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Objective: The objective of this study is to investigate the roles of cardiometabolic

factors (including blood pressure, blood lipids, thyroid function, body mass, and insulin

sensitivity) in mediating the causal effect of type 2 diabetes (T2DM) on cardiovascular

disease (CVD) outcomes.

Design: Two-step, two-sample multivariable Mendelian randomization (MVMR) study.

Setting: International genome-wide association study (GWAS) consortia data.

Exposure: Type 2 diabetes, blood pressure: systolic blood pressure (SBP), diastolic

blood pressure (DBP); blood lipids: low-density lipoprotein (LDL), high-density lipoprotein

(HDL), total cholesterol (TC), triglycerides (TG); thyroid function: hyperthyroidism,

hypothyroidism; body mass index (BMI), waist-hip-ratio (WHR), and insulin sensitivity.

Main Outcomes: Cardiovascular disease includes coronary heart disease (CHD),

myocardial infarction (MI), and stroke.

Methods: Summary-level data for exposures and main outcomes were

extracted from GWAS consortia. We used two-sample MR to illustrate the

causal effect of T2DM on CVD subtypes and regression-based MVMR to

quantify the possible mediation effects of cardiometabolic factors on CVD.
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Results: Each additional unit of log odds of T2DM increased 16% risk of CHD [odds

ratio (OR): 1.16, 95% CI: 1.12–1.21], 15% risk of myocardial infarction (MI) (OR: 1.15,

95% CI: 1.10–1.20), and 10% risk of stroke (OR: 1.10, 95% CI: 1.06–1.13). In mediation

analysis, SBP, DBP, and TG were found as main mediators, while the mediation effects of

other cardiometabolic factors were not significant. The proportion of total effect of T2DM

on CHD mediated by SBP, DBP, and TG was 16% (95% CI: 8–24%), 7% (95% CI: 1–

13%) and 10% (95% CI: 2–18%), respectively. Mediation effect of SBP and DBP on MI

and stroke, TG on MI was also prominent, while mediation effect of TG on stroke was

not significant. The combined mediation effect of all the three mediators accounted for

29%, 26%, and 13% of the total effect of T2DM on CHD, MI, and stroke, respectively.

Conclusion: Systolic blood pressure, DBP, and TG mediate a substantial proportion of

the causal effect of T2DM on CVD and thus interventions on these factors might reduce

the considerable excess risk of CVD among patients with T2DM.

Keywords: type-2 diabetes (T2DM), cardiovascular disease, blood pressure, triglycerides (TG), Mendelian

randomization study

INTRODUCTION

Globally, cardiovascular disease (CVD) remains the leading cause
of mortality which accounts for over 17 million deaths annually
(1). Compelling observational studies have proved that type
2 diabetes (T2DM), which will influence up to 550 million
patients by 2030 (2), has always been supposed to be associated
with an increased risk of CVD (3, 4). It is estimated that
patients with T2DM over 50 years old lost 6 years on average
than nondiabetic population, and 58% of this difference can
be attributable to CVD (5). However, controversial evidence
from previous studies showed that intensive glycemic control
per se might even increase CVD risk (6). Thus, exploring
treatment strategies besides glycemic control is essential for
the management of patients with T2DM. As patients with
T2DM are often present withmultiple cardiometabolic disorders,
understanding whether these risk factors have roles in mediating
the causal effect of T2DM on CVD would provide new
intervention targets to reduce excess CVD risk for patients
with T2DM.

An observational study has investigated the influence of
T2DM on the subtype of CVD mediated by blood pressure,
cholesterol, glucose, and other metabolic factors individually
and concluded that decreasing systolic blood pressure (SBP)
and total cholesterol (TC)/ high-density lipoprotein (HDL)
ratio could reduce 10-year CVD risk (7). Besides, an open,
parallel trial aiming at patients with T2DM with a mean
follow-up of 7.8 years concluded that intensified interventions
including decline glycosylated hemoglobin, blood pressure,
TC, triglycerides (TGs), and urinary albumin excretion rate
brought huge benefit in reducing CVD events by 50% (8).
However, observational studies have always been criticized
for their weakness in proving causal associations because
of unknown or inadequately measured confounding factors.
Moreover, conducting a well-designed randomized-controlled
trial (RCT) is both time-consuming and costly which may take

decades. Therefore, it remains largely unknown whether such
mediation effects are causal.

Mendelian randomization (MR) is a genetic epidemiological
method using genetic variants as instrumental variables for risk
factors to explore the unbiased effect on diseases (9). Unlike
traditional observational studies, MR studies are less likely to
be biased by confounding factors or measurement errors and
thus are becoming widely used to investigate the potential
causal effect of exposures on outcomes (10). The two-sample
MR method means genetic variants for exposure and outcome
are extracted from the different dataset which makes it more
robust in statistical power, but alternative sources of bias may
be caused if the two samples used in a study overlap (11).
Previous MR studies have proved the causal effect of T2DM
on stroke, coronary heart disease (CHD) (12, 13), the causal
effect of T2DM on blood pressure (14), and also causal effects
of metabolic factors on CVD (15, 16). Results from these studies
indicate that these cardiometabolic factors might partly explain
the causal effect of T2DM on CVD, but none of them have
quantified the mediation effect. Therefore, to understand how
much of the causal effect of T2DM on CVD is mediated by
cardiometabolic factors, separately and in combinations, we
conducted a two-step, two-sample MR study. We quantified
how much of the effects of T2DM on CVD subtypes such as
CHD, myocardial infarction (MI), and stroke were mediated
through cardiometabolic factors including SBP, diastolic blood
pressure (DBP), low-density lipoprotein (LDL), HDL, TC, TG,
etc. individually and in all possible combinations by analyzing
genome-wide association study (GWAS) summary statistics from
international genetic consortia.

METHODS

Overall Study Design
The first step of our two-step MR study is to determine the
causal effect of T2DM on each subtype of CVD (CHD, MI, and
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stroke). The second step of this study is to explore and quantify
the possible mediation effects of cardiometabolic factors on the
causal effect of T2DM on each subtype of CVD.

Data Sources
Genetic Instrumental Variables for T2DM
We obtained genetic variants for T2DM from a meta-analysis
of GWAS which consists of over 16 million genetic variants
of European ancestry (17). Sources of participants include
DIAGRAM (12,171 cases and 56,862 controls), GERA (6,905
cases and 46,983 controls), and UKB datasets (21,147 cases and
434,460 controls) (17).

Genetic Instrumental Variables for Potential

Mediators
A total of 12 cardiometabolic factors including blood pressure,
blood lipids, thyroid function, body mass index (BMI),
and insulin sensitivity were selected as potential mediators.
Genetic variants of SBP and DBP were both extracted from
a genetic analysis of over one million people drawn from
UK Biobank (UKB) (N = 458,577 Europeans) (18) and the
International Consortium of Blood Pressure-Genome Wide
Association Studies (ICBP) (N = 299,024 Europeans) (19, 20).
For TG, hyperthyroidism, and hypothyroidism, we obtained data
from online public GWAS of European ancestry participants
provided by Neale lab and Ben Elsworth through R software
(R Consortium, Boston, MA) TwoSampleMR package (http://
gwas-api.mrcieu.ac.uk/). We obtained genetic variants of HDL,
LDL, and TC from a GWAS of 9,961 European participants
(21). Genetic variants of very low-density lipoprotein (VLDL)
were identified from a GWAS including 19,273 European
participants (22). For BMI and WHR, SNPs were extracted from
GWAS including ∼700,000 and 224,459 European participants,
respectively (23, 24). We acquired genetic data sets for
insulin sensitivity from a GWAS including 16,753 European
participants (25).

Genetic Instrumental Variables for CVD
Genome-wide association study summary statistics for CHD
and MI were obtained from a genome-wide association meta-
analysis of 48 studies including 60,801 cases and 123,504 controls
originating from mixed ancestry (77% from European, 13 and
6% from south and east Asian, others from Hispanic or African-
American) (26). Genetic variants of stroke were extracted from a
multiancestry meta-analysis of 29 studies which includes 67,162
cases and 454,450 controls (the number of studies with European
ancestry, African ancestry, Asian ancestry, and Latin American
population GWAS studies was 17, 5, 6, and 1 respectively)
(27). Details of data sources for T2DM, potential mediators,
and outcomes are shown in Supplementary Table 1. All the
genetic variants used as instrumental variables are shown in
Supplementary Tables 2–14.

Statistical Analysis
Effect of T2DM on CVD Subtypes
The causal effects of T2DM on CVD were estimated using a
two-sample MR method. We used the inverse-variance weighted

(IVW) approach to estimate the causal effect of T2DM on CVD
subtypes and each potential mediator. Results were shown using
odds ratio (OR) and 95% CI. P < 0.05 for the IVW approach was
considered suggestive for the potential association.

Effects of T2DM on Cardiometabolic Factors
First, we used a two-sample MR to estimate the effect of T2DM
on each cardiometabolic factor. Results were shown using β

coefficient and 95% CI. As some cardiometabolic factors were
extracted from the same database, a Bonferroni corrected p-
value threshold was considered significant for them (SBP and
DBP: Bonferroni corrected p < 0.025, TG, hyperthyroidism,
hypothyroidism, HDL, LDL, and TC: Bonferroni corrected p
< 0.017) and p < 0.05 was considered suggestive for the
potential association. Those factors with a p > 0.05 which
indicated not statistically significant causal association with
T2DM were excluded.

Effects of Cardiometabolic Factors on CVD Subtypes
Second, estimates of the effects of cardiometabolic factors on
CVD subtypes adjusting for T2DM were obtained by regression-
basedmultivariableMR (MVMR) (28). Results were shown using
OR and 95% CI. A Bonferroni corrected p-value threshold was
considered significant and p< 0.05 was considered suggestive for
the potential association. Cardiometabolic factors did not meet p
< 0.05 standard were excluded.

Mediation Effects of Cardiometabolic Factors
Furthermore, an estimate of the effect of T2DM on each
cardiometabolic factor was multiplied with an estimate
of the effect of each cardiometabolic factor on CVD
subtypes, respectively, to obtain the mediation effect of
each cardiometabolic factor individually. Then, we divided the
mediation effect by the total effect of T2DM on CVD subtypes
to obtain the proportion mediated by each mediator. In sum,
we took all the mediators into account and obtained a causal
effect of T2DM on each subtype of CVD after adjusting for
all possible mediators. The proportion mediated by all the
mediators was obtained by subtracting the causal effect of T2DM
on each subtype of CVD after adjusting for all mediators from
the total effect of T2DM on CVD subtypes, then dividing the
result by the total effect. All the aforementioned analyses were
performed using R version 4.0.3 (The R Foundation for Statistical
Computing) through the TwoSampleMR package andMendelian
Randomization package. SEs were calculated using rules derived
from the Gaussian equation for normally distributed errors in
order to fit different situations such as addition or subtraction
and multiplication or division (Supplementary Methods).

Sensitivity Analyses
We applied other sensitivity analyses including simple median,
weighted median, MR-Egger regression, MR-PRESSO to detect
potential bias from invalid variables and potential pleiotropy,
single SNP analysis, and leave-one-out analysis to investigate
the influence of possible outlying genetic variants. Full details of
these methods were shown in the Supplementary Methods.
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RESULTS

Selected SNPs for T2DM
After ruling out SNPs that did not meet the standard of genome-
wide significance (p < 5 × 10−8) and clumping for those
in linkage disequilibrium (r2 < 0.001), 143 SNPs were finally
selected for T2DM in our study. Besides, the F-statistic of these
SNPs were larger than 10 indicating our results were less likely to
be biased by weak instruments (29).

Total Effect of T2DM on CVD
We found strong evidence supporting the causality of T2DM
on subtypes of CVD. Figure 1 shows the total effect of
T2DM on CHD, MI, and stroke. One-unit higher log odds of
T2DM increased 16% risk of CHD (OR: 1.16, 95% CI 1.12-1.21, p
< 0.001), 15% risk of MI (OR: 1.15, 95% CI 1.10–1.20, p< 0.001),
and 10% risk of stroke (OR: 1.10, 95% CI 1.06–1.13, p < 0.001).
Details of genetic associations of T2DM on CVD were shown in
Supplementary Tables 15–17.

Effect of T2DM on the Cardiometabolic
Factors
Figure 2 shows that one-unit higher log odds of T2DM was
associated with increased SD of SBP (β = 0.77, 95%CI: 0.49–1.04,
p < 0.001), DBP (β = 0.22, 95% CI: 0.06–0.38, p= 0.009), TG (β
= 0.08, 95% CI: 0.02–0.14, p= 0.002), and WHR (β = 0.05, 95%
CI: 0.03–0.07, p < 0.001), and was also associated with decreased
SD of LDL (β = −0.07, 95% CI: −0.12−0.01, p = 0.008), HDL
(β = −0.15, 95% CI: −0.21−0.09, p < 0.001), TC (β = −0.06,
95% CI: −0.12 to −0.00, p = 0.025), and insulin sensitivity (β =

−0.31, 95% CI: −0.55−0.07, p = 0.012). All the aforementioned
cardiometabolic factors also survived Bonferroni correction. We
failed to find causal effect of T2DM on BMI (p= 0.615), VLDL (p
= 0.168), hyperthyroidism (p = 0.213), and hypothyroidism (p
= 0.159). Genetic associations of T2DM on each cardiometabolic
factor were shown in Supplementary Tables 18–29 and
those MR results aforementioned were shown in details in
Supplementary Table 30.

Effects of Cardiometabolic Factors on CVD
Figure 3 shows the estimate of causal effect of one SD increase
in each cardiometabolic factor on each subtype of CVD after
adjusting for T2DM. Estimate of log odds of CHD for one SD
increase in SBP, DBP, TG, HDL,WHR, and insulin sensitivity was
1.03 (95% CI: 1.02–1.04, p < 0.001), 1.05 (95% CI: 1.04–1.06, p <

0.001), 1.22 (95% CI: 1.13–1.32, p < 0.001), 0.89 (95% CI: 0.65–
1.21, p = 0.521), 1.06 (95% CI: 0.87–1.30, p = 0.568), and 1.00
(95% CI: 0.98–1.01, p = 0.817), respectively. The estimated OR
of MI for genetically determined one SD increase in SBP, DBP,
TG, HDL, WHR, and insulin sensitivity was 1.03 (95% CI: 1.02–
1.03, p < 0.001), 1.05 (95% CI: 1.04–1.06, p < 0.001), 1.22 (95%
CI: 1.12–1.33, p < 0.001), 0.91 (95% CI: 0.70–1.19, p = 0.569),
1.03 (95% CI: 0.83–1.27, p= 0.812), and 0.99 (95% CI: 0.97–1.02,
p = 0.503), respectively. Likewise, one SD increase in genetically
determined SBP, DBP, TG, WHR, and insulin sensitivity was
associated with 3% (OR: 1.03, 95% CI: 1.03–1.04, p < 0.001), 4%
(OR: 1.04, 95% CI: 1.04–1.05, p < 0.001), 0.4% (OR: 1.00, 95%

CI: 0.95–1.06, p= 0.869), 22% (OR: 0.22, 95% CI: 1.19–1.24, p=
0.038), 4% (OR: 1.04, 95% CI: 0.88–1.22, p= 0.675) higher risk of
stroke, and 1% (OR: 0.99, 95%CI: 0.98–1.00, p= 0.102) lower risk
of stroke, respectively. All the aforementioned positive results
also survived Bonferroni correction. Regression-based MVMR
failed to be performed to estimate the effect of TC and LDL
on subtypes of CVD, HDL on stroke for the sake of inadequate
SNPs after adjusting for T2DM. Genetic associations of each
cardiometabolic factor on each subtype of CVD after adjusting
for T2DM were shown in Supplementary Tables 31–47.

Mediation Effects of Cardiometabolic
Factors on CVD
After excluding cardiometabolic factors that were not causally
influenced by T2DMand those that did not have a causal effect on
CVD subtypes, we took SBP, DBP, and TG for mediation analysis.
Figure 4 shows the proportion of the effect of T2DM on subtypes
of CVD mediated by each cardiometabolic factor included in
mediation analysis. For the causal effect of T2DM on CHD, the
percentage mediated by SBP, DBP, and TG was 16% (8%–24%),
7% (1%–13%), and 10% (2%–18%), respectively. The mediation
effect of SBP, DBP, and TG on MI was estimated to account for
14% (7%–22%), 7% (1%–13%), and 11% (2%–20%), respectively.
The proportion of the effect of T2DM on stroke mediated by
SBP, DBP, and TG was 26% (13%–39%), 10% (2%–19%), and
0.4% (−4%–5%), respectively. Thus, we identified SBP, DBP, and
TG were main mediators on CHD and MI, SBP, and DBP also
had significant mediation effects on stroke. The total mediation
effect of the combination of SBP, DBP, and TG on CHD, MI and
stroke was 29%, 26%, and 13%, respectively. Details were shown
in Supplementary Tables 48–50.

Sensitivity Analyses
Part of the results of sensitivity analyses for T2DM on CVD
subtypes and three mediators (SBP, DBP, and TG) were shown
in Table 1. Egger regression results of T2DM–CHD, T2DM–MI,
T2DM–DBP, and T2DM–TG indicated there might be horizontal
pleiotropies existing (p > 0.05 with nonzero Egger intercept),
however, MR-Egger intercepts were close to zero with p > 0.05
which indicated such pleiotropies did exist, but their influences
were not statistically significant. Besides, results from MR-
PRESSO showed that outliers existed in T2DM-CHD, T2DM-
stroke, T2DM-SBP, T2DM-DBP, and T2DM-TG. However, p-
values of the MR-PRESSO distortion test which aimed at testing
whether the difference between the causal estimate before and
after removal outliers was larger than 0.05 except T2DM-TG and,
thus, indicated that influence of these outliers on our results
was not statistically significant (Supplementary Tables 51–56).
Results of simple median and weighted median were most
statistically significant (p < 0.05) which indicated that our results
were less likely biased by invalid instruments. Other sensitivity
analyses including single SNP analysis, leave-one-out analysis
both provided consistent results with our main analysis and were
shown in Supplementary Tables 57–62.
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FIGURE 1 | Estimates of causal effect of type 2 diabetes (T2DM) on each subtype of cardiovascular disease (CVD).

FIGURE 2 | Estimate of causal effect of T2DM on cardiometabolic factors.
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FIGURE 3 | Estimate of effect of cardiometabolic factors on each subtype of CVD (A) CHD, (B) MI, (C) stroke.
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FIGURE 4 | Proportion of the effect of T2DM on each subtype of CVD mediated by cardiometabolic factors.

DISCUSSION

In this large-scale multivariableMR study, we estimated that each
additional unit of log odds of T2DM was associated with 16%
higher risk for CHD, 15% higher risk for MI, and 10% higher risk
for stroke. More importantly, approximately one-third of excess
risk for CVD among patients with T2DM was mediated by SBP,
DBP, and TG. The most important mediator was elevated SBP,
accounting for 16%, 14%, and 26% of the excess risk for CHD,MI,
and stroke. Thus, interventions that mitigate these factors might
address a substantial proportion of the excess risk of CVD among
patients with T2DM.

Previous observational studies have convinced that T2DM
was associated with excess CVD risk. A meta-analysis including
698,782 participants from 102 studies concluded that hazard
ratios with diabetes were 2.00 (95% CI: 1.83–2.19) for CHD,
2.27 (95% CI: 1.19–2.05) for ischemic stroke (3). Although
results were consistent after adjusting for many factors such
as sex, smoking status, BMI, etc., observational studies might
still be biased by other confounders and measurement error.
Thus, diabetes participants included in the meta-analysis
aforementioned might combine other confounders which led to
higher CVD risk. Compared with observational studies, results
from our study were more consistent with previous MR studies
which showed that per unit increase in log-odds of T2DM was
associated with increased risk of CHD (OR: 1.11, 95% CI: 1.05–
1.17) (30), large-artery stroke (OR: 1.28, 95% CI: 1.16–1.40) (31),
and coronary artery disease (OR: 1.63, 95% CI: 1.23–2.07) (13).
But none of these studies analyzed the causal effect of T2DM on

all the three main subtypes of CVD and neither had explored the
underlying mechanism.

Our study showed that SBP, DBP, and TG were the main
mediators for a causal effect of T2DM on CVD. Many previous
observational studies have proved that T2DMwas associated with
blood pressure (32–34) and TG. Besides, results from another
MR study also indicated that T2DM had a causal effect on blood
pressure (35). However, few studies have investigated whether
these metabolic factors had mediation roles in excess CVD risk
of patients with T2DM.

Previous meta-analyses have documented that metabolic
syndrome was an important risk factor for CVD (36, 37). An
observational study including 1,038,704 participants in China
found that among 85,684 participants with one metabolic
disorder at baseline, 28.1% developed additional metabolic
disorders which were responsible for higher CVD risk, while
among participants without metabolic disorder at baseline
only 7.9% had new-onset metabolic disorder (38). Our results
further showed that the significant causal effect of T2DM on
cardiometabolic factors and mediation effects of these metabolic
factors on the causal effect of T2DM on CVD, thus might partly
elucidate the unexplained mechanism.

We found that the combined mediation effect of three main
mediators including SBP, DBP, and TG accounted for 29, 26,
13% of the total effect on CHD, MI, and stroke, implying that
intervention on these factorsmight bring benefit to risk reduction
of CVD among patients with T2DM. Although blood pressure
has already been recommended as a treatment target to reduce
CVD risk among patients with T2DM, opinions on TG were

Frontiers in Cardiovascular Medicine | www.frontiersin.org 7 February 2022 | Volume 9 | Article 813208

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Chen et al. Cardiometabolic Factors Mediate CVD Risk

TABLE 1 | MR sensitivity analyses.

Analysis Nsnp Effect Se P-value OR

T2DM-CHD

Simple median 118 0.15 0.02 <0.001 1.16

Weighted median 118 0.11 0.03 <0.001 1.11

MR Egger 118 0.06 0.05 0.267 1.06

MR Egger intercept 0.01 0.00 0.039

Inverse variance weighted 118 0.15 0.02 <0.001 1.16

T2DM-MI

Simple median 118 0.15 0.03 <0.001 1.16

Weighted median 118 0.09 0.03 0.001 1.09

MR Egger 118 0.03 0.05 0.499 1.03

MR Egger intercept 0.01 0.00 0.022

Inverse variance weighted 118 0.14 0.02 <0.001 1.15

T2DM-stroke

Simple median 118 0.09 0.02 <0.001 1.09

Weighted median 118 0.09 0.02 <0.001 1.09

MR Egger 118 0.08 0.04 0.025 1.09

MR Egger intercept 0.00 0.00 0.817

Inverse variance weighted 118 0.09 0.02 <0.001 1.10

T2DM-SBP

Simple median 116 0.65 0.10 <0.001 1.92

Weighted median 116 0.60 0.09 <0.001 1.82

MR Egger 116 0.70 0.32 0.031 2.00

MR Egger intercept 0.01 0.02 0.827

Inverse variance weighted 116 0.76 0.14 <0.001 2.13

T2DM-DBP

Simple median 116 0.09 0.06 0.122 1.09

Weighted median 116 0.04 0.05 0.511 1.04

MR Egger 116 0.07 0.19 0.726 1.07

MR Egger intercept 0.01 0.01 0.402

Inverse variance weighted 116 0.21 0.08 0.012 1.23

T2DM-TG

Simple median 118 0.07 0.01 <0.001 1.07

Weighted median 118 0.05 0.01 <0.001 1.05

MR Egger 118 0.01 0.06 0.871 1.01

MR Egger intercept 0.01 0.00 0.180

Inverse variance weighted 118 0.08 0.02 0.002 1.08

MR, mendelian randomization; Nsnp, number of SNP; OR, odds ratio; T2DM, type 2

diabetes; CHD, coronary heart disease; MI, myocardial infarction; SBP, systolic blood

pressure; DBP, diastolic blood pressure; TGs, triglycerides.

more controversial. Limited by study design or sample size or
other factors, clinical trials including the Bezafibrate Infarction
Prevention (BIP) (39), the Fenofibrate Intervention and Event
Lowering in Diabetes (FIELD) (40), and the Action to Control
Cardiovascular Risk in Diabetes Lipid Trial (ACCORD-LIPID)
(41) failed to prove fibrate, the TG-reducing drug, could reduce
CVD risk among patients with T2DM. Results from our study
were in favor of new large-scale RCTs investigating whether TG
could be a new treatment target of patients with T2DM to reduce
CVD risk and an on-going prospective trial using Pemafibrate
is inspiring.

The pathophysiological mechanism of these cardiometabolic
factors remains unclear (42). Insulin resistance had an essential
role in T2DM (43) that could induce hyperinsulinemia and
hyperglycemia, thus led to vasoconstriction and sodium retention
and contributed to blood pressure changes ultimately. Besides,
its influence on blood lipid profiles progresses toward a
prothrombotic and proinflammatory state (44, 45) which largely
increases CVD risk.

We failed to find evidence for causal associations of T2DM
with VLDL and LDL-C, TC, HDL, and other lipoprotein
fractions. We found no MR studies have been conducted to
explore these causal associations in the European population,
while a small-sized one-sample MR study among 9,798
participants in East China showed that T2DM increased TC
and LDL-C levels (46). The discrepancy may be due to
ethnic differences, MR methods, and sample size. Importantly,
2016 ESC guidelines mentioned that diabetic dyslipidemia
was combined with multiple plasma lipid and lipoprotein
abnormalities, and these components were closely linked to each
other rather than isolated (47), thus adding difficulties to estimate
the causal effect of T2DM on a certain fraction of lipoprotein.

Strength and Limitations
To the best of our knowledge, this study is the first two-sample
MR study to identify the mediation effects of cardiometabolic
factors of the causal effect of T2DM on CVD. Many previous
clinical trials have tried to prove the mediation role of these
factors (48–50), but limited by short-term follow-up, sample size,
and most importantly, the influence of confounding factors, thus
interpretation of results of these studies became complex. We
used a two-sample MR to estimate the causal effect of T2DM on
subtypes of CVD. The fact that genetic variants were determined
at conception before the onset of diseases allows MR to avoid
bias from reverse causation and reduce bias from confounding
factors which cannot be ignored in observational studies. Besides,
inMR studies, participants were lifelong exposed to alleles, which
is far longer than follow-up RCTs. These unique strengths make
MR an effective approach to explore the certain causal effect.
Compared with one-sample MR, the main advantage of two-
sample MR is the increased statistical power because of summary
data extracted from different GWAS (51) and less bias caused
by pleiotropy because of sensitivity analyses (28). In addition,
instrumental variables of T2DM used in our study were obtained
from a recently published GWAS. The number of SNPs included
in this study was almost three times larger than previous MR
studies and explained ∼10% of the heritability of T2DM (17),
while previous studies only accounted for <5% (13, 30, 31). All
the SNPs included have large F-statistics which indicated that
our finding was less likely influenced by weak instrument bias.
We also applied different MR sensitivity analyses to minimize
bias from horizontal pleiotropy or other sources and consistency
across these approaches was well evaluated. Finally, we included
as many cardiometabolic factors as possible, thus making our
results more comprehensive, althoughwe failed to findmediation
roles for some cardiometabolic factors.

Horizontal pleiotropy has always been an important source
of bias for MR studies and affected ∼48% of MR studies (52).
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We applied sensitivity analyses to detect horizontal pleiotropy
including MR-Egger, MR-Egger intercept, and MR-PRESSO.
Although the results of MR-Egger and MR-PRESSO showed
horizontal pleiotropy, results of MR-Egger intercept and MR-
PRESSO distortion test indicated such influence of pleiotropies
on our main analysis were not statistically significant. However,
for T2DM-TG, the p-value for MR-PRESSO distortion test was
<0.05, which indicated significant horizontal pleiotropy; thus, it
was inconsistent with result of MR-Egger intercept. A plausible
explanation of such pleiotropy is that T2DM might affect TG
through other cardiometabolic factors that are not included in
our study. Thus, we reckon that bias from horizontal pleiotropy
was not statistically significant for most of our main analyses, but
result of T2DM-TG should be interpreted with caution.

Bidirectional MR was performed for essential results and no
effect of genetic predisposition of CHD and MI to T2DM was
found. The number of SNP for stroke in this study is rather low;
thus, estimate of causality of stroke on T2DM is less precise and
previousMR study show that causality between T2DMand stroke
is one-direction (T2DM to stroke) (12). Although previous MR
studies suggested that blood pressure and TG had causal effect
on T2DM (53, 54), genetic instruments for T2DM were rather
strong and in a large number in our study, thus, it is less likely
that our results are biased because of the reverse causation.

Another limitation of this study is that participants included
are mainly European and, thus, generalize our results to Asian
or African population should be more cautious. Besides, we
used a linear-regression based MVMR method to estimate
the individual mediation effect of each cardiometabolic factor.
However, there may be interactions between these mediators
which make it possible that one mediator may also affect other
mediators; thus, resulting in less precise individual effect. Results
of our study show that total mediation effect accounted for
approximately one third of the total causal effect of T2DM
on subtypes of CVD which suggests that there may be some
unknown mediators.

CONCLUSION

By using a two-step, two-sample MRmethod, this study provides
strong evidence for the causal effect of T2DM on development of
CVD, and further suggests that approximately one third of excess
risk for CVD among patients with T2DM is mediated through
SBP, DBP, and TG, underscoring the importance of large-scale

intervention targeting on SBP, DBP, and TG which could reduce
substantial proportion of CVD risk among patients with T2DM.
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