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The blood brain barrier (BBB) presents a formidable challenge to the delivery of drugs
into the brain. Several strategies aim to overcome this obstacle and promote efficient
and specific crossing through BBB of therapeutically relevant agents. One of those
strategies uses the physiological process of receptor-mediated transcytosis (RMT) to
transport cargo through the brain endothelial cells toward brain parenchyma. Recent
developments in our understanding of intracellular trafficking and receptor binding as
well as in protein engineering and nanotechnology have potentiated the opportunities
for treatment of CNS diseases using RMT. In this mini-review, the current understanding
of BBB structure is discussed, and recent findings exemplifying critical advances in
RMT-mediated brain drug delivery are briefly presented.
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INTRODUCTION

Brain diseases are among the less understood and poorly treated conditions. In spite of the
rapid growth in recent years in drug development, there is still a low success rate of effective
therapies focused in diseases of the central nervous system. A main issue hindering therapeutic
success is the tightly regulated extracellular environment of the brain tissue which makes reaching
macromolecular targets into the brain a great challenge (Pardridge, 2005; Abbott, 2013; Engelhardt
et al., 2016). The isolation of the brain tissue from the peripheral circulation is thought to arise
from the existence of multi-level “barriers,” established in different compartments in the central
nervous system of most vertebrates (Cserr and Bundgaard, 1984; Engelhardt et al., 2017) providing
protection to the neural tissue. Key to those protective mechanisms is the regulation of the entry
of macromolecules from the blood to the brain across the blood-brain barrier (BBB) (Abbott
et al., 2006). The BBB regulates an extended surface of interaction between blood and brain. It is
calculated that the brain capillary network in humans is approximately 600 km long with a surface
of 15–25 m2 (Wong et al., 2013).

The intimate association between neurons, glial cells, and brain microvessels in the
neurovascular unit is being recognized as the functional point for regulation of cerebral blood flow.
Among those cell types, the brain endothelial cells are the building blocks of the BBB impeding
the entry of most molecules from blood to brain, with the exception of those small and lipophilic
in nature. Several recent studies have focused on the functional interactions between endothelial,
neuronal and glial cell types and their role on regulating BBB function (Persidsky et al., 2006; Chow
and Gu, 2015; Liebner et al., 2018). Since neurons rarely occur at long distance from a brain capillary
(Schlageter et al., 1999; Tsai et al., 2009), the BBB also plays a major role in controlling fast delivery
of substances to the brain and the local neuronal environment. Due to its extended contact and

Frontiers in Neuroscience | www.frontiersin.org 1 January 2019 | Volume 12 | Article 1019

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.01019
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2018.01019
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.01019&domain=pdf&date_stamp=2019-01-11
https://www.frontiersin.org/articles/10.3389/fnins.2018.01019/full
http://loop.frontiersin.org/people/65512/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-01019 January 7, 2019 Time: 19:45 # 2

Pulgar Receptor-Mediated Transcytosis in Brain Endothelium

exchange surface area, most research has focused on the brain
endothelium as the therapeutic target to increase brain drug
delivery.

STRUCTURE OF THE BBB

Structurally, capillary networks can be divided into continuous
non-fenestrated capillaries, continuous fenestrated and
discontinuous capillaries. This division is based on their
ability to regulate crossing of solutes from blood to tissues;
thus continuous fenestrated capillaries are least permeable
whereas discontinuous are the most permeable (Aird, 2007a,b).
In the BBB, continuous non-fenestrated capillaries, where tight
junctions (TJs) connect endothelial cells, form a high-resistance
para-cellular barrier limiting the crossing of molecules and ions.
Transmembrane proteins are an important part of TJs, they
bind the cytoskeleton and link adjacent endothelial cells in a
close configuration, eliminating intercellular spaces. Some of
the proteins important for TJs structure and function include
integral membrane proteins such as members of the claudin
family i.e., claudin 3, 5, and 12, ocludins, and junctional adhesion
molecules (Anderson and Van Itallie, 2009; Furuse, 2010).
Evidences indicate that claudins are essential for the formation
of the para-cellular barrier and the structure is stabilized by
zona occludens ZO −1, −2, and −3 and additional proteins that
link the TJs with the cytoskeleton (Abbott et al., 2006; Furuse,
2010). This structure is further reinforced by the basal lamina, a
∼40 nm thick matrix formed predominantly of collagen type 1V,
laminin, and heparan sulfate proteoglycan (Perlmutter and Chui,
1990). Metalloproteinases are other components that contribute
to regulation of BBB function in health and disease (Yong, 2005).

Additionally, glial cells such as astrocytes play an important
role in development and maintenance of the BBB. Up to 99%
of the basal capillary membrane is covered by astrocytes “end
feet” and glial-derived factors such as GDNF, angiopoietin-
1 and angiotensin II all contribute to BBB integrity (Hori
et al., 2004; Abbott et al., 2006; Wosik et al., 2007). Along
with astrocytes “end feet,” pericytes are also lining the
cerebral vasculature, surrounding brain endothelial cells and
contributing to the barrier properties of the BBB. Recent
advances on pericytes research indicate that this cell type
is rather complex with more than one functional definition
depending on their location along the arterio-venous capillaries
(Attwell et al., 2016). The fact that brain microvessels are
enriched in pericytes, and pericyte-deficient mouse mutants
showed increased BBB permeability (Armulik et al., 2010)
exemplifies the importance of pericytes for BBB control.
Pericytes seem to contribute in two ways to BBB integrity:
downregulating trans-endothelial permeability and promoting
astrocyte-endothelial cells contacts (Armulik et al., 2010).
Moreover, growing evidences point now to the importance of
the interactions between pericytes and other cell types within
the neurovascular unit in health and disease (ElAli et al.,
2014).

The multicellular organization occurring at the neurovascular
unit involving endothelial cells and astrocytes among others

cell types (Willis, 2012) forms the framework where the highly
regulated crossing of macromolecules from blood to brain
occurs.

CROSSING THE BBB

The existence of efflux transport systems in brain capillary
endothelial cells reinforce the barrier properties of the
BBB by removing undesirable substances from the
brain to the systemic circulation. Multidrug resistance
transporters, monocarboxylate transporters and organic
anion transporters/organic anion transporting polypeptide
have been implicated in the efflux of drugs from the brain.
Consequently, the activity of these efflux transporters limits the
effectiveness of CNS targeted drugs (Loscher and Potschka, 2005;
Figure 1C).

Most of the drug transporters belong to two major
classes; adenosine triphosphate binding cassette (ABC) and
solute carrier (SLC) transporters. ABC transporters are active
transporters coupling efflux against concentration gradients
to ATP hydrolysis with P-glycoprotein (P-gp) being the
most extensively studied BBB transporter of the ABC family
(Mahringer and Fricker, 2016). P-gp is encoded by the multidrug
resistance gene 1 (MDR1) and its function is regulated by
intracellular factors and environmental toxins (Dauchy et al.,
2009).

In order to facilitate the efficient delivery of drugs to the brain,
the functional and structural tightness of the BBB needs to be
overcome. Strategies used to cross BBB involve para-cellular as
well as trans-cellular mechanisms.

TRANSPORT ACROSS THE BBB

As part of its normal function, the endothelial cells allow the
influx of nutrients and regulatory molecules into the brain via
passive and active mechanisms. In normal conditions, some
passive movement of solutes exists through small intercellular
pores located in the TJs (Figure 1E). The molecular entities
responsible for this transport are largely unknown, although
recent evidences point to claudins as pore-forming structures
in BBB TJs (Irudayanathan et al., 2017). Since early stage CNS
diseases do not show evident BBB alterations, this pathway
offers fewer opportunities than trans-cellular transport for drug
delivery.

Transport of small molecules trough cells is common
in polarized cells. Thus, in brain vascular endothelial
cells, hydrophobic molecules with molecular weight lower
than 500 Da once they escape the P-gp-type multidrug
resistance efflux pumps may diffuse transcellularly from
systemic circulation to brain parenchyma (Figure 1F).
The transport of nutrients, however, requires specialized
transporters (Figure 1D). Thus, large neutral aminoacid
transporters (LAT1) transport aminoacids, nucleosides, and
some drugs, while glucose uses the glucose transporter (GLUT1)
(Ohtsuki and Terasaki, 2007; Barar et al., 2016).
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TRANSCYTOSIS

Transcytosis is a phenomenon present in many different cell
types, from neurons to intestinal cells, osteoclasts and endothelial
cells. In polarized cells, unidirectional transcytosis refers to the
transport of macromolecules from apical to basolateral plasma
membranes. Steps along this pathway include endocytosis,
intracellular vesicular trafficking and exocytosis. The first of
these steps may involve adsorptive (charge dependent) or
receptor-mediated internalization (Figures 1A,B). Positively
charged molecules such as polymers, cationic lipids, albumin
and nanoparticles may interact with the negatively charged
cell membrane and internalize through adsorptive endocytosis
(Lu, 2012). Although initially thought to be attenuated in
brain endothelial cells, virtually all endothelial cells display
receptor-mediated transcytosis (RMT) (Stewart, 2000). Recent
applications of imaging techniques allowed for detailed analyses
of transcytosis in brain endothelial cells (Villasenor and Collin,
2017). Several receptors capable of inducing RMT are present in
the BBB, such as the insulin receptor, transferrin receptor, and
receptors responsible for lipoprotein transport, while others such
as albumin receptors are not expressed (Pardridge et al., 1985).

FIGURE 1 | Potential mechanisms for crossing the blood brain barrier (BBB).
Polarized endothelial cells, bound by tight junctions, form a seal that controls
free movement or molecules from blood to brain. In brain capillaries,
endothelial cells are in intimate association with astrocytes. Potential
mechanisms for crossing the BBB are indicated: (A) Receptor Mediated
Transcytosis; (B) Adsorptive Transcytosis; (C) Efflux; (D) Carrier-Mediated
Transport; (E) Paracellular Transport; (F) Diffusion. See text for details.

The intracellular transport of macromolecules is mediated by
the vesicular system (Parkar et al., 2009). In brain endothelial
cells three types of endocytic vesicles have been identified:
clathrin-coated pits involved in most of the RMT, caveolae that
participate in adsorptive-mediated endocytosis of extracellular
molecules and receptor trafficking, and macropinocytotic vesicles
(Mayor and Pagano, 2007). Of these, clathrin-coated vesicles are
involved in most of the internalization processes mediated by
approximately 20 different receptors in brain endothelial cells.

Once a vesicle is internalized, the common intracellular
pathway begins with the initial sorting station, the early
endosome (Rodriguez-Boulan et al., 2005; Brooks, 2009;
Figure 2). In BBB endothelial cells endocytosis occurs at the
apical and basolateral membranes with both processes generating
its own early endosomes. In polarized cells, routing back to
the plasma membrane can occur directly from EE or from
recycling endosomes (Thompson et al., 2007). Alternatively,
vesicle components can be delivered to late endosomes and
targeted for lysosomal degradation. This endosomal trafficking
plays an important role in the efficiency of RMT in BBB
(Haqqani et al., 2018).

RMT FOR DRUG DELIVERY TO THE
BRAIN

In general, strategies using RMT for drug delivery to the
brain involve the generation of a complex between the drug

FIGURE 2 | Receptor mediated transcytosis in the BBB. A ligand binds its
cognate receptor at the apical membrane of the brain endothelial cell (1), and
initiates the invagination of the plasma membrane and the endocytosis
process (2). Intracellularly, the vesicle can follow different traffic routes
including recycling to the apical membrane (3) or routing to the basolateral
membrane where membrane fusion allows for the release of the vesicle
content [transcytosis, (4)]. Routing of the vesicle to the lysosome (5) would
target it for degradation. See text for details.
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TABLE 1 | Main receptor systems identified mediating receptor-mediated transcytosis (RMT) cargo delivery through the BBB.

Receptor targeted in RMT Biological effect Reference

Transferrin Receptor (TfR)

Cyclic iron-mimicking peptide as RMT ligand
(CRTIGPSVC).

HSV-Thymidine kinase gene specifically delivered to mouse brain tumors
through a non-canonical allosteric binding mechanism to TfR.

Staquicini et al., 2011

Liposomes decorated with Tf-poly-L-arginine loaded
with imaging agents or β-gal expressing plasmid.

4% of injected dose of imaging agents reached the brain 24 h after i.v.,
injection. Greater β-gal compared to injection of naked DNA.

Sharma et al., 2013

PEGylated liposomes decorated with anti-TfR antibody
(8D3) loaded with plasmid encoding β-glucoronidase.

At 48 h post i.v., injection tenfold higher β-glucoronidase activity observed in
brain, liver and spleen in mouse model of mucopolysaccharidosis VII.

Zhang et al., 2008

cTfRMAb (chimeric anti-mouse TfR monoclonal
antibody) complexed with tumor necrosis factor
receptor (TNFR): cTfRMAb-TNFR.

Mice model of Parkinson’s disease (PD) i.v., treated for 3 weeks showed 130%
increase in striatal tyrosine hydroxylase (TH) and improvements in behavioral
testing.

Zhou et al., 2011a

PEGylated chitosan nanoparticles decorated with
anti-TfRMAb (R17-217): CS-PEG-BIO/SA-TfRMAb.

Decreased infarct volume, neurological deficit, and ischemia-induced caspase-3
activity in mice model of stroke i.v., injected with CS-PEG-BIO/SA-TfRMAb.

Karatas et al., 2009

cTfRMAb complexed with erythropoietin (EPO):
cTfRMAB-EPO. cTfRMAb complexed with glial-derived
neurotrophic factor (GDNF): cTfRMAB-GDNF.

Mouse model of PD i.v., treated for 3 weeks showed >300% and >250%
increase in striatal TH, respectively and improvements in behavioral testing.

Fu et al., 2010; Zhou
et al., 2011b

Liposomes decorated with anti-TfR loaded with
GDNF-expressing plasmids.

Rat model of PD i.v., treated showed 77% increase in TH activity and
neurobehavioral improvements.

Zhang and Pardridge,
2009

cTfRMAb complexed with single chain Fv (ScFv)
antibody: cTfRMAb-ScFv.

Bi-functional binding to TfR and Aβ, accumulation in mouse brain >3%ID/g.
Mouse model of Alzheimer’s disease (AD) showed 40–60% reduction in Aβ

fibrils.

Boado et al., 2010;
Sumbria et al., 2013

Monovalent binding anti-TfR antibody. “Brain Shuttle”
antibody for AD.

Enhanced RMT compared to bivalent Ab. Increased destruction of β-Amyloid
plaques in mouse model of AD. Changes in binding mode attenuated peripheral
effects.

Niewoehner et al.,
2014; Weber et al.,
2018

High (anti-TfRA/BACE1) and low (anti-TfRD/BACE1)
affinity bispecific antibodies anti TfR and β-amyloid
cleaving enzyme-1 (BACE1).

In WT mice i.v., injected, high-affinity binding to TfR caused a dose-dependent
reduction of brain TfR levels and lysosomal degradation of TfR.

Bien-Ly et al., 2014

Variants of the 8D3 anti-TfR with reduced affinity fused
with IL-1 receptor antagonist IL-1RA: IgG1TM-IL-1RA.

Male C57B/l mice i.v., injected with IgG1TM-IL-1RA showed 22 to 69-fold
greater brain content of lower affinity variants vs. 8D3. Reverse of mechanical
hyperalgesia also observed.

Webster et al., 2017

Human TfR fused to iduronate 2-sulfatase (IDS):
JR-141.

Immunoreactivity of JR-141 found in brain in TFRC-KI/Ids-KO mice. Phase I/II
clinical trial of JR-141 for mucopolysaccharidosis II (MPSII) currently underway.

Sonoda et al., 2018

Insulin Receptor (IR)

HIRMAb fused to a single chain anti Amyloid β antibody
(scFv): HIRMAb-scFv.

Transport to the brain in Rhesus monkeys with a brain uptake of approximately
1% injected dose (ID)/100 g tissue.

Boado et al., 2010

HIRMAb fused to GDNF: HIRMAb-GDNF. In parkinsonian monkeys twice a week 3-mo i.v., injections of HIRMAb-GDNF
did not improve parkinsonian motor symptoms and induced a dose-dependent
hypersensitivity reaction.

Ohshima-Hosoyama
et al., 2012

HIRMAb fused to iduronate 2-sulfatase (IDS):
HIRMAb-IDS.

Brain uptake in Rhesus monkeys approximately 3% ID/100 g tissue. No toxicity
observed during a 6-month treatment study.

Lu et al., 2011; Boado
et al., 2014a

HIRMAb fused to paraoxonase (PON)-1:
HIRMAb-PON1.

Fusion protein detected in brain in Rhesus monkeys after i.v., injection. Boado et al., 2011

HIRMAb complexed with arylsulfatase (ASA):
HIRMAb-ASA.

In Rhesus monkeys i.v., injected, brain uptake of 1.1 and 0.32% ID/100 g in
gray and white matter, respectively., HIRMAb-ASA observed in all parts of brain.

Boado et al., 2013

HIRMAb complexed with N-sulfoglucosamine
sulfohydrolase (SGSH): HIRMAb-SGSH.

72–83% reduction in lysosomal glycoso-aminoglycans in
mucopolysaccharidosis type III (MPSIIIA) fibroblasts. In Rhesus monkeys i.v.,
injected, brain uptake of ∼1% ID/100 g. Reduction in brain heparan sulfate in
MPSIIIA mouse.

Boado et al., 2014b,
2018

Human anti-IR antibody (HIRMAb) complexed with
iduronidase: HIRMAb-IDUA, Valanafusp, AGT-181.

In a Phase II trial, 11 children with mucopolysaccharidosis type I (MPSI), a
lysosomal storage disease, showed evidences of cognitive and somatic
stabilization.

Giugliani et al., 2018

Low Density Lipoprotein Receptor (LDLR)

Nanoparticles decorated with apolipoprotein A (ApoE). ApoE-modified nanoparticles cross BBB in brain capillary endothelial cells. Wagner et al., 2012

Lentivirus vector encoding amyloid β- degrading
enzyme neprilysin fused to ApoB transport domain.

Mouse model of AD showed reduced Aβ and plaques levels. Spencer et al., 2011

Sulphamidase fused to secretion signal peptide of
iduronate-2-sulphatase (IDS) and ApoB-binding
domain.

Single i.v., injection on MPSIIIA mice showed efficient BBB transcytosis and
restoration of sulphamidase activity in the brain.

Sorrentino et al., 2013

(Continued)
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Table 1 | Continued

Receptor targeted in RMT Biological effect Reference

Lentiviral IDS fused to ApoEII (IDS.ApoEII) used
in stem cell therapy.

MPSII mice showed normalization of brain pathology and behavior,
including correction of astrogliosis and lysosomal swelling.

Gleitz et al., 2018

Family of Kunitz domain-derived peptides with
BBB crossing capacity.

Angiopep-2 peptide cross the BBB by interaction with LPR1, reaching brain
parenchyma.

Demeule et al., 2008

Angiopep-2 combined with antitumor drug
paclitaxel: (ANG1005, GRN1005).

Phase I study in recurrent malignant glioma patients showed brain delivery
of drug with therapeutic activity.

Drappatz et al., 2013

ANG1005 in brain metastases of breast cancer. Rat models of breast cancer showed improved brain uptake through BBB
transcytosis.

Thomas et al., 2009

ANG1005 in brain metastases of breast cancer. Imaging study of ANG1005 in human patients to treat breast cancer
metastasis to the brain

O’Sullivan et al., 2016

Single domain llama antibodies (FC5, FC44)

Single domain FC5 antibody. BBB transcytosis of FC5 is dependent on clathrin-coated endocytic
vesicles and on the recognition α(2,3)-sialoglycoprotein receptor on human
endothelial cells.

Abulrob et al., 2005

Single domain FC5 antibody. MS based methods showed that systemic administration in rats produces
highly facilitated BBB transport of FC5.

Haqqani et al., 2013

Bispecific antibody FC5-mGluR1 (BBB-mGluR1). After i.v., injection in rats >tenfold higher accumulation of BBB-mGluR1 in
brain, and suppression of thermal hyperalgesia.

Webster et al., 2016

Evidences of efficient RMT utilizing the Transferrin Receptor, Insulin Receptor, Low Density Lipoprotein Receptor, and single domain llama antibodies are summarized.

of interest and a receptor-targeting entity. This entity may
be the endogenous receptor ligand, an antibody targeting the
receptor or a mimetic peptide ligand. These two components
can be chemically linked or the drug can be incorporated in
liposomes or nanoparticles decorated with the RMT-targeting
ligand (Jones and Shusta, 2007). Among the most studied
targets for RMT in brain endothelial cells are the transferrin
receptor, low-density lipoprotein (LDL) receptor and insulin
receptor, for reviews see (Lajoie and Shusta, 2015; Paterson
and Webster, 2016). In the following section, some examples
of the use of these systems are presented with focus in recent
advances.

Transferrin Receptor
Iron delivery to the brain is accomplished via binding and
intracellular trafficking of the iron binding protein transferrin
(Tf). The Tf receptor (TfR) has been the target of numerous
in vitro and in vivo studies aiming to deliver drugs to
the brain (see Table 1). Approaches used include liposomes
decorated with Tf used for delivery of imaging agents and
DNA (Sharma et al., 2013) or the use of an iron-mimetic
peptide as ligand (Staquicini et al., 2011). Since the presence
of high blood levels of Tf requires competition with the
endogenous ligand, alternative methods involving anti-TfR
antibodies have been developed (Qian et al., 2002). Challenges
using anti-TfR to deliver drugs to the brain via RMT include
specificity to the brain tissue, potential lysosomal degradation
and significant transport into the brain parenchyma. With
the use of protein engineering it has been shown that
reducing antibody’s affinity for Tf improves release of the
antigen-antibody complex in the basolateral side of the BBB
endothelial cells (Yu et al., 2011). A correlation has also been
suggested between increased antibody’s affinity and lysosomal
degradation (Bien-Ly et al., 2014) supporting the idea that lower

antibody’s affinity would help avoid intracellular degradation
of the complexes being transported. Studies comparing the
brain penetration of monovalent versus divalent antibodies
indicate lower lysosomal colocalization of the monovalent form
(Niewoehner et al., 2014) and better transcytosis (Johnsen et al.,
2018). It appears that in addition to antibody’s affinity in
physiological conditions, a lower affinity at pH5.5 (lysosomal)
also promotes effective transcytosis as suggested by in vitro
studies using immortalized human brain endothelial cells (Sade
et al., 2014).

The recent successes using TfR in RMT strategies has
prompted novel developments aiming to potentiate drug delivery
to the brain (Yemisci et al., 2018). Thus, recent reports
showed efficient BBB crossing of particles functionalized with
anti-TfR antibodies and containing non-permeant drugs of
interest for treating brain diseases. Some examples include
liposomes containing the MYBE/4C1 antihuman TfR antibody
and loaded with the anticancer drug doxorubicin displaying
enhanced uptake in human brain endothelial cells (Gregori
et al., 2016), and liposomes containing Tf and docetaxel
showing greater brain uptake after i.v., injection in rats
compared to the drug alone (Sonali et al., 2016). The use
of nanoparticles formulated using the Tf system has shown
that functionalization with anti-TfR antibodies enhances the
delivery of particles carrying relevant drugs such as drugs
able to inhibit beta amyloid aggregates (Loureiro et al.,
2016). Nanoparticles carrying the chemotherapeutic agent
temozolomide have also facilitated enhanced drug uptake by
glioblastoma cells (Ramalho et al., 2018). This strategy also
exemplifies some of the challenges remaining in the field
since gold nanoparticles (AuNPs) coated with the 8D3 anti-
TfR antibody injected in mouse are transported through the
BBB with low efficiency and most of the particles remain
sequestered intracellularly in the endothelial cells (Cabezon
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et al., 2015). Successful uptake by the BBB but low delivery
to the brain parenchyma was also reported with quantum
dots (Paris-Robidas et al., 2016). The dual functionalization of
particles with peptides targeting the TfR to cross the BBB and
additional therapeutic agents opens opportunities to specifically
modulate gene expression in brain cells as shown by studies
of co-delivery of doxorubicin and RNAi targeting the VEGF
(Kuang et al., 2016), or siRNA targeting the EGFR (Wei
et al., 2016) to glioma cells. The significant reduction in
expression of the pro vascularization factors VEGF and EGFR
observed in these two studies supports this use of co-delivery
systems.

TfR has been used extensively as a model for brain transcytosis,
although initial reports came from just one laboratory, later
reports supported reproducibility of its use in different settings.
Outstanding issues remaining such as brain specificity and low
drug uptake will promote further research of this important RMT
system.

Insulin Receptor
Insulin is transported into the brain by the insulin receptor (IR).
Similarly to the TfR, anti-IR antibodies have been developed
and used in strategies to drug delivery into the brain (see
Table 1). Following the development of humanized anti-IR
antibodies (HIRMAb) that showed good internalization and
transport to the brain after intravenous administration in
monkeys (Boado et al., 2007), fusion proteins were developed
to deliver relevant enzymes as therapies for genetic disorders.
One of those examples is a fusion protein between the
HIRMAb and α-L-idorunidase (IDUA) an enzyme missing
in Hurler’s Syndrome, Mucopolysaccharidosis Type I (MSPI),
a disorder of brain lysosomal storage (Boado et al., 2008).
In pre-clinical studies, HIRMAb-IDUA showed good safety,
adequate plasma glucose control, and limited antidrug antibody
production (Boado et al., 2009, 2012). Of great interest are
recent reports describing clinical studies with HIRMAb-IDUA.
In MSPI pediatric and adult patients intravenous infusion of
HIRMAb-IDUA describes the first clinical use of RMT to drug
delivery into the brain (Pardridge et al., 2018). Although some
adverse events reported include reaction at the infusion site, and
transient hypoglycemia, the positive neurocognitive and somatic
effects observed in pediatric patients (Giugliani et al., 2018)
represents a significant advancement on the translational aspects
of RMT.

LDL Receptor
Low-density lipoprotein receptor (LDLR), a single
transmembrane glycoprotein able to recognize LDL particles
and promote their endocytosis, as well as LDLR-related
proteins (LRPs), are present in the BBB and mediate transport
of lipoproteins and other ligands through RMT (Hussain
et al., 1999; Candela et al., 2008; Table 1). Recent in vitro
studies showed that LDLR is preferentially located in apical
rather than basolateral membranes in brain endothelial cells
(Molino et al., 2017) supporting a role for ligand uptake from
the circulation. To date no antibodies have been developed
targeting the LDLR system, however, LDLR and LRP ligands

have been used for drug delivery into the brain. One of
those ligands is melanotransferrin, which displays a greater
rate of brain transport compared to Tf. In spite of structural
homology to Tf, melanotransferrin uses the LDLR and not
the TfR to cross the BBB (Demeule et al., 2002). Interestingly,
recent reports showed melanotrasferrin delivery and in vivo
effectiveness of a fusion protein with an interleukin-1 receptor
antagonist in a model of neuropathic pain (Thom et al., 2018).
Lipoproteins have also been used to target LDLR for effective
brain delivery (Wagner et al., 2012), as described in glioblastoma
cells (Nikanjam et al., 2007). Recent developments include
functionalization of solid nanoparticles with ApoE, these 160 nm
nanoparticles showed efficient clathrin-dependent endocytosis
and transcellular transport in human brain endothelial cells
(Neves et al., 2017). Other targeting members of the LDLR family
include “angiopeps.” For example, Angiopep-2 was identified by
studying a series of 19 amino acid peptides with the ability to
bind the LPR-1 receptor (Demeule et al., 2008). Angiopep-2 was
shown to mediate efficient delivery of a conjugate Angiopep-2-
placlitaxel to gliomas (Thomas et al., 2009), and more recently
antinociceptive properties were demonstrated for an Angiopep-
2-neurotensin fusion protein (Demeule et al., 2014). These
studies provide evidence of successful delivery of therapeutically
relevant agents to the brain via RMT targeting the LDLR
family.

Single Domain Llama Antibodies
Single domain antibodies (sdAbs) are naturally occurring
fragments of the antibody’s heavy chain that lack the light
chain. Among them, sdAbs from camelids specifically FC5 and
FC44 have been studied for brain transcytosis of cargo in
animal models and their potential warrants further developments
(see Table 1). FC5 and FC44 recognize α(2,3)-sialoglycoprotein
expressed in the luminal side of brain endothelial cells
and display advantages over other antibodies such as small
size, greater specificity and stability, and low immunogenicity
(Arbabi-Ghahroudi, 2017).

CONCLUSION

Recent advances using RMT are providing alternatives to
overcome the barrier properties of the BBB and develop more
efficient drug delivery to the brain. Future developments based
the TfR, IR, and LDLR and other RMT systems will offer
new opportunities in this growing field. However, in spite of
clear therapeutic advances shown in animal studies, outstanding
challenges remain for the development of efficient and specific
RMT-based drug delivery. Although the mechanisms mediating
efficient transcytosis through the brain endothelium are still
incompletely understood, details about the specific targeting to
brain endothelial cells are being revealed. Similarly, the limited
brain specific versus systemic drug uptake may explain the lack
of success of some potential therapies in non-human primates
models of brain diseases.

In addition to increasing knowledge about the factors
modulating intracellular trafficking, the generation of
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fusion proteins with RMT-targeting antibodies as well as
functionalization of Nano carriers, an improved understanding
of BBB transport, pharmacokinetics, and protein engineering will
be needed to potentiate the clinical applicability of RMT.
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