the rare variants are causal and directions of effects of causal variants are all the same, burden tests can 
outperform quadratic tests; otherwise, quadratic tests perform better. Combined tests6,14 combine information 
from burden tests, quadratic tests, and possibly other tests aiming to have advantages of multiple tests and to 
increase the robustness of tests.

All the aforementioned methods are population-based methods for unrelated individuals. It has been long 
recognized that, for population-based association studies, population stratification can seriously confound asso-
ciation results15,16. For rare variants this problem can be more serious, because the spectrum of rare variations 
can be very different in different populations. In common variant association studies, several methods that use 
a set of genomic markers genotyped in the same samples have been developed to control for population strat-
ification. These methods include genomic control (GC) approach17–19, principal component (PC) based linear 
regression (PC-linear) approach20, and mixed linear model (MLM) approach21,22 among others. GC approach 
adjusts the ordinary chi-square test statistic X2 to X2/λ and assumes X2/λ follows a chi-square distribution, where 
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the inflation factor λ can be estimated using genotypes at genomic markers. PC-linear approach summarizes the 
genetic background or ancestry information through the PCs of genotypes at genomic markers. The PCs can 
be further used to eliminate the effect resulting from population stratification through linear regressions. MLM 
approach corrects for a wide range of sample structures by explicitly accounting for pairwise relatedness between 
individuals.

Although several methods for controlling for population stratification have been developed for common var-
iants, it remains unclear whether these methods are equally effective for rare variants. Because rare variants have 
typically arisen recently, they tend to show greater geographic clustering or more latent subpopulations than 
common variants that are typically older. The more geographic clusters or latent subpopulations, the more diffi-
cult it will be to control for population stratification. Mathieson and McVean23 demonstrated that rare variants 
can show a stratification that is systematically different from common variants. They also demonstrated that the 
commonly used methods such as GC, PC-linear, and MLM to control for population stratification in common 
variant associations are not necessarily controlling for population stratification in rare variant associations. Zhang 
et al.24 showed that the use of PCs calculated from common variants were effective to control for population 
stratification in rare variant associations. Jiang et al.25 also found that the PC based methods performed quite well 
while GC often yielded lower power. Note that both studies of Zhang et al.24 and Jiang et al.25 did not explicitly 
model the spatial structure of populations in their simulation studies. Zhang et al.24 used two continental groups 
from the 1000 Genomes Project with six and four subpopulation groups, respectively. Jiang et al.25 simulated 
data with two populations. Lissgarten et al.26 reported that FaST-LMM Select (a MLM approach) could control 
for population stratification when samples were from spatially structured populations. However, their approach 
reduced power substantially when causal rare variants are spatially clustered26,27.

In this article, we propose a PC based nonparametric regression (PC-nonp) approach to control for popula-
tion stratification in rare variant association studies. PC-nonp adjusts population effects of both trait values and 
genotypes at candidate loci for PCs of genotypes at genomic markers by applying nonparametric regressions. We 
use extensive simulation studies to evaluate the performance of the proposed method PC-nonp and compare the 
performance of PC-nonp with that of GC and PC-linear developed for common variants and recently proposed 
biased urn permutation test (BiasePerm)28 developed for rare variants. Simulation results show that PC-nonp can 
control for population stratification well in all scenarios while GC, PC-linear, and BiasedPerm cannot control for 
population stratification at least in some scenarios. Results also show that PC-nonp’s robustness to population 
stratification will not reduce power. Furthermore, we evaluate the performance of our approach by applying it to 
the whole genome sequencing data from genetic analysis workshop 18 (GAW18) and find that only PC-nonp is 
effective to control for population stratification.

Method
Consider a sample of n unrelated individuals. Suppose that each individual has been genotyped at a candidate 
locus (single variant or multiple variants) and at L genomic markers. Let yi, xi, and pi denote the trait value, geno-
typic score at the candidate locus (weighted sum of genotypic scores if there are multiple variants), and the first k 
PCs (rescaled to the interval [0, 1]) of genotypes at genomic markers of the ith individual. The PCs of genotypes at 
genomic markers are good summary measures of ancestry or genetic background. PC-linear is probably the most 
popular method to control for population stratification. However, this method is based on linear combinations of 
PCs. Furthermore, recently developed BiasePerm28 is based on linear combinations of PCs on logistic scale if we 
use PCs as covariate vector28. The relationships between trait values and PCs can be highly nonlinear and popula-
tion effects cannot be corrected by simply using linear functions23. Figure 1 shows the relationships between trait 
values and the first two PCs of genotypes at 10,000 genomic markers in two structured populations. This figure 
shows that the relationships between trait values and PCs are highly nonlinear and the forms of the relationships 
are different in different populations. When the relationships are highly nonlinear and the forms of relationships 
are unknown, we should use more flexible regression methods rather than use linear regression. Nonparametric 
regression is a very flexible regression method and it does not require the form of regression function.

In this article, we propose a PC based nonparametric regression (PC-nonp) approach that adjusts population 
effects of both trait values and genotypes at candidate loci for PCs of genotypes at genomic markers by applying 
nonparametric regressions. That is,

µ ε µ ε= + = +y p x p( ) and ( ) , (1)i i i i i i1 2

where μ1(·) and μ2(·) are regression functions with unknown forms and will be estimated using smoothing tech-
niques. Let ⁎yi  and ⁎xi  be the residuals of the nonparametric regressions. We can consider ⁎yi  and ⁎xi  as the trait 
value and genotypic score at the candidate locus of the ith individual after adjusting for population effects. We can 
construct association tests based on the residuals.

Many methods have been developed to estimate the unknown regression function, including local linear 
method29–31, kernel smoothing method32,33 and wavelet method34,35. We propose to use kernel smoothing method. 
Let K(·) be a kernel function with mode at 0. The kernel estimators of μ1(pi) and μ2(pi) are given by
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µ = ∑ =ˆ p W p y( ) ( )i j
n

j i j1 1  and µ = ∑ =ˆ p W p x( ) ( )i j
n

j i j2 1 . With these nonparametric estimators, the fitted values of 
trait and the fitted values of genotypic scores at the candidate locus are given by = ∑ =ŷ W p y( )i j

n
j i j1  and 

= ∑ =x̂ W p x( )i j
n

j i j1 , respectively. Intuitively, = ∑ =ŷ W p y( )i j
n

j i j1  and = ∑ =x̂ W p x( )i j
n

j i j1  are the weighted 
mean of trait values and weighted mean of genotypic scores of those individuals whose genetic background is 
similar to that of the ith individual. Thus, we can consider residuals = − ˆ⁎y y yi i i and = − ˆ⁎x x xi i i as the trait 
value and genotypic score of the ith individual after adjusting for population stratification.

In this study, we use the quartic kernel33,

=








− ≤

> .
k t

t t

t
( )

15
16

(1 ) , 1,

0, 1 (3)

2 2

For computational consideration, we assume that h1 =  ... =  hk =  h. Then,

∏





− 



=






− 


=

K
p p

H
k

p p

h
,j i

s

k
js is

1

To test association between trait values and genotypes based on ⁎yi  and ⁎xi , we can use score test with test sta-
tistic Tscore =  U2/V, where = ∑ − −=
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Tscore asymptotically follows a chi-square distribution with one degree of freedom (df)36. For rare variants, xi can 
be a weighted combination2 or collapsing1,3 of genotypes at multiple variants in a genomic region. Based on the 
residuals of the nonparametric regression, we can construct other rare variant association tests such as CMC1, 
SKAT9, and TOW8. We will discuss this issue in more details later in the discussion section. In this study, we use 
a single-variant test in which xi is the genotypic score of a single variant and a regional test in which xi is the 
weighted combination of genotypes at the variants in a genomic region2 to evaluate the performance of our pro-
posed method.
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Figure 1. The relationships between the first two PCs of genotypes at 10,000 genomic markers and trait 
values. Genotypes at 10,000 genomic markers in the spatially structured populations are generated according 
to simulation set 2 in simulation section. Genotypes at 10,000 genomic markers in a population with 10 
subpopulations are generated according to simulation set 1 in simulation section. The trait values in the spatially 
structured populations and in a population with 10 subpopulations are generated according to null distributions 
(without random error) in simulation set 2 and simulation set 1, respectively.
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We have so far assumed a given smoothing parameter in the kernel estimates. It is well known that choosing a 
proper value for smoothing parameter h is critical to kernel estimates of regression functions32,37. We use a 
method similar to that of Zhang et al.35 to choose smoothing parameter h. This method is based on the genotypes 
at a set of genomic markers. Suppose there are L genomic markers. We perform PC-nonp single-variant test for 
all the L genomic markers and denote P1, … , PL as the associated P-values. If population stratification is well con-
trolled for, P-values P1, … , PL should follow a uniform distribution under the null hypothesis of no association. 
Let Fn be the empirical distribution function of the P-values P1, … , PL and F be the uniform distribution function. 
The Kolmogorov test statistic = −Kol h F x F x( ) max ( ) ( )x n  measures how close the distribution of the P-values 
P1, … , PL and the uniform distribution are. We propose to choose h* that minimizes the Kolmogorov test statistic, 
i.e.,

=⁎h Kol harg min ( ) (4)h

as the value of the smoothing parameter. h* can be obtained by a simple grid search across a range of h. We divide 
the interval [0, ∞ )into subintervals 0 ≤  h1 <  …  <  hS−1 <  hS <  ∞ . Then, =

≤ ≤

⁎h Kol harg min ( )
s S

s
1

. The computational 
time to find h* increases linearly with S. However, h* needs to be calculated only once. We can use this h* to cal-
culate the residuals of the nonparametric regression for trait values and genotypes at each variant. Let k denote the 
number of PCs used. In this study, we use hs =  22(s−23)/(5+k), where s =  1, … , 30 and k =  10. It is worth noting that 
the smoothing parameter h is chosen with the P-values of a single-variant test, whichever test is actually used in 
testing associations.

Software. R code for implementing our proposed method is given at Shuanglin Zhang’s homepage http://
www.math.mtu.edu/~shuzhang/software.html. The R code includes three functions: PCA, choose_OPT_SMP, 
and Resid_Nonp. PCA gives the first k principal components of genotypes at genomic markers. choose_OPT_
SMP chooses the optimal value of smoothing parameter. Given the value of the smoothing parameter, Resid_
Nonp calculates the residuals of trait values and genotypes at a candidate region by applying nonparametric 
regression for PCs of genotypes at genomic markers.

Comparison of Tests. We compare the performance of the proposed test with that of the following four 
tests. (1) Uncorrected: this test is also based on the score test statistic Tscore

U . Tscore
U  is the same as Tscore but Tscore

U  is 
based on the original trait values yi and genotypic scores xi instead of based on the residuals. (2) GC17: GC divides 
Tscore

U  by an inflation factor λ and λ = ... .median T T L( (1), , ( ))/0 456score
U

score
U , where T l( )score

U  is the value of Tscore
U  

when Tscore
U  is applied to the lth genomic marker. (3) PC-linear20: this test is the same as PC-nonp but PC-linear is 

based on the residuals of linear regression instead of based on the residuals of nonparametric regression. (4) The 
biased urn permutation test (BiasedPerm)28: in this permutation procedure, the odds of a subject being selected 
as a case are equal to his or her odds of disease conditional on confounder variables. In this study, PC-linear, 
PC-nonp, and BiasedPerm are based on the first 10 PCs of genotypes at the genomic markers.

Simulations. We consider two sets of simulations: populations with k0 subpopulations and populations with 
spatially structured populations. In each set of simulations, we consider both qualitative and quantitative traits. To 
generate a qualitative disease affection status, we use a liability threshold model based on a continuous phenotype 
(quantitative trait). An individual is defined to be affected if the individual’s phenotype is at least one standard 
deviation larger than the phenotypic mean. This yields a prevalence of 16% for the simulated disease in the gen-
eral population. In the following, we describe how to generate genotypes and how to generate a quantitative trait 
in the two sets of simulations.

Simulation Set 1: Populations with k0 Subpopulations. This set of simulations is based on allele frequencies at 
24,487 variants calculated from the empirical Mini-Exome genotype data provided by the genetic analysis work-
shop 17 (GAW17). The genotypes of GAW17 data set are extracted from the sequence alignment files provided by 
the 1000 Genomes Project for their pilot3 study (http://www.1000genomes.org). GAW17 data contain genotypes 
of 697 unrelated individuals at 24,487 variants. The distributions of MAF at rare variants (MAF <  0.01) and MAF 
at common variants of 24,487 variants are given in Figure S1.

To generate genotypes of individuals in a population with k0 subpopulations, we follow Price et al.20, 
Ionita-Laza et al.38, and Qin et al.39. For each variant, we randomly select a variant from 24,487 variants and take 
the MAF at this variant as the ancestral population allele frequency p. Then, independently draw k0 values 
...p p, , k1 0

 from a beta-distribution with parameters p(1 −  Fst)/Fst and (1 −  p)(1 −  Fst)/Fst, where Fst is the Wright’s 
measure of population subdivision40 (in this study, Fst =  0.01). For each variant, we accept ...p p, , k1 0

 as allele 
frequencies for the k0 subpopulations if ∑ ≥ .= p 0 002

k i
k

i
1

10
0 ; we redraw ...p p, , k1 0

 otherwise. The MAF distribu-
tions at the rare variants (MAF <  0.01) and at the common variants for k0 =  5 are given in Figure S1.

To evaluate type I error, we generate trait values independent of genotypes by using the model:

µ ε= +y , (5)ij i ij

where yij denotes the trait value of the jth individual in the ith subpopulation, εij follows a standard normal distri-
bution, and μi is the population mean of the ith subpopulation. In this study, if k0 ≤  2, we set μ1 =  0 and μ2 =  μ; 
otherwise, we set µ µ= = =− 0k1 20

 and µ µ µ= =−k k10 0
, where μ =  5 if k0 =  20; otherwise μ =  2.

http://www.math.mtu.edu/~shuzhang/software.html
http://www.math.mtu.edu/~shuzhang/software.html
http://www.1000genomes.org
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To evaluate power, we consider nT variants (possibly both rare and common variants) in a genomic region. We 
randomly choose nc from the nT variants as causal variants (in this study, nc =  nT/2). For the jth individual in the 
ith subpopulation, let xijl denote the genotypic score of the jth individual in the ith subpopulation at the lth causal 
variant. We assume that all the nc causal variants have the same heritability such that rarer variants have larger 
effects. Under this assumption, the disease model is given by

∑µ β ε= + +
=

y x ,
(6)ij i

l

n

l ijl ij
1

c

where βl are constants and their values depend on the total heritability.

Simulation Set 2: Spatially Structured Populations. We generate genotypes and phenotypes under spatially struc-
tured populations using the methods similar to those of Mathieson and McVean23. Briefly, the space is divided 
into K0 ×  K0 grid squares. Then, we generate genotypes by starting with a number of individuals and their loca-
tions on the grid. We work backward in time to generate random genealogical events. Each event is either a 
coalescence of two lineages or a migration of a single lineage from one square to another. The relative rates of 
coalescence and migration depend on the population-scaled migration rate M and the number and distribution 
of lineages on the grid (see Supplement materials or Mathieson and McVean23 for details).

To generate quantitative traits under null hypothesis, let φ: |1, n| →  |1, K0| ×  |1, K0| be a function that maps 
each individual to the grid square from which they originated. Then, we generate the trait value of the ith individ-
ual by yi =  βRφ(i) +  εi, where φ(i) =  (l, j) if the ith individual originates from grid square l, j; Rl,j is the nongenetic 
risk in grid square l, j; εi is a standard normal random number; and β is a constant. We use the following three 
models to determine the value of Rl,j. Model 0: no population stratification in which Rl,j =  0 for all l and j. Model 
1: a small and sharp spatial distribution in which Rl,j =  1 if l0 ≤  l ≤  l0 +  3 and j0 ≤  j ≤  j0 +  3 for l0 =  j0 =  6, or 
20 −  l0 =  j0 =  6, or l0 =  j0 =  14; Rl,j =  0 otherwise. Model 2: a wide and smooth spatial distribution in which 
= . − − + −R e0 4l j

l l j j
,

( ( ) ( ) )/180
2

0
2

 for l0 =  j0 =  6. In this study, we use the following parameters: K0 =  20, M =  0.01, and 
β =  2.

Under alternative hypothesis, we assume that there are nT variants in a genomic region. We randomly choose 
nc from the nT variants as causal variants. For an individual, let xl denote the genotypic score at the lth causal vari-
ant. Under the assumption that all the nc causal variants have the same heritability, the trait value for an individual 
is generated by

∑β= +
=

y x y ,
(7)l

n

l l
1

0

c

where y0 is the trait value generated under null hypothesis.

Results
Existence of the minimum of Kolmogorov test statistic Kol(h). We first perform simulation stud-
ies to evaluate the existence of the minimum of Kolmogorov test statistic Kol(h). We generate trait values and 
genotypes at 10,000 variants under simulation set 1 for k0 =  5 and k0 =  10 and under simulation set 2 models 1 
and 2. Under each of the four scenarios, we calculate Kol(h) for different values of h. The relationships between 
Kol(h) and − log(h) under the four scenarios are given in Fig. 2. This figure shows that the curves of Kol(h) 
under the four scenarios are all bowl shaped and thus have minimum. The histograms of 10,000 P-values of the 
proposed test for different values of h are given in Figures S2–S5 for the four scenarios, respectively. From these 
figures, we can see that when h is large, population effects are not adjusted enough and thus the number of small 
P-values are more than expected; when h is small, population effects are over adjusted and thus the number of 
large P-values are more than expected; when h minimizes Kol(h), the distribution of P-values is very close to the 
uniform distribution.

Evaluate type I error rates. We use 10,000 replicated samples to evaluate type I error rates. For BiasedPerm, 
we use 5,000 permutations to evaluate P-values. For all other tests, we use asymptotic distributions to evaluate 
P-values. For 10,000 replicated samples, the 95% confidence intervals (CIs) for type I error rates of nominal levels 
0.01 and 0.001 are (0.008, 0.012) and (0.00037, 0.00163), respectively.

To evaluate type I error rates, we first want to see the performance of the asymptotic distributions we used. For 
this purpose, we perform simulations under null hypothesis in a homogenous population (k0 =  1 in simulation 
set 1) and in the case of no population stratification (model 0 in simulation set 2). Type I error rates are given in 
Tables 1 and 2 for quantitative traits and qualitative traits, respectively. Table 1 shows that, for quantitative traits, 
type I error rates of all the four tests in all the scenarios are within the corresponding 95% confidence intervals, 
which indicates that the asymptotic distributions work very well. Table 2 shows that, for qualitative traits, most of 
the type I error rates are within the corresponding 95% CIs and those of the type I error rates that are not in the 
95% CIs are very close to the corresponding 95% CIs, which indicates that the asymptotic distributions approx-
imately work well.

Type I error rates under structured populations in simulation set 1 for k0 =  2, 10, 20 are given in Tables 3 and 4  
for quantitative traits and qualitative traits, respectively. As shown by these two tables, Uncorrected has inflated 
type I error rates in all the scenarios. GC cannot control for population stratification for quantitative traits when 
k0 =  10 and 20 because most variants have very small correlation with the trait. PC-linear and BiasedPerm can-
not control for population stratification when k0 =  20 because the linear combinations of the first 10 PCs cannot 
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discriminate 20 subpopulations. Only PC-nonp can control for population stratification in all simulation scenar-
ios. If we increase the number of PCs, PC-linear and BiasedPerm may control for population stratification when 
k0 =  20. The problems to use PC-linear and BiasedPerm to control for population stratification are (1) we do not 
know how many PCs should be used and (2) increasing the number of PCs may decrease the power.

Type I error rates under spatially structured populations in simulation set 2 for models 1 and 2 are given in 
Tables 5 and 6 for quantitative traits and qualitative traits, respectively. These two tables show that Uncorrected 
has inflated type I error rates in all the scenarios. GC cannot control for population stratification for single variant 
test because most variants have very small correlation with the trait. PC-linear and BiasedPerm have inflated type 
I error rates under model 1 because these two methods try to correct highly nonlinear relationships on the basis 
of linear functions of relatedness. PC-nonp can control for population stratification well in all simulation scenar-
ios because nonparametric regressions can adapt any function, linear or nonlinear.

Power comparison. To evaluate if PC-nonp’s robustness to population stratification will reduce power, we 
perform simulation studies to compare power using regional tests under k0 =  1 and k0 =  10 in simulation set 1 
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Figure 2. The relationships between −log(smoothing parameter h) and Kolmogorov test statistic Kol(h) in 
four structured populations. 

Population 
Structures Test Alpha Un-corrected GC PC-linear PC-nonp

A Homogenous 
Population

Single
Variant

0.01 0.01054 0.01104 0.01096 0.01106

0.001 0.00106 0.00124 0.0011 0.00114

Regional
0.01 0.0103 0.01112 0.01078 0.01048

0.001 0.00086 0.00112 0.00088 0.00096

No Population 
Stratification

Single
Variant

0.01 0.0105 0.00984 0.01254 0.00994

0.001 0.0008 0.00068 0.00112 0.00076

Regional
0.01 0.00942 0.00974 0.00936 0.0096

0.001 0.00074 0.00078 0.00076 0.00072

Table 1.  Type I error rates of four tests in a homogenous population and in the case of no population 
stratification for quantitative traits. Note: “A homogenous population” means k0 =  1 in simulation set 1; “no 
population stratification” means model 0 in simulation set 2.
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and under models 0 and 2 in simulation set 2, in which all tests except Uncorrected can control for population 
stratification well. Power comparisons under k0 =  1 and k0 =  10 in simulation set 1 are given in Fig. 3. This figure 
shows that, when there is no population stratification (a homogenous population), all tests have very similar 
powers. When there is population stratification (a structured population with 10 subpopulations), PC-nonp and 
PC-linear are more powerful than Uncorrected and BiasedPerm, and GC has the lowest power. GC loses power 
because it has a larger inflation factor when there is population stratification. BiasedPerm essentially performs 
permutation within subpopulations and thus it will lose power when there are a large number of subpopula-
tions. Uncorrected loses power because, in the structured population with 10 subpopulations, different trait value 
means in subpopulations weaken the association signal. PC-nonp and PC-linear do not lose power because, after 
adjusted for population effects, it appears that PC-nonp and PC-linear perform association tests in a homogenous 
population.

Population 
Structures Test Alpha Un-corrected GC PC-linear PC-nonp

A Homogenous 
Population

Single
Variant

0.01 0.0131 0.0076 0.0129 0.01178

0.001 0.00168 0.00112 0.00182 0.00172

Regional
0.01 0.00992 0.00958 0.00992 0.0121

0.001 0.00124 0.00116 0.00122 0.00162

No Population 
Stratification

Single
Variant

0.01 0.01082 0.0053 0.01 0.0079

0.001 0.00169 0.0007 0.00162 0.0014

Regional
0.01 0.0113 0.00904 0.01176 0.00926

0.001 0.00178 0.00138 0.00166 0.00134

Table 2.  Type I error rates of four tests in a homogenous population and in the case of no population 
stratification for qualitative traits. Note: “A homogenous population” means k0 =  1 in simulation set 1; “no 
population stratification” means model 0 in simulation set 2.

Number of 
Subpopulations Test Alpha Un-corrected GC PC-linear PC-nonp

2

Single
Variant

0.01 0.1516 0.00414 0.01026 0.01038

0.001 0.05998 0.00032 0.00108 0.001

Regional
0.01 0.258 0.0081 0.00995 0.00925

0.001 0.1489 0.0004 0.00115 0.00095

10

Single
Variant

0.01 0.0503 0.01498 0.01096 0.01068

0.001 0.01606 0.0026 0.0012 0.00108

Regional
0.01 0.0549 0.0101 0.0107 0.0102

0.001 0.0139 0.00085 0.0008 0.001

20

Single
Variant

0.01 0.04896 0.02602 0.04234 0.01004

0.001 0.0214 0.0102 0.01632 0.00082

Regional
0.01 0.0488 0.01285 0.0391 0.011

0.001 0.0137 0.00255 0.0096 0.00075

Table 3.  Type I error rates of four tests based on simulation set 1 for quantitative traits.

Number of 
Subpopulations Test Alpha Un-corrected GC PC-linear Biased Perm PC-nonp

2

Single
Variant

0.01 0.02914 0.00648 0.01124 0.0065 0.0107

0.001 0.00592 0.00034 0.00094 0.00056 0.00094

Regional
0.01 0.04066 0.00924 0.01168 0.0103 0.01192

0.001 0.0093 0.0009 0.00144 0.001 0.00146

10

Single
Variant

0.01 0.0428 0.01106 0.0106 0.00672 0.0103

0.001 0.01172 0.00124 0.00162 0.00078 0.00138

Regional
0.01 0.04862 0.00984 0.0105 0.01034 0.01062

0.001 0.01174 0.00134 0.00128 0.0008 0.0012

20

Single
Variant

0.01 0.02022 0.01244 0.01734 0.02296 0.01072

0.001 0.00414 0.00138 0.00354 0.00458 0.00132

Regional
0.01 0.04014 0.01068 0.03468 0.02694 0.01034

0.001 0.00952 0.00172 0.00746 0.0051 0.00152

Table 4.  Type I error rates of five tests based on simulation set 1 for qualitative traits.
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Model Test Alpha Un-corrected GC PC-linear PC-nonp

1

Single
Variant

0.01 0.0207 0.0135 0.0228 0.0132

0.001 0.0042 0.0021 0.0048 0.0014

Regional
0.01 0.1256 0.0121 0.1171 0.0106

0.001 0.052 0.0024 0.0463 0.0008

2

Single
Variant

0.01 0.019 0.0139 0.011 0.0115

0.001 0.0048 0.0026 0.0011 0.0011

Regional
0.01 0.0374 0.0128 0.0112 0.0082

0.001 0.0102 0.0009 0.0008 0.0006

Table 5.  Type I error rates of four tests based on simulation set 2 for quantitative traits.

Model Test Alpha Un-corrected GC PC-linear BiasedPerm PC-nonp

1

Single
Variant

0.01 0.0384 0.0128 0.0409 0.02564 0.007

0.001 0.0132 0.0022 0.0151 0.00652 0.0005

Regional
0.01 0.0248 0.0095 0.0288 0.02752 0.0114

0.001 0.0056 0.0009 0.005 0.00584 0.0008

2

Single
Variant

0.01 0.0453 0.0174 0.0087 0.00514 0.0088

0.001 0.0182 0.0048 0.0006 0.00032 0.001

Regional
0.01 0.0366 0.0115 0.0121 0.00684 0.0093

0.001 0.0078 0.0007 0.0016 0.00046 0.0012

Table 6.  Type I error rates of five tests based on simulation set 2 for qualitative traits.
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Figure 3. Power comparisons based on populations with k0 subpopulations. “Homo” means that simulations 
are based on a homogenous population (k0 =  1 in simulation set 1). “Structured” means that simulations are 
based on a structured population with 10 subpopulations.
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Power comparisons under models 0 and 2 in simulation set 2 are given in Fig. 4. As shown by this fig-
ure, for quantitative traits, the pattern of power comparisons is very similar to that in Fig. 3. For qualitative 
traits, Uncorrected is the most powerful one. The pattern of power comparisons among PC-nonp, PC-linear, 
BiasedPerm, and GC is very similar to that in Fig. 3.

Analysis of GAW18 whole genome sequencing data set. The data set for GAW18 includes whole 
genome sequencing (WGS) data of 959 individuals (464 directly sequenced and the rest imputed) from 20 
Mexican American pedigrees from San Antonio, Texas. There are 21–76 individuals in each pedigree. Phenotype 
data include sex, age, year of examination, systolic and diastolic blood pressure (SBP and DBP), use of antihyper-
tensive medications, and tobacco smoking at up to four time points.

Since Mexican American population is admixture population, association studies based on unrelated individ-
uals from this population may be subjected to bias due to population stratification. For our purpose, we extract 
132 genetically unrelated individuals from the 20 pedigrees with phenotypes and WGS data and select SBP as the 
trait of interest while take sex, age, use of antihypertensive medications, and tobacco smoking as covariates. For 
WGS data, we only consider one chromosome (chromosome 17). Among the 132 unrelated individuals, there 
are 404,032 SNPs on chromosome 17. Since the sample size is small, we only consider the 41,754 uncommon 
SNPs with MAF between 0.02 and 0.05 instead of including rare SNPs. We randomly draw 10,000 SNPs from 
the 41,754 SNPs without replacement and test association between the phenotype and each of the 10,000 SNPs 
using each of the four tests: Uncorrected, GC, PC-linear, and PC-nonp. We repeat the drawing procedure 4 times 
with re-drawing 10,000 SNPs from the 41,754 SNPs. Quantile-quantile plots of the observed − log10(P-values) of 
the four tests and expected log10(P-value) under the assumption of uniform distribution of P-values are given in 
Fig. 5. All quantile-quantile plots are averaged over 4 draws in order to show the average effect. Since we randomly 
draw 10,000 SNPs across chromosome 17, it is unlikely that there are a large number of SNPs in the 10,000 SNPs 
associated with SBP. Therefore, if population stratification can be well controlled for, P-values should proximately 
follow a uniform distribution. Figure 5 shows that only P-values of PC-nonp nearly follow a uniform distribution 
while for all other tests, the number of small P-values is more than expected.

Discussion
With the development of next-generation sequencing technology, there is increasing interest to detect associ-
ations between rare variants and complex traits. Many statistical methods have been developed for detecting 
rare variant associations. However, these methods may be subject to bias due to population stratification and, as 
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Figure 4. Power comparisons based on spatially structured populations. “No stratification” means that trait 
values have no relation with spatial position (model 0 in simulation set 1). “Structured” means that trait values 
are generated according to spatially structured model 2.
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pointed out by Mathieson and McVean23, existing methods developed to control for stratification are not neces-
sarily effective in rare variant associations. Therefore, statistical methods that can control for population stratifica-
tion in rare variant association studies are needed. In this article, we propose the PC-nonp approach to control for 
population stratification in rare variant association studies. To apply PC-nonp, we first calculate PCs of genotypes 
at the genomic markers. Then, we use these PCs to adjust population effects of both trait values and genotypes at 
a candidate locus by applying nonparametric regressions. Our simulations show that the proposed PC-nonp can 
control for population stratification well in all scenarios while existing methods cannot control for population 
stratification at least in some scenarios. Simulations also show that PC-nonp’s robustness to population stratifi-
cation will not reduce power. Applications to the GAW18 whole genome sequencing data set also show that our 
proposed method can control for population stratification better than existing methods.

Although we describe our proposed method using a single-variant test and a weighted sum regional test, our 
method can be applied to most existing rare variant association tests such as CMC1, SKAT9, and TOW8. To apply 
our method to SKAT and TOW, denote yi and xim as the trait value and genotypic score at the mth variant of the ith 
individual. Let ⁎yi  and ⁎xim denote the residuals of nonparametric regressions yi =  μ(pi) +  εi and xim =  μm(pi) +  εim, 
where i =  1, … , n and m =  1, … , M. Based on the residuals ⁎yi  and ⁎xim, the test statistics of both SKAT and TOW 
can be written as = ∑ =T m

M U
V1

m

m

2
, where = ∑ − −=

⁎ ⁎ ⁎ ⁎U y y x x( )( )m i
n

i im m1 . In TOW, = ∑ −=
⁎ ⁎V x x( )m i

n
im m1

2 
while, in SKAT, = Beta MAF a a( ; , )

V m
1

1 2
m

, the beta distribution density function with pre-specified parameters 
a1 and a2 evaluated at the sample MAF for the mth variant in the data. To apply our method to CMC, suppose that 
M variants can be classified as Sr groups of rare variants and Sc individual variant sites. Define indicator variables 
xis(i =  1, … , n; s =  1, … , Sr) for all individuals and the Sr groups of rare variants, where xis =  1 if minor alleles at any 
variant in the sth group of the ith individual are present; xis =  0 otherwise. Let S =  Sr +  Sc and define +xi S s( )r

 
(s =  1, … , Sc) as the genotypic score of the ith individual at the sth individual variant site. Let ⁎yi  and ⁎xis denote the 
residuals of nonparametric regressions yi =  μ(pi) +  εi and xis =  μs(pi) +  εis, where i =  1, … , n and s =  1, … , S. Based 
on residuals ⁎yi  and ⁎xis, we cannot use T2 test because ⁎xis are not 0 and 1. We can use a score test or the improved 
score test36.

Zhang et al.41 proposed a semi-parametric test for association (SPTA) to control for population stratifica-
tion. SPTA models the relationship between trait values, genotypic scores at the candidate marker, and PCs of 
genotypes at genomic markers through a semi-parametric model, where the exact form of relationship between 
trait values and PCs is assumed unknown, but trait values have linear relationship with genotypic scores at the 
candidate marker. Although SPTA and PC-nonp are equivalent for single-variant tests under quantitative traits, 
SPTA is difficult to extend to regional rare variant association tests such as SKAT and TOW because it is designed 
for single-variant tests.
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