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Abstract

Extracellular vesicles (EVs) are known as molecular carriers involved in cell communica-

tion and the regulation of (patho)physiological processes. miRNAs and growth factors

are the main contents of EVs which make them a good candidate for the treatment of dis-

eases caused by ischemia, but the low production of EVs by a cell producer and a signifi-

cant variation of the molecular contents in EVs according to the cell source are the main

limitations of their widespread use. Here, we show how to improve the therapeutic prop-

erties of mesenchymal stromal cell (MSC)-derived EVs (MSC-EVs) by modifying MSCs

to enrich these EVs with specific angiomiRs (miR-135b or miR-210) using lentiviral vec-

tors carrying miR-135b or miR-210. MSCs were obtained from the mouse bone marrow

and transduced with a corresponding lentivector to overexpress miR-135b or miR-210.

The EVs were then isolated by ultracentrifugation and characterized using a flow cytom-

eter and a nanoparticle tracking analyzer. The levels of 20 genes in the MSCs and 12

microRNAs in both MSCs and EVs were assessed by RT–qPCR. The proangiogenic

activity of EVs was subsequently assessed in human umbilical vein endothelial cells

(HUVECs). The results confirmed the overexpression of the respective microRNA in

modified MSCs. Moreover, miR-135b overexpression upregulated miR-210-5p and fol-

listatin, whereas the overexpression of miR-210 downregulated miR-221 and upregu-

lated miR-296. The tube formation assay showed that EVs from MSCs overexpressing

miR-210-5p (EVmiR210) significantly promoted tubular structure formation in HUVECs.

A significant increase in angiogenic proteins (PGF, endothelin 1, and artemin) and

genes (VEGF, activin A, and IGFBP1) in HUVECs treated with VEmiR210 justifies the

better tubular structure formation of these cells compared with that of EVmiR135b-

treated HUVECs, which showed upregulated expression of only artemin. Collectively,
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our results show that the EV cargo can be modified by lentiviral vectors to enrich specific

miRNAs to achieve a specific angiogenic potential.

1. Introduction

Peripheral arterial disease (PAD) is a medical condition in which atherosclerotic plaque accu-

mulation leads to narrowing or occlusion of arteries in the lower limbs and thereby a reduced

tissue blood supply [1]. In the presence of other comorbidities, such as diabetes, cardiovascular

and renal diseases, PAD has higher morbidity and mortality rates [2]. Despite advances in

treatments, improvements in long-term outcomes have not been achieved, and noninvasive

treatment options have not yet been developed.

Mesenchymal stromal cells (MSCs) have been applied in limb ischemia treatment

because these cells can migrate to inflamed ischemic sites by chemotaxis and secrete

immunomodulatory and proangiogenic factors that act in a paracrine manner [3–5].

These factors and other molecules released by MSCs can reach the target tissue via extra-

cellular vesicles (EVs), which are natural nanometer-sized membrane structures that

mediate cell communication (6). EVs derived from MSCs (MSC-EVs) have shown great

therapeutic potential in preclinical and clinical studies and have been described as a novel

tool for the treatment of graft-versus-host disease in a case study [6–8]. Furthermore, the

observation of the angiogenic capacity in a rat myocardial infarction model after the

administration of MSC-EVs showed angiogenic stimulation and reduction of the infarcted

area [9]. Similar effects have also been observed in brain and kidney ischemic models [10,

11].

The biological effects mediated by EVs are associated with the direct transfer of

mRNAs and microRNAs (miRNAs) in EVs. miRNAs are small noncoding RNAs that con-

trol gene expression post transcriptionally and thus participate in several (patho)physio-

logical processes [12]. Among the different regulatory activities of miRNAs, the term

“angiomiRs” has been used to describe miRNAs that regulate angiogenesis and promote

endothelial cell growth, survival, migration, and their ability to form capillary-like struc-

tures [13, 14]. Among angiomiRs, miR-135b is sorted into EVs derived from hypoxia-

resistant multiple myeloma cells and enhances angiogenesis through the suppression of

hypoxia-inducible factor 1 (HIF-1) [15]. In addition, miR-135b delivered to gastric

tumors by EVs negatively regulates forkhead box O1 (FOXO1), a transcription factor

associated with angiogenesis regulation, and this regulation results in enhancement of the

proliferation, migration, and ring formation of vascular cells [16]. Similarly, miR-210 is

another important angiomiR that is upregulated in muscles after acute limb ischemia and

thereby promotes angiogenesis and arteriogenesis [17]. In addition, bone marrow-derived

MSCs release EVs with more miR-210, which leads to silencing of the antiangiogenic fac-

tor EFNA3 and thereby the promotion of angiogenesis by increases in the migration and

proliferation of endothelial cells [18].

In this context, it is expected that higher expression of miR-210 or miR-135b could trigger

the expression of several angiogenic factors. However, the quality and quantity of these angio-

genic factors in MSCs after overexpression of these miRs are unknown, and the content of EVs

secreted by these cells is also unclear.

To investigate these questions, we genetically modified MSCs with lentiviral vectors to over-

express miR-135b or miR-210 and then analyzed their gene and miRNA expression profiles.

We also assessed the miRNA expression profile and biological activity of MSC-EVs.
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2. Materials and methods

2.1. Animals

All animal experiments were performed only after approval by the Ethics Committee on the

Use of Animals of the Federal University of Sao Paulo, Brazil (Approval number: CEUA #

4318140918).

BALB/c mice were obtained from the Center for the Development of Experimental Models

in Medicine and Biology of the Federal University of Sao Paulo.

2.2. Cells and cell culture

Three cell types were used in this study: MSCs extracted from BALB/c mice and cultivated in

DMEM-Low (Dulbecco’s Modified Eagle Medium Low Glucose, Invitrogen, USA) supple-

mented with 10% heat-inactivated fetal bovine serum (FBS), 2 mM GlutaMAX, and 100 U/mL

penicillin–streptomycin solution; HEK293T cells obtained from the American Type Culture

Collection (ATCC) cultivated in DMEM-High (Dulbecco’s Modified Eagle Medium High Glu-

cose, Invitrogen, USA) supplemented with 10% FBS, 2 mM GlutaMAX, and 100 U/mL penicil-

lin–streptomycin solution; and human umbilical vein endothelial cells (HUVECs, Gibco, Life

Technologies, USA) cultured in M200 media with Large Vessel Endothelial Supplement

(LVES, GIBCO, USA). All cells were maintained at 37˚C in a humidified chamber with 5%

CO₂.

2.3. Bone marrow MSC isolation and characterization

Bone marrow MSCs were harvested from the femurs, tibia, and humerus of BALB/c mice fol-

lowing a methodology described by Amend et al. [19] and cultivated for three days. The

medium was refreshed at intervals of three to four days until adherent cells reached 90% con-

fluence, being defined at this stage as MSCs at passage zero (P0).

For MSC characterization, the capacity of these cells to differentiate into adipocytes and

osteoblasts in vitro was evaluated using specific differentiation medium for the assessment of

adipogenesis or osteogenesis (# A1007001; #A1007201, Gibco Invitrogen, USA), assessment of

the expression of the common markers CD73, CD45 (#sc-14682; #sc-25590, Santa Cruz Bio-

technology, USA) and CD34 (#ab8158, Abcam, UK) by immunofluorescence and analysis of

the expression of CD11b, CD45 (#11-0112-82, #48-0451-82 eBioscience), CD34 (#ab23830 –

Abcam, UK), CD73 and CD105 (#127209; #120407—BioLegend, Inc. USA) by flow cytometry

(FACSCanto™ II (BD Biosciences) using FACSDiva software (BD Biosciences). The flow

cytometry data were analyzed using FlowJo software (FlowJo, OR, USA).

2.4. Lentiviral vector construction and production

The customized package plasmid vectors for miR-135b and miR-210 expression (LentimiRa-

GFP-mmu-mir-135b - Accession number MI0000646 and LentimiRa-GFP-mmu-mir-210—

Accession number MI0000695, ABM Inc., CA, USA) were used to produce lentiviral expres-

sion vectors, and their backbone plasmid vector served as a control (pLenti-III-mir-

GFP-Blank—ABM Inc., CA, USA). All vectors contained green fluorescence protein (GFP)

and puromycin resistance expression cassettes. The plasmid vectors were amplified and puri-

fied using the Qiagen mega-prep kit (Sao Paulo, Brazil).

One day before transduction, HEK293T cells were seeded in a 24-well plate (2 x 105 cells/

well) and incubated in DMEM-High at 37˚C in the presence of 5% CO2. For transfection, solu-

tions A and B were prepared. Solution A contained a mix with plasmids, namely, 2 μg of

pMDLg/pRRE (Addgene#12251), 1 μg of pRSV-Rev (Addgene#12253), 0.5 μg of

PLOS ONE Angiogenic EVs production by miRNA overexpression in MSCs

PLOS ONE | https://doi.org/10.1371/journal.pone.0272962 August 16, 2022 3 / 19

https://doi.org/10.1371/journal.pone.0272962


pHCMV-VSV-G (n˚. AJ315814), and 3 μg of package plasmid (LentimiRa-GFP-mmu-mir-

135b, LentimiRa-GFP-mmu-mir-210 or pLenti-III-mir-GFP-Blank) diluted in 180 μL of ster-

ile water and 20 μL of 2 M CaCl2 solution. Solution B contained 200 μL of 2X HBS buffer. The

solution A was added to the solution B and incubated at room temperature for 15 min, and

100 μL of the solution mixture was then dropped into each well, which contained 2 mL of cul-

ture medium. The cells were incubated for 4 h. Subsequently, the medium was replaced with

fresh medium, and the cells were incubated until 24 h after transfection. The supernatant with

viral particles was collected, centrifuged to remove the remaining cells (5 min at 2000 x g), and

stored at –80˚C.

To determine viral vector titer, MSCs were seeded in a 24-well plate (1 x 10⁴ cells/well) and

each of four viral vector solutions (1, 10, 100, and 300 μL) with 8 μg/mL Polybrene (Sigma,

USA) was added in each well. After 72 h of incubation, the cells were fixed with 4% parafor-

maldehyde and stained with DAPI (1:1000). Images were captured with a fluorescence micro-

scope (Axio Observer Z1, ZEISS, GE), and ImageJ software [20] was used for the counting of

GFP-positive cells. The vector titers were calculated using the percentage of GFP-positive cells

based on the following formula: (N × P)/V, where N is the number of plated cells, P is the per-

centage of GFP-positive cells, and V is the volume (mL) of added vector sample.

2.5. Construction of MSCmiR, MSCmiR135b and MSCmiR210

For transduction, MSCs were seeded in a 6-well plate (5 x 105 cells/well), and viral particles

with 8 μg/mL Polybrene (Sigma, USA) were added. The cells were incubated for 24 h, and the

medium was replaced with fresh medium containing 2 μg/mL puromycin (Clontech, USA).

Fourteen days after transduction, the cells were maintained in medium containing puromycin,

and the medium was refreshed at intervals of three to four days for selection. The efficiency of

transduction was assessed based on GFP expression under a fluorescence microscope (Axio

Observer Z1, ZEISS, Germany) and double-checked via an immunofluorescence assay with an

anti-GFP antibody (Invitrogen, #A-21311) and examination under a confocal microscope

(TCS SP8, Leica Microsystems, Germany). The modified cells were named MSCmiRs (cells

modified with an empty vector), MSCmiR210s (cells modified to express miR-210), and

MSCmiR135bs (cells modified to express miR-135b).

2.6. EV isolation and characterization

Prior to EV isolation, MSCs were seeded in T165 bottles (Corning, USA) and incubated until

they reached 70–90% confluence. The medium was then discarded, and the cells were washed

twice with PBS and cultivated in FBS-deprived medium for 17 to 18 h. The medium collected

in this stage was referred to as “conditioned medium”. Differential ultracentrifugation,

adapted from Théry et al. [21] was employed to isolate MSC-EVs from the conditioned

medium. First, three stepwise centrifugations were performed: 300 x g/10 min, 2000 x g/10

min and 10,000 x g for 30 min. The conditioned medium was stored at -20˚C, and two cycles

of ultracentrifugation at 100,000 x g for 2 h using a Type 42.1 fixed-angle rotor (Optima XL

100K ultracentrifuge, Beckman-Coulter) were performed with a cleaning step with PBS

between them. The pellets were suspended in 100 μL of filtered PBS (0.1 μm, Millipore) and

stored at -80˚C.

The MSC-EV size distribution and concentration were assessed by nanoparticle tracking

analysis (NTA) using NanoSight NS300 (Malvern Panalytical Ltd., Malvern, United Kingdom)

and the software provided with the device (NTA 3.4, Malvern, United Kingdom).

The MSC-EV morphology was assessed by transmission electron microscopy (TEM) fol-

lowing a previously described protocol [22]. MSC-EVs were resuspended in a fixative solution
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containing 2.5% (w/v) glutaraldehyde in 0.1 M cacodylate buffer (pH 7.2). The MSC-EVs were

then placed on glow-discharged formvar-coated copper grids with 300 mesh (EMS, Hartfield,

PA, USA) for 10 min, and the grids were subsequently negatively stained with 1% (w/v) aur-

othioglucose (USP, Sigma–Aldrich) in water for 30 s, dried with filter paper, and examined

with an electron microscope operating at 120 kV (Tecnai Spirit microscope, Thermo Fisher

Scientific).

For flow cytometry analysis, MSC-EVs (5 x 108 particles) were incubated with 5 μL of 5-μm

latex beads (Invitrogen, USA) in a final volume of 100 μL of PBS for 15 min at room tempera-

ture with agitation and incubated overnight at 4˚C. The exosome markers CD9, CD63, and

CD81 (catalog # 124807, 143903, and 104909, respectively, diluted 1:50; BioLegend, USA) were

then assessed individually in the EV samples using a flow cytometer (BD FACSAria™ III, BD

Biosciences) with FACSDiva software (BD Biosciences). The flow cytometry data were ana-

lyzed using FlowJo software (FlowJo, OR, USA).

2.7. RNA purification and RT–qPCR profiling

Total RNA samples were obtained using TRIzol™ reagent (Invitrogen, USA) following the

manufacturer’s protocol. RNA quantification was performed using a Nanodrop 2000

(Thermo Scientific), and the RNA purity was evaluated using a spectrophotometer based

on a reading absorbance ratio of 260/280. The RNA integrity was assessed by observing

intact bands referring to fractions 18S and 28S through the ribosomal RNA bleach agarose

gel electrophoresis and using Blue Green Loading Dye (LGC Biotechnology, Brazil) [23].

cDNA was synthesized using the SuperScript IV Reverse Transcriptase kit (Thermo

Fisher) for gene quantification and miScript II RT (Qiagen) to determine the miRNA

levels.

A panel of 20 genes related to angiogenesis, myogenesis, and fibrogenesis was analyzed to

identify potential alterations induced by target miRNA overexpression (S1 Table) [24]. The

genes were evaluated by RT–qPCR using Rotor-Gene Q (Qiagen) and customized RT2 Profiler

PCR Array (#CAPM114477, Qiagen) following the protocol described by the manufacturer. In

the data analysis, p� 0.05 was considered to indicate statistical significance, and fold change

(FC)� 2 and FC� 0.5 were considered to indicate positive and negative regulation,

respectively.

For miRNA analysis, 12 angiomiRs frequently correlated with angiogenesis and previously

appointed as MSC-EV cargo [25] were selected, and their levels in both modified MSCs and

MSC-EVs were assessed by RT–qPCR (S2 Table). The microRNA expression of mature

miRNA sequences was evaluated using the Rotor-Gene Q device (Qiagen) and the miScript

SYBR Green PCR kit (Qiagen) following the manufacturer’s instructions. miRNAs that satis-

fied the determined thresholds (p� 0.05 and FC� 0.5 or FC� 2) were considered for

analysis.

2.8. Tube formation assay

Angiogenesis assays were performed using an Angiogenesis Starter Kit (A1460901–Gibco,

USA) following the manufacturer’s instructions. In brief, HUVECs were seeded (7.5×104 cells/

well) in Geltrex-coated 96-well culture plates, treated with MSC-EVs (2.5 ×104 particles/cell)

or PBS (vehicle) and incubated for 10 h at 37˚C with 5% CO2. Images were captured with an

Axio Observer Z1 microscope (Zeiss, Germany) for tube formation analysis at four time points

(2, 4, 7 and 10 h). The tubular structures were measured using ImageJ software [20, 26] to eval-

uate the angiogenic potential of MSC-EVs. For data normalization, the control group (PBS)

average was attributed a value of 100%, and measurements of each parameter were compared
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to the control values. The angiogenic capacity of the MSC-EVs was represented by the mean of

five variables (number of extremities, number of branches, number of pieces, number of

meshes, and mesh index).

2.9. Assessment of angiogenic protein expression in HUVECs after

treatment with MSC-EVs

The levels of 55 angiogenesis-related proteins in HUVECs were assessed after treatment

with MSC-EVs using a membrane-based sandwich immunoassay (Proteome Profiler

Human Angiogenesis Array Kit, R&D systems, USA) following the manufacturer’s proto-

col. In short, HUVECs were seeded (2×105 cells/well) in 6-well culture plates, treated with

MSC-EVs (1x108 particles/mL) and incubated for 24 h at 37˚C in the presence of 5% CO2.

The cells were washed with PBS and lysed with lysis buffer (150 mM NaCl, 5 mM EDTA,

1.0% Triton X-100, 0.1% SDS, 0.5% sodium deoxycholate, and 50 mM Tris-HCl pH 8.0).

The cell lysate was centrifuged (13,000 x g, 20 min, 4˚C) to remove cell debris, and the pro-

tein concentration of the supernatant was then quantified using the Bradford assay (Bio-

Rad, USA). Three hundred micrograms of total protein from each sample was mixed with

a cocktail of biotinylated detection antibodies following incubation with the array mem-

brane, which was spotted in duplicate with capture antibodies for target proteins. The cap-

tured proteins were visualized using a bioluminescence detector (Odyssey1 XF, Li-Cor

Biosciences, Lincoln, USA) with 8 min of exposure. Image quantification was performed

with ImageJ software (version, city, country), and two-way analysis of variance (ANOVA)

was used for statistical analysis of the duplicates.

2.10. Assessment of angiogenic gene expression in HUVECs after treatment

with MSC-EVs

HUVECs were seeded (2×105 cells/well) in 6-well culture plates, treated with MSC-EVs (1×108

particles/mL) and incubated for 24 h at 37˚C in the presence of 5% CO2. Total RNA was

obtained using TRIzol™ reagent (Invitrogen, USA) following the manufacturer’s protocol. The

RNA quantity and purity were performed using a Nanodrop 2000. cDNA was synthesized

using the High-Capacity cDNA Reverse Transcription Kit. qPCR was performed using Fast

SYBR1 Green Master Mix and the 7500 Real-time PCR system. All equipment and reagents

were obtained from Thermo Fisher Scientific Co. (USA). The primer sequences are shown in

S3 Table. For quantification, the target genes were normalized using the geometric mean of

the expression of the housekeeping genes beta-actin (ACTB) and glyceraldehyde-3-phosphate

dehydrogenase (GAPDH). The threshold cycles (Ct) were determined for each sample. The rel-

ative expression of mRNA was calculated using the 2(-ΔΔCT) method expressed relative to the

levels in the nontreated group.

2.11. Statistical analysis

The RT–qPCR data were analyzed using a web tool provided by Qiagen (GeneGlobe Data

Analysis Center), in which the p value was calculated by Student’s t test of the replicate 2(-ΔΔCT)

values for each gene in the control and test group. The data from the tube formation assay

were analyzed with GraphPad Prism 9.0 (GraphPad software, EUA) and are presented as the

means ± SDs. The treatment groups were evaluated by one-way or two-way analysis of vari-

ance (ANOVA) with Bonferroni post hoc test. In all tests, only p< 0.05 was considered to

indicate a significant difference between groups.
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3. Results

3.1. MSC characterization and miR-135b or miR-210 overexpression

The characterization of MSCs by immunofluorescence staining and cell cytometry showed

that these cells were negative for CD11b, CD34 and CD45 but positive for the classical MSC

markers CD73 and CD105 (Fig 1A and 1B). The analysis of the capacity of MSCs to differenti-

ate into adipocytes and osteoblasts showed deposits of lipid droplets and calcium, respectively,

confirming the identity of MSCs (Fig 1C and 1D, respectively). To promote overexpression of

the angiomiRs, the MSCs were transduced with a lentiviral vector containing a construct for

the expression of miR-135b (MSCmiR135bs) or miR-210 (MSCmiR210s).

Either miR-135b or miR-210 was successfully transduced into MSCs, as confirmed by

immunostaining of GFP+ cells with an anti-GFP antibody, which stained more than 90% of

the transduced cells compared with 3.1% of the nontransduced cells (unmodified cells,

MSCwts) (Fig 2). MSCs transduced with a vector containing only the miRNA expression con-

struct (MSCmiRs), which were used as a control group, also showed staining for GFP in more

than 90% of cells (Fig 2B). Thus, these results show that the MSCs were successfully transduced

and selected to express the target miRNAs.

3.2. miR-135b overexpression in MSCs promotes follistatin gene expression

To evaluate the effect of miR overexpression in MSCs, we investigated the expression of 20

genes related to angiogenesis by RT–qPCR. Two control groups were included: MSCwt and

cells modified with the control vector (MSCmiRs). A comparison of the expression levels

between these two groups identified four genes with significant differences in expression

(p� 0.05) (Table 1A): Tgfbr2 (transforming growth factor-β receptor II) was downregulated

Fig 1. MSC characterization. (A) MSC immunofluorescence staining with positive (CD73, in green) and negative (CD34, CD45) markers. The nuclei were

stained with DAPI (in blue). (B) Flow cytometry phenotyping of MSCs (CD11b, CD34, CD45, CD73, CD105). (C) Qualitative assay of adipogenesis. The

arrows indicate lipid droplets stained with Oil Red. (D) Qualitative assay of osteogenesis. The arrows indicate calcium deposits stained with Alizarin Red.

https://doi.org/10.1371/journal.pone.0272962.g001
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in MSCmiRs and MSCmiR210s, and Hgf (hepatocyte growth factor), Mstn (myostatin), and

Fst (follistatin) were upregulated in MSCmiR135b. To eliminate the interference of the vectors

in the analysis, the gene expression levels in these cells were also compared with those in

MSCmiRs (Table 1B), which revealed only upregulation of the Fst gene in MSCmiR135bs

(FCA = 6.2). Because Fst is known to encode an angiogenic protein that improves muscle

growth by Mstn inhibition, the overexpression of miR-135b improves the angiogenic potential

of MSCs.

3.3. Target miRNAs are successfully upregulated in modified MSCs

To explore the impact of target miRNA expression in the MSC-EV cargo, the expression of 12

angiomiRs in the modified MSCs was assessed by RT–qPCR. First, we assessed the effect of

lentiviral transduction in MSCs by comparing the expression levels between MSCmiRs and

MSCwts (Table 2A). A p value lower than 0.05 indicates that the expression of the indicated

miRNA was affected by lentiviral transduction, independent of target miRNA overexpression.

Thus, the FC values of the indicated miRNA need to be cautiously used to determine the

expression levels.

The miRNA expression of the modified cells (MSCmiR210s and MSCmiR135bs) was then

compared with that in the MSCmiRs (Table 2B), and p� 0.05 was considered significant.

Here, we also included groups with a p value close to 0.05 for discussion. Based on these crite-

ria, we found three miRNAs that were altered in MSCmiR210s: miR-210-3p (FC = 2.49;

p = 0.011), miR-210-5p (FC = 1.33; p = 0.067) and miR-296-5p (FC = 1.35; p = 0.005).

Although the FCs of miR-210-5p and miR-296-5p were below the FC threshold and the p

Fig 2. MSCs modified by a lentiviral vector. (A) Modified MSCs (MSCmiR135b, MSCmiR210 and MSCmiR) and MSCwt (control) in the

immunofluorescence assay. The cell nucleus was stained with DAPI (in blue), and GFP was stained with anti-GFP antibody (in green). (B) Quantification of

MSCs modified with a lentivector by counting of GFP+ cells per mm2 of area.

https://doi.org/10.1371/journal.pone.0272962.g002
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value of miR-210-5p was slightly higher than 0.05, an analysis of the p values of these miRNAs

in MSCmiRs, which indicates the influence of lentiviral vector transduction on miRNA

expression, indicates that only miR-296-5p (p = 0.557) exhibited a significant FC increase.

Similarly, three altered miRNAs were observed in MSCmiR-135bs: miR-210-5p (FC = 2.07;

p = 0.062), miR-135b-5p (FC = 131.6; p = 0.053) and miR-135b-3p (FC = 61.39; p = 0.054).

These three miRNAs had a FC higher than 2, as indicated in both Table 2A and 2B, and their p

values were close to 0.05, indicating a tendency of upregulation. In particular, in MSCwts, the

two forms of miR-135b had high Ct values (>33) in the qPCR analysis, suggesting that this

miRNA has marginal expression in unmodified cells, resulting in the high FC values shown in

Table 2. However, this assumption needs to be confirmed by absolute quantification through

qPCR. Overall, these results confirm the successful overexpression of the target miRNA in

MSCs and demonstrate that their overexpression may also lead to changes in other pro- and

anti-angiomiRs.

3.4. MSC-EV characterization

MSC-EVs were characterized by three methods: NTA (size and distribution), TEM (size and

morphology), and flow cytometry (presence of common membrane surface markers). Flow

cytometry analysis revealed that the MSC-EVs exhibited more than 96% positive staining for

EVs based on the three typical exosome tetraspanins (CD9, CD63, and CD81) (Fig 3A).

Table 1. Gene expression levels in modified MSCs compared with MSCwts and MSCmiR control groups.

A B

MSCwts MSCmiRs

MSCmiRs MSCmiR210s MSCmiR135bs MSCmiR210s MSCmiR135bs

Gene FC p FC p FC p FC p FC p
Genes with p < 0.05 Tgfbr2 0.48 0.0251 0.38 0.0099 0.38 0.6376 0.80 0.5775 6.83 0.2942

Hgf 1.68 0.2396 1.35 0.5487 16.54 0.0056 0.84 0.8233 1.19 0.8547

Mstn 3.69 0.1486 4.24 0.1533 6.89 0.0029 1.15 0.6053 1.87 0.0103
Fst 2.37 0.2276 3.48 0.0521 6.20 0.0002 1.47 0.5641 2.62 0.0273

Genes with p > 0.05 Col1a1 0.03 0.222 0.86 0.3827 1.05 0.7531 1.37 0.586 1.67 0.2619

Col3a1 0.10 0.2977 5.68 0.8723 5.39 0.9721 1.54 0.2911 1.47 0.2342

Tgfb1 0.15 0.8793 0.11 0.483 0.21 0.4186 0.99 0.9294 1.20 0.4575

Tgfbr1 1.37 0.4699 3.61 0.6591 7.92 0.1169 0.83 0.3828 1.82 0.2326

Vegfa 2.54 0.2679 16.51 0.1622 6.22 0.0743 0.98 0.758 3.18 0.1723

Flt1 0.24 0.1933 0.46 0.1568 1.36 0.7677 0.47 0.1997 1.39 0.6453

Kdr 0.79 0.7193 1.49 0.6651 2.54 0.6596 0.83 0.7696 1.40 0.4070

Fgf1 0.82 0.8749 1.55 0.6397 1.84 0.8733 1.15 0.7426 1.36 0.7871

Hif1a 9.80 0.1614 10.70 0.0829 1.68 0.4878 1.09 0.9046 1.27 0.4377

Csf2 0.60 0.4123 0.64 0.3738 0.72 0.7760 0.95 0.9275 1.01 0.5531

Csf2ra 0.97 0.8978 0.70 0.4040 2.73 0.6845 1.03 0.9274 1.12 0.9829

Csf2rb 0.92 0.9076 2.65 0.6239 3.03 0.3561 1.17 0.9485 1.34 0.5676

Pax3 1.22 0.7260 1.51 0.6750 1.10 0.6617 1.24 0.9362 0.90 0.4790

Pax7 0.22 0.4246 1.93 0.9491 2.01 0.8706 0.82 0.6201 0.85 0.3430

Myod1 0.58 0.5449 0.96 0.8288 1.98 0.1660 0.76 0.3322 1.57 0.4702

Mtor 1.08 0.7332 1.00 0.8330 1.63 0.2078 0.93 0.6207 1.51 0.2980

The RT–qPCR data were obtained from four samples of each group and normalized to the housekeeping gene GAPDH. Positive regulation (FC � 2) and negative

regulation (FC� 0.5) are shown in bold font. The values with significant p values (p� 0.05) are shown in italicized bold.

https://doi.org/10.1371/journal.pone.0272962.t001
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Furthermore, the TEM images showed the distinctive ellipse or rounded morphology and

heterogeneous size distribution of EVs (Fig 3B). The size distribution results were supported

by the NTA analyses (Fig 3C), which revealed that the MSC-EV samples appeared to be a mix-

ture of exosomes and MVs that mainly ranged from 130 nm to 370 nm, with a mode of

Table 2. miRNA expression in modified MSCs compared with that in MSCwts and MSCmiRs (control cells).

A B

MSCwts MSCmiRs

MSCmiRs MSCmiR210s MSCmiR135bs MSCmiR210s MSCmiR135bs

miRNA FC p # FC p # FC p # FC p # FC p #

Anti-angiomiRs miR-15a-5p 1.47 0.359 1.31 0.478 1.32 0.483 0.89 0.634 0.90 0.940

miR-34a-5p 0.63 0.680 0.40 0.073 0.24 0.202 A 0.63 0.380 0.38 0.550 A

miR-221-3p 1.86 0.013 0.95 0.904 3.00 0.105 0.51 0.017 1.61 0.232

miR-222-3p 1.41 0.072 0.89 0.734 1.96 0.203 0.63 0.073 1.39 0.274

Pro-angiomiRs miR-21-5p 0.95 0.672 1.18 0.957 1.15 0.652 1.25 0.384 1.21 0.400

miR-126-3p 1.44 0.483 0.95 0.716 0.07 0.041 A 0.66 0.441 0.05 0.261 A

miR-130a-3p 0.83 0.434 1.00 0.869 1.10 0.626 1.21 0.170 1.32 0.343

miR-296-5p 1.15 0.557 1.56 0.052 1.97 0.177 1.35 0.005 1.71 0.203

Experimental AngiomiRs miR-135b-5p 4.33 0.266 B 2.24 0.250 B 569.41 0.052 A 0.52 0.482 B 131.60 0.053 A

miR-135b-3p 1.55 0.996 B 0.68 0.541 B 95.23 0.055 B 0.44 0.289 B 61.39 0.054 B

miR-210-5p 1.59 0.035 2.12 0.005 3.29 0.027 1.33 0.067 2.07 0.062

miR-210-3p 1.78 0.019 4.43 0.005 2.98 0.135 2.49 0.011 1.67 0.277

The RT–qPCR data were obtained from three samples in duplicate from each group and normalized to the housekeeping gene RNU6. Positive regulation (FC� 2) and

negative regulation (FC� 0.5) are shown in bold font. Values with significant p values (p� 0.05) are shown in italicized bold font. Values close to the threshold are

underlined. # Observation! A: Ct value is relatively high (> 33) in one of the compared samples (control or test) and low in the other; B: the Ct of the corresponding

gene is relatively high (Ct > 33).

https://doi.org/10.1371/journal.pone.0272962.t002

Fig 3. MSC-EV characterization. (A) Surface markers CD9, CD63 and CD81 of EVwts detected by flow cytometry. (B) Representative TEM images of EVwts
with a rounded or elliptical morphology. (C). Size and particle distribution (concentration) obtained by NTA of EVs from transduced and nontransduced cells.

The plots represent the average from 4 samples per group, and five recordings of each sample were performed. EVwts = MSCwt-derived EVs;

EVmiRs = MSCmiR-derived EVs; EVmiR210s = MSCmiR210-derived EVs; EVmiR135bs = MSCmiR135b-derived EVs.

https://doi.org/10.1371/journal.pone.0272962.g003
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approximately 153 nm. This type of mixed EV sample is a typical result obtained by the chosen

method for production and purification.

Additionally, the results suggest that transduction with lentivectors did not change the EV

profiles because the samples had similar size and distribution values with little divergence, pos-

sibly due to experimental variation. Collectively, the results from the analyses of the morphol-

ogy, size distribution, and membrane markers indicate that the sample was indeed an EV

population enriched in exosomes.

3.5. Modified MSCs secrete EVs with different microRNA signatures

The biological activity of EVs is highly dependent on their cargo. Therefore, the variations in

miRNAs in MSC-EVs were analyzed by RT–qPCR. The miRNA levels in EVs were analyzed

following the above-described steps, and the values were compared with two control groups:

EVs derived from MSCmiR (EVmiRs) and EVs derived from MSCwt (EVwts). The results

show an overall reduction in the expression of most investigated miRNAs. The exceptions

were miR-15a-5p in all the groups, miR-135b-5p in EVmiR135bs (FC = 172.45), and miR-210-

3p, miR-135b-3p and miR-135b-5p in EVmiR210s (FC = 1.58, 13.77 and 7.48, respectively).

However, the comparison of EVmiRs and EVwts (Table 3A) indicated that the miR-15a-5p

levels were affected by lentiviral transduction and that the miR-135b FC values of EVmiRs

were minimal, with p> 0.05, and this miRNA should thus be disregarded. In contrast, the

miR-210-5p levels were negatively affected by lentiviral transduction. Thus, despite the down-

regulation shown in Table 3A, cellular miRNA upregulation led to an increase in the miR-210-

5p levels in the EVmiR210 cargo. In contrast, in EVmiR135bs, a significant increase in the

miR-135b-5p levels were detected in both comparisons (Table 3A and 3B). Altogether, these

data indicate that EVs derived from modified MSCs were enriched with the target miR and

exhibited low levels of other miRNAs.

3.6. EVs enriched with miRNA 210 improve angiogenesis

Angiogenesis can alleviate ischemic damage and thus reduce fibrosis and cell death in the

affected tissue. To test whether the changes in the MSC-EV cargo affected the biological effects

Table 3. miRNA expression in MSC-EVs compared with that in EVwts and EVmiRs (control groups).

A B

EVwts EVmiRs

EVmiRs EVmiR210s EVmiR135bs EVmiR210s EVmiR135bs

miRNA FC p # FC p # FC p # FC p # FC p #

Anti-angiomiRs miR-15a-5p 7.85 0.252 B 15.00 0.000 19.61 0.357 B 1.91 0.922 B 2.50 0.420 B

miR-34a-5p 0.41 0.337 B 0.13 0.261 B 0.06 0.246 B 0.32 0.088 B 0.15 0.051 B

miR-221-3p 0.37 0.231 0.30 0.196 0.27 0.186 0.36 0.034 0.56 0.127

miR-222-3p 0.79 0.512 A 0.28 0.287 A 0.44 0.347 A 0.84 0.402 0.80 0.274

Pro-angiomiRs miR-21-5p 0.86 0.548 0.58 0.381 0.36 0.286 0.67 0.001 0.41 0.001

miR-126-3p 0.36 0.272 A 0.22 0.230 B 0.47 0.330 B 0.63 0.195 A 1.33 0.247 A

miR-130a-3p 0.54 0.221 B 0.50 0.220 B 0.73 0.263 B 0.94 0.969 B 1.36 0.484 B

miR-296-5p 1.28 0.441 A 0.31 0.378 B 0.62 0.399 B 0.24 0.041 A 0.49 0.169 A

Experimental AngiomiRs miR-135b-5p 0.09 0.220 C 0.68 0.438 B 15.60 0.028 7.48 0.000 172.45 0.019

miR-135b-3p 0.09 0.220 C 1.25 0.789 B 0.47 0.718 B 13.77 0.000 5.17 0.324 B

miR-210-5p 0.08 0.002 0.13 0.003 0.05 0.002 1.58 0.046 0.64 0.240 B

miR-210-3p 0.37 0.231 0.30 0.196 0.27 0.186 0.81 0.341 0.75 0.208

The RT–qPCR data were obtained from three samples in duplicate for each group and normalized to the housekeeping gene RNU6. Positive regulation (FC � 2) and

negative regulation (FC � 0.5) are shown in bold font. Values with significant p values (p� 0.05) are shown in italicized bold font. # = Observation! A: the Ct value is

relatively high (> 33) in one of the compared samples (control or test) and low in the other; B: the Ct of the corresponding gene is relatively high (Ct > 33); C: the mean

Ct of the corresponding gene was not determined or is greater than the defined cutoff (Ct > 40).

https://doi.org/10.1371/journal.pone.0272962.t003
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of these EVs, HUVECs were incubated with MSC-EVs, and the resulting angiogenic properties

at different time points were assessed by tube formation assays (Fig 4A and 4B). Measurements

were made at 7 h, which was the time point with the higher amount of tubular structures.

The results showed a significant increase in 3 of 5 parameters in HUVECs treated with

EVmiR210 compared with the levels found for the PBS control group (Fig 4C). Similarly, the

mean of the measurements obtained for HUVECs incubated with EVmiR210 was significantly

increased by approximately 27% (p = 0.026) in comparison with the values obtained for the

PBS control group (Fig 5). Similar results were not found for the other MSC-EVs (EVwts,

EVmiRs, and EVmiR135bs), indicating a singular angiogenic property of EVmiR21.

3.7. EV-miR210 increases the angiogenesis-related protein levels in

HUVECs treated with MSC-EVs

In the membranes incubated with the cell extracts from HUVECs treated with EVmiR210 or

EVmiR135b, 10 growth factors were noticeably marked among the 55 factors in the panel: acti-

vin A, angiopoietin 2, artemin, endothelin-1, acidic fibroblast growth factor, heparin-binding

epidermal growth factor, insulin-like growth factor-binding protein, platelet-derived growth

factor-AA, serpin-1 and placental growth factor (Fig 6). However, after eliminating the effects

in the control groups, EVwts and EVmiRs, only artemin, endothelin-1 and PGF were upregu-

lated after treatment with EVmiR210, and only artemin was upregulated after treatment with

EVmiR135b.

Fig 4. Tube formation assay with MSC-EVs and HUVECs. (A) Representation of the investigated tubular structures, which were highlighted by Angiogenesis

Analyzer in ImageJ software: extremities (I–red), branches (II–green), meshes (III–light blue), segments (IV–yellow), isolated segments (V–navy blue), and

junctions (VI–pink circle). (B) Mean measurements of the tubular structures from HUVECs treated with PBS or MSC-EVs at 4 time points (2, 4, 7 and 10 h).

(C) Analysis of five types of tubular structures in HUVECs treated with PBS or MSC-EVs at the 7-h time point. EVwts = MSCwt-derived EVs;

EVmiRs = MSCmiR-derived EVs; EVmiR210s = MSCmiR210-derived EVs; EVmiR135bs = MSCmiR135b-derived EVs. The significance of the differences

were assessed by one-way ANOVA and Bonferroni correction for the post hoc analysis.

https://doi.org/10.1371/journal.pone.0272962.g004
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3.8. EVmiR210 increases angiogenic gene relative expression in HUVECs

treated with MSC-EVs

After identification of the overexpressed angiogenic proteins in HUVECs after treatment with

EVmiRs, the 4 genes (PGF, IGFBP1, ET-1 and INHBA) identified in this study and 2 classical

angiogenic genes (HIF-1A and VEGF) were assessed by RT–qPCR (Fig 7). In this panel,

VEGF, INHBA and IGFBP1 were upregulated after treatment with EVmiR210 but not after

treatment with EVmiR135b. HIF-1A was upregulated in both EVmiR210s and EVmiR135bs,

but the p values for the comparison with the EVmiRs and EVwts were higher than 0.05.

4. Discussion

The importance of EVs and miRNAs in biological functions is well accepted today, but several

challenges remain in the production of a specific miRNA-EV system for therapy. Here, we

demonstrated that the overexpression of miR-135b or miR-210 in MSCs by a lentiviral vector

can alter the mRNA and miRNA levels in the secreted EVs and thus improves their angiogenic

potential without altering their secretion rate or morphology.

MSCs from the bone marrow and adipose tissue are the main sources for clinical cell ther-

apy and EV production [27, 28]. Modification of these cells with lentiviral vectors is well docu-

mented for exogenous gene expression and gene therapy [29, 30]. Collectively, EV production

with a specific miRNA via MSCs modified using a lentiviral vector represents an interesting

strategy for producing specific miRNA-loaded EVs for precise targeted therapy. Additionally,

the overexpression of miRNAs in EVs reduces the need for large amounts of EVs to achieve

the same beneficial effect, which results in reductions in both cost and time and thus facilitates

translation to the clinic.

Fig 5. Angiogenic activity of EVmiR210 in endothelial cells. (A) Mean of the five structures analyzed in HUVECs treated with PBS or MSC-EVs at the 7-h

time point. (B) Comparative image of HUVECs treated with PBS or EVmiR210 with tubular structures, which are highlighted by Angiogenesis Analyzer in

ImageJ software. EVwts = MSCwt-derived EVs; EVmiRs = MSCmiR-derived EVs; EVmiR210s = MSCmiR210-derived EVs; EVmiR135bs = MSCmiR135b-

derived EVs. The significance of the differences was assessed by one-way ANOVA and Bonferroni correction for the post hoc analysis.

https://doi.org/10.1371/journal.pone.0272962.g005
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Fst was positively regulated in MSCs overexpressing miR-135b. This gene regulates the

activity of activin A, an important protein in inflammation. Fst might be upregulated in

MSCmiR135bs because activin A receptor type-1 is one of the predicted targets of miR-135b

using the public mouse database TargetScan (version 7.1, http://www.targetscan.org). In vitro
studies have shown that Fst associated with VEGF can facilitate new blood vessel formation in

tumors [31, 32]. Furthermore, in myogenesis, Fst plays an important role as a myostatin antag-

onist and is the main inhibitor of muscle growth [33]. The administration of follistatin exerts a

relevant therapeutic effect on spinal muscular atrophy in an animal model [34]. Hence,

increased Fst expression may represent a gene regulation that is favorable for angiogenesis and

myogenesis, which is an essential physiological need for the recovery of ischemic and atrophic

skeletal muscle.

An analysis of the miRNA levels revealed that MSCmiR210 upregulated two forms of miR-

210 (miR-210-5p and miR-210-3p). MSCmiR135bs showed increased expression of both miR-

135b forms (miR-135b-5p and miR-135b-3p). These data indicate the desired increase of

miRNA target expression, particularly the expression of miR-135b, which stands out with a FC

higher than 60-fold (this result is further discussed in this section). The MSCmiR135bs also

exhibited upregulation of miR-210-5p. A relationship between miR-210 and miR-135 is

expected because both are implicated in the HIF-1 pathway, and higher levels of these two

miRNAs may indicate the production of more angiogenic factors by these cells [35].

Furthermore, MSCmiR210s also showed a slight increase in miR-296 expression. This

miRNA inhibits tyrosine kinase substrate expression regulated by hepatocyte growth factor

Fig 6. Profile of angiogenic-related proteins in HUVECs after treatment with EVmiRs. The membrane was exposed for 8 min in a bioluminescence

detector (left), and the intensity of each spot was measured using ImageJ software (right). The significance of the differences was analyzed by two-way ANOVA

and Bonferroni correction for the post hoc analysis. � indicates p< 0.05 in comparison with EVwts; # indicates p< 0.05 in comparison with EVmiRs.

EVwts = MSCwt-derived EVs; EVmiRs = MSCmiR-derived EVs; EVmiR210s = MSCmiR210-derived EVs; EVmiR135bs = MSCmiR135b-derived EVs.

https://doi.org/10.1371/journal.pone.0272962.g006
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(HGF). This inhibition leads to higher expression of VEGFR2 (VEGF receptor 2) and PDGFR-

β (platelet-derived growth factor-beta receptor), resulting in the promotion of angiogenesis

[36]. In addition, miR-221 was downregulated in MSCmiR210s. miR-221 is involved in vascu-

lar remodeling, silencing the c-KIT receptor, and decreasing the level of VEGFR2 expression

[37]. Thus, miR-296 and miR-221 regulate the VEGF pathway, similar to miR-210, and in this

study, their variation was correlated with a higher level of VEGF expression, which stimulates

a favorable environment for angiogenesis. Therefore, the MSC data show that the overexpres-

sion of miR-135b or miR-210 in MSCs promotes the expression of genes and miRNAs related

to angiogenesis and myogenesis, which are beneficial for the treatment of ischemic limbs.

One of our concerns in the modification of MSCs with a lentiviral vector is the possibility

of altering EV properties, such as the size and membrane proteins, because these alterations

can affect the biological activity of EV and thereby EV-based therapy. The isolated EVs dis-

played a distinctive morphology (Fig 2B) and a size distribution predominantly under 250 nm

(Fig 2C), which are typical characteristics of EVs [38, 39]. In addition, all three exosome tetra-

spanin markers were present on EVs (Fig 2A), which showed that the modification of MSCs

with lentiviral vectors does not affect the characteristics of EVs.

In contrast, the EV cargo exhibited different levels of the investigated miRNAs. Although

the EVmiR135b cargo showed an increase in miR-135b-5p expression, the EVmiR210s had

higher levels of miR-210-5p, although this increase was less evident. These results indicate that

the “5p” isomiR for both miRNAs is the dominant form [40], which leads to the hypothesis

that this isomiR may have more influence on cell communication than the “3p” isomiR. Fur-

thermore, this result also demonstrates that EVs are enriched with the overexpressed miRNAs,

confirming our early speculation.

Fig 7. Angiogenic gene expression profile of HUVECs after treatment with EVmiRs. Relative gene expression was determined as described in the Materials

and Methods section. The significance of the differences was analyzed by one-way ANOVA and Bonferroni correction for the post hoc analysis. � indicates

p< 0.05 in comparison with EVwts; # indicates p< 0.05 in comparison with EVmiRs. EVwts = MSCwt-derived EVs; EVmiRs = MSCmiR-derived EVs;

EVmiR210s = MSCmiR210-derived EVs; EVmiR135b = MSCmiR135b-derived EVs.

https://doi.org/10.1371/journal.pone.0272962.g007
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An angiogenesis assay revealed that the EVmiR210 group promoted better tubular structure

formation. Hence, the angiogenic potential of this group was superior to that of EVmiR135bs,

which showed no significant difference in comparison to the control groups. A significant

increase in angiogenic proteins (PGF, endothelin 1 and artemin) and genes (VEGF, activin A

and IGFBP1) in HUVECs treated with VEmiR210 justifies the better tubular structure forma-

tion of these cells compared with that of EVmiR135b-treated HUVECs, which showed upregu-

lated expression of only artemin. Nevertheless, although we used the same amount of EVs, the

absolute concentration of their contents is unknown; thus, caution should be taken with this

interpretation because the biological activity depends on the miRNA concentration. Barter

et al. [41] showed that the expression of miR-135b was markedly lower than that of miR-210

in human bone marrow MSCs. This information corroborates our hypothesis that the FC val-

ues found in MSCmiR135bs and EVmiR135bs are likely due to the low expression of miR135b

in MSCs. This observation also raises suspicion that the amount of miR-135b in EVs could be

lower than that of miR-210, which would promote fewer tubular structures. Therefore, further

absolute quantification of these miRNAs by real-time PCR should clarify the above discussion.

Moreover, the changes in other miRNAs in EVs were not investigated, which limits the under-

standing of the miRNA molecular signature of EVs and their regulatory mechanism.

Collectively, our results show that EVs enriched with a specific miRNA can be produced by

MSCs modified with lentiviral vectors expressing the target miRNA. In addition, we found

that EVmiR210 improved the angiogenic activity. These results are relevant for the application

of specific miR-enriched EVs in regenerative medicine by improving our understanding of EV

production as well as the regenerative and repair processes of EVs (9,46). Moreover, despite

these in vitro results under normoxia, the true potential of EVmiR210s for the treatment of

limb ischemia still needs to be investigated in an animal model, and this promising result

opens a window to be explored.
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