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ABSTRACT Quorum sensing (QS) is a mechanism of cell-cell communication that
connects gene expression to environmental conditions (e.g., cell density) in many
bacterial species, mediated by diffusible signal molecules. Current functional studies
focus on qualitatively distinct QS ON/OFF states. In the context of density sensing,
this view led to the adoption of a “quorum” analogy in which populations sense
when they are above a sufficient density (i.e., “quorate”) to efficiently turn on coop-
erative behaviors. This framework overlooks the potential for intermediate, graded
responses to shifts in the environment. In this study, we tracked QS-regulated prote-
ase (lasB) expression and showed that Pseudomonas aeruginosa can deliver a graded
behavioral response to fine-scale variation in population density, on both the popu-
lation and single-cell scales. On the population scale, we saw a graded response to
variation in population density (controlled by culture carrying capacity). On the sin-
gle-cell scale, we saw significant bimodality at higher densities, with separate OFF
and ON subpopulations that responded differentially to changes in density: a static
OFF population of cells and increasing intensity of expression among the ON popu-
lation of cells. Together, these results indicate that QS can tune gene expression to
graded environmental change, with no critical cell mass or “quorum” at which be-
havioral responses are activated on either the individual-cell or population scale. In
an infection context, our results indicate there is not a hard threshold separating a
quorate “attack” mode from a subquorate “stealth” mode.

IMPORTANCE Bacteria can be highly social, controlling collective behaviors via cell-
cell communication mechanisms known as quorum sensing (QS). QS is now a large
research field, yet a basic question remains unanswered: what is the environmental
resolution of QS? The notion of a threshold, or “quorum,” separating coordinated ON
and OFF states is a central dogma in QS, but recent studies have shown heterogene-
ous responses at a single cell scale. Using Pseudomonas aeruginosa, we showed that
populations generate graded responses to environmental variation through shifts in
the proportion of cells responding and the intensity of responses. In an infection
context, our results indicate that there is not a hard threshold separating a quorate
“attack” mode and a subquorate “stealth” mode.

KEYWORDS bacterial communication, quorum sensing, reaction norm,
sociomicrobiology

Many species of bacteria are capable of a form of cell-cell communication via dif-
fusible signal molecules, generally referred to as quorum sensing (QS). The

study of QS has largely focused on the intracellular gene regulatory scale, leading to
a detailed understanding of the regulatory mechanisms shaping the production of
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and response to signal molecules in model organisms such as Vibrio cholerae, Bacillus cer-
eus, and Pseudomonas aeruginosa (1–3). We now understand that QS is mediated by
multiple diffusible signals that together control a diverse array of responses, includ-
ing swarming, luminescence, competence, and the production of diverse secreted
factors (4, 5).

While the molecular mechanisms of QS have been described for model organisms
in remarkable detail, the functional and evolutionary context of QS continues to be dis-
puted. In other words, while we now have a better understanding of how QS works,
we still have limited understanding of why bacteria use this system to control behav-
ior. What are the functions of QS? How do these QS functions help bacteria to survive
and grow? The standard answer is that bacteria use QS to sense when they are at suffi-
cient density (“quorate”) to efficiently turn on cooperative behaviors such as secretion
of toxins and enzymes in order to collectively modify their environment (6–8). Other
researchers have argued that QS is a device to sense the physical environment, where
individual cells produce and monitor signal levels in order to infer their local physical
constraints (am I in an open or enclosed space?) (9). More recently, integration of mo-
lecular and evolutionary approaches has increased the menu of potential functions to
include sensing multiple aspects of both the social and physical environments (6, 10–
12) and coordinating complex social strategies that limit the profitability of noncooper-
ating “cheat” strains (13–22).

A critical step in assessing the various adaptive hypotheses is establishing the
functional capacities and limits of QS. The studies outlined above largely focus on a
dichotomy of QS ON/OFF (or, quorate/subquorate) states, overlooking the potential
for intermediate, graded responses (Fig. 1A). The threshold quorate/subquorate con-
cept has support from mathematical models of QS signal dynamics, which highlight
how positive feedback on the signaling molecule can produce a sharp threshold
response to changes in environmental parameters such as density or diffusion (23,
24). However, the same mathematical models indicate that graded responses are
also possible, dependent on the model parameterization (23, 24). More generally,
Fig. 1A highlights that the phenotypic response of QS bacteria to differing environ-
mental conditions can be viewed as a “reaction norm” (25–28) that can in principle
take differing shapes. Reaction norms describe phenotypic responses of a single

FIG 1 Schematic of potential population and single cell responses to variation in cell density. (A)
Population response (y axis) across discrete carrying capacity environments (N, x axis), given a threshold
(left) or graded response (right). In panels B and C, we outline alternative cell-scale responses (intensity
of green cells) that are consistent with discrete population scale behaviors (yellow arrows). (B) Threshold
(ON/OFF) cellular responses can produce a threshold or graded responses on population scale. (C)
Individual responses can be threshold or graded, which can produce threshold or graded responses on
a population scale.
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genotype (y axis in Fig. 1A) to various environmental inputs (x axis in Fig. 1A).
Incorporating a reaction norm framework provides a menu of quantitative metrics to
define QS responses to environmental variation (e.g., slope, intercept, and variances).
With this reaction norm framework, it is important to emphasize that in our study the x
axis is not time but instead captures a gradient of environmental conditions. Whether
responses are graded or thresholded during the growth toward high density is a separate
line of inquiry (29). Describing the reaction norms of QS cells and populations to contrast-
ing environments is an important step toward understanding the capacities of QS sys-
tems to differentially respond to novel environments.

Whether the population scale reaction norm to environmental variation is threshold-
like or graded (Fig. 1A), a separate issue is how collective population-level responses are
constructed out of individual cellular contributions (Fig. 1B and C). Studies of QS on a
single-cell scale have revealed substantial heterogeneity in responses to QS signals (11,
30–41), highlighting that cell-cell communication does not necessarily result in tight
synchronization of individual-cell activities (Fig. 1B and C). In some systems, heteroge-
neity can be quenched by the addition of extra signal (35, 41), implying a lack of re-
ceptor saturation. However, this is not a universal result (40), indicating that other
molecular processes can drive cellular variation in response. Regardless of the mo-
lecular details, we currently lack a behavioral understanding of how individual cellu-
lar responses vary with changes in the environment.

In the current study, we addressed the canonical “density sensing” function of QS,
using the environmental generalist and opportunistic pathogen Pseudomonas aerugi-
nosa and an unprecedented scale of environmental resolution (13 discrete limiting car-
bon levels conducted in triplicate, generating 39 density environments). QS in
Pseudomonas aeruginosa is heavily studied in a high-density (ON/OFF) context, reveal-
ing a complex mechanism of multisignal control (42–46). Our first challenge was to
map the population scale resolving power of QS to quantitatively discriminate graded
differences in population density (Fig. 1A). Does P. aeruginosa respond in a purely
threshold manner, collapsing quantitative differences in population density into a sim-
ple low/high qualitative output, or can QS allow P. aeruginosa to deliver a graded
response to distinct environmental densities? Our second challenge was to understand
how collective responses are partitioned across individual cells. Are changes in collec-
tive responses governed primarily by changes in the proportion of cells in an ON state
(Fig. 1B), changes in the individual-cell intensity of response (Fig. 1C), or both?

RESULTS
Collective level of response to density is graded and linear. Our first challenge

was to map out the population scale reaction norm of the collective QS-controlled prote-
ase (encoded by lasB) response to variation in population densities. To provide a detailed
picture of the QS response reaction norm to various densities, we grew a QS reporter
strain [PAO1 pMHLAS containing the PlasB::gfp(ASV) reporter construct for QS-regulated
protease expression (47)] under 13 conditions of carbon limitation in triplicate and meas-
ured average fluorescence output per cell as the populations reached carrying capacity
(Fig. 2). Dead cells with compromised membranes were identified with a propidium
iodide stain and excluded from analysis. The range of cell densities generated from this
method was 1 � 108 cells/mL to 2 � 109 cells/mL. Figure 2 shows that QS response was
linear with increasing culture density, providing intermediate levels of average per-capita
response to intermediate densities. To confirm the lack of threshold behavior, we assessed
alternate statistical models including threshold functions and found that a linear-fit model
supports the data better than a step function fit (Akaike information criterion [AIC] linear,
89; AIC step function, 190; relative likelihood that the linear model is the better fit than
step function, .109; see reference 48), supporting a graded population response as out-
lined in Fig. 1. This agrees with literature reporting that QS induction at lower population
densities is possible (6, 7, 11) but differs in that there is no observable population density
at which populations “switch,” or reach quorum, into a responsive state.
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Individual response to density is bimodal at high densities. Figure 2 establishes
that on a collective population scale, the response to environmental variation (in den-
sity) is smoothly graded. Next, we asked how this collective response is built from indi-
vidual cell contributions. Is the graded increase due to more cells turning ON at higher
densities (Fig. 1B), cells turning ON to a greater extent (Fig. 1C), or both? To address
this question, we take the same data presented in Fig. 2 and now present the distribu-
tion of individual cellular responses rather than simply the mean response (Fig. 3).

As expected from prior studies in other QS systems (11, 30, 31, 34–36, 40, 41), plotting
all individual responses within a population showed cell-to-cell variation in QS response
within a single population despite isogenic and homogenous culture conditions (Fig. 3).
In addition, at higher densities, we saw significant bimodality (defined by Hartigan’s dip
test; see Fig. S4 in the supplemental material, with the population segregating into a re-
sponsive ON (“quorate”) state and an unresponsive OFF (“subquorate”) state).

In light of this bimodality, we fit a two-component finite mixture model to the data
(Fig. 4A; see https://github.com/GaTechBrownLab/Rattray-2022 for extended analysis),
which allows us to define the average intensity of the ON state (Fig. 4B) and the propor-
tion of cells in the OFF or ON state (Fig. 4C).

Figure 4B illustrates a graded linear increase in the intensity of the ON state with
increasing environmental density and a density-invariant OFF state. Figure 4C illus-
trates that the proportion of cells that are ON plateaus at around 85% at densities with
consistent support for bimodality (above an optical density at 600 nm [OD600] of 0.36).
At lower densities, the intensity of the ON state (Fig. 4B) declines to a point where the
OFF and ON states are no longer significantly different and the dip test fails to reject
unimodality (Fig. S4). These results depicted in Fig. 4B and C are consistent with a mix
of the cellular threshold and cellular graded models outlined in Fig. 1, with both com-
ponents contributing to the collective response in Fig. 2. In the supplemental material,

FIG 2 Population response to increasing cell density is linear and graded. Thirteen distinct culture
carrying capacities were generated by manipulating the concentration of casein digest as the limiting
resource (Fig. S1). Cells were grown to carrying capacity in triplicate and immediately assayed for
quorum sensing (QS) response via fluorescence microscopy imaging. Response was determined by a
fusion of the quorum sensing-controlled lasB promoter and an unstable green fluorescent protein
[PAO1 pMHLAS containing PlasB::gfp(ASV)]. Individual cell pixel intensity is a measure of cellular QS
response, and average pixel intensity was calculated across all cells in the population as a proxy for
total population expression. Microscopy averages are congruent with population scale plate reader
results (Fig. S2). A QS signal knockout (DlasI DrhlI; yellow star) shows background response with no
signal in the environment. Average population investment in QS increased as culture density
increased, with no observable density threshold (AIC linear, 89; AIC step function, 190).

QS Driven Graded Responses to Population Density mBio

May/June 2022 Volume 13 Issue 3 10.1128/mbio.00745-22 4

https://github.com/GaTechBrownLab/Rattray-2022
https://journals.asm.org/journal/mbio
https://doi.org/10.1128/mbio.00745-22


we present alternate statistical analyses of these data and of other related data sets.
Across other experiments, we found consistent support for the graded and bimodal
response pattern on the single-cell scale across multiple assay time points (Fig. S5) and
across two reporter strain constructs (Fig. S6) and support for the graded and linear
response pattern on the population scale across fluorescent and lux reporters (Fig. S2
and S7). We found further support for the graded population response on the popula-
tion scale across two additional QS-controlled genes (pqsA and rhlI [Fig. S7]).

DISCUSSION

Our results show that populations of P. aeruginosa can respond in a smoothly
graded manner to variations in environmental density (Fig. 2), that populations exhibit
significant bimodality at higher densities (Fig. 3), and that this population scale-graded
response can be described by the number of responsive ON cells and the intensity of
the ON state (Fig. 4). The ability to achieve a graded population scale response implies
in principle that P. aeruginosa can tune collective responses (such as the secreted elas-
tase virulence factor produced by our lasB reporter) to graded environmental changes,
rather than simply course graining into a simple “high/low” dichotomy. A similar popu-
lation scale-graded response to continuous environmental variation is visible in the
data from Allen et al., who looked at variation in the genotypic composition of mixed
populations grown to the same total density (13). As the proportion of wild-type
(PAO1 versus DlasR cheats) increased, the wild-type per-capita investment in coopera-
tive LasB secretions also increased, providing a simple behavioral mechanism to pro-
tect cooperative investments from exploitation by cheats (13, 22).

The existence of graded population scale responses across two continuously various
environmental inputs (density and genotypic composition) raises the question, why use a
graded response? Is there an evolutionary rationale for a graded response, or is a graded

FIG 3 Individual response is heterogenous and bimodal at higher densities. A ridgeline density plot
(bandwidth = 0.435) of single-cell lasB reporter response data shows the distribution of individual-cell
QS expression across the population. For brevity and plotting purposes, carrying capacities were
averaged across 3 replicates for each of the 13 carbon environments before plotting. A full plot of
each independent replicate environment can be found in Fig. S3. Each line summarizes 18,000 to
30,000 individual-cell measurements, scaled to a unit height. Asterisks indicate significant bimodality
(Hartigan’s dip test (71), Fig. S4). The QS signal knockout (DlasI DrhlI) is designated with a yellow box.
A total of 345,000 individual-cell measurements were analyzed.
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increase simply the “best approximation” of a threshold response, given a simple system
working under genetic constraints? Existing evolutionary theory suggests that graded
investment reaction norms can be adaptive under a range of distinct scenarios (49, 50). In
the specific context of quorum-sensing bacteria, evolutionary theory suggests that popu-
lation scale responses to increasing density should depend critically on the shape of the
cost and benefit functions of increasing cooperative investments. Specifically, a graded
response is predicted to be the optimal strategy if the benefit function is decelerating
and costs are linear with increasing investment (51).

To further consider the functional context of the graded reaction norms, we turn to
the single-cell-scale data, which reveal how the graded population response is built
from the contributions of individual cells. In agreement with previous work with multi-
ple quorum-sensing organisms (11, 30–41), we found cell scale heterogeneity. In addi-
tion, our results illustrate how cellular heterogeneity changes with the environment,
demonstrating the onset of ON/OFF bimodality at intermediate densities, with both
the proportion of cells ON and the intensity of the cellular ON states increasing with
increases in culture carrying capacity (Fig. 3 and 4).

The presence of a bimodal QS response is in contrast with the common view of QS as
a mechanism of cell synchronization. Scholz and Greenberg support the synchronization
premise by showing that positive autoregulation synchronizes expression of the signal
synthase gene (lasI) compared to populations with the synthase gene locked on (29). Yet
the study by Scholz and Greenberg, along with many more single-cell QS papers (11, 30–

FIG 4 The proportion of cells responding and level of response varies with density. In light of the bimodal responses in
Fig. 3, we course grained the single-cell lasB response data into discrete ON/OFF states. (A) Method summary. We quantified
distinct ON/OFF states by fitting a two-component finite mixture model at each measured optical density, where the OFF
state was fixed to the OFF state of the highest-density environment. The histogram shows the distribution of cellular
expression levels at a single density treatment (OD600 of 0.76); the gray line is the fitted OFF state, and the green dashed line
is the fitted ON state. (B) The mean intensity of the ON (green circles) and OFF (gray triangles) states was determined from
the means of mixture model component fits (green and gray lines in panel A). The mean intensity of the ON state distribution
increased as culture density increased, while the mean of the OFF state remained constant. (C) The proportion of cells ON in
the population was determined from the relative mass of cells in the model component fits. The proportion ON increased
with culture density but did not reach 100%.
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41), demonstrates substantial heterogeneity across individual wild-type cells, with expres-
sion levels varying over orders of magnitude. Here, we report that cellular heterogeneity
transitions from uni- to bimodal at high densities (Fig. 3). The observation of bimodal cel-
lular responses at high densities is consistent with previous studies that implicitly reveal
bimodal cellular responses (31–33, 40, 41). For example, Darch et al. report distinct popu-
lations of QS-responsive and nonresponsive P. aeruginosa cells within single experimental
runs (32).

In principle, this bimodality could be due to variation in the rate at which cells encoun-
ter signal (extrinsic heterogeneity). However, our culturing parameters (shaken liquid)
were chosen to reduce spatial heterogeneities and are similar to the design of Scholz and
Greenberg (29). Alternatively, this bimodality could be due to heterogeneity in individual-
cell response thresholds to a homogenous signal environment (intrinsic heterogeneity).
The existence of heterogeneous response thresholds is also consistent with experimental
studies documenting that signal supplementation can induce QS responses in some, but
not all, cells (35, 41). Previous research on bimodal gene expression points to a number of
regulatory features that are at play in the effector lasB, specifically multiple transcription
factor binding sites and positive-feedback loops (52).

On an evolutionary scale, cellular heterogeneity is an evolvable trait that can in theory
buffer populations against fluctuating environments (bet hedging) and/or provide bene-
fits of specialization (division of labor) (53, 54). Recently, the presence of heterogeneous
QS response at the single-cell scale has been ascribed to a potential bet hedge against
rapidly changing environments where QS could shift from a beneficial to a nonbeneficial
behavior (38), suggesting that our OFF cells were poised to more quickly resume growth
in the event of a rapid return to a growth-friendly environment.

We made a number of specific observational choices in order to conduct our experi-
ment that could have shaped our results in ways that are not generalizable to other con-
texts. In the supplemental material, we detail a number of additional experiments (and
alternate statistical analysis approaches https://github.com/GaTechBrownLab/Rattray
-2022) that collectively illustrate the robustness of our findings. In brief, we found that
our single-cell results were not sensitive to the time the population was sampled (Fig. S5),
the presence of a potentially leaky Plac::lasR on the pMHLAS construct (Fig. S6), or the
plasmid nature of the pMHLAS construct (55, Fig. S6). Additionally, we recognize that lasB
is only one gene out of hundreds that are controlled by QS (3) and is often coregulated
by other factors (56–58). We chose to initially focus on lasB because it is a traditionally
studied QS-controlled trait (59–61), it is under multisignal control (12, 42) and has clini-
cal significance as a virulence factor (62, 63). To begin to address the generality of our
results across genes in P. aeruginosa, we show that two other QS-regulated genes with
complex promoters, pqsA and rhlI, also support a graded population response (Fig. S7).
It remains to be seen whether the graded responses we report here are consistent
across all QS-controlled genes in P. aeruginosa and across QS systems in other species.

A recent transcriptomic analysis of clinical versus in vitro gene expression in P. aeru-
ginosa called into question the clinical relevance of in vitro models of QS, reporting
that QS activity (including lasB expression) was systematically higher in in vitro models
(64). Our results provide a simple interpretation of this difference: in vitro models are
typically conducted under higher experimental densities, resulting in higher levels of
average QS gene expression (Fig. 2). Consistent with this graded response interpreta-
tion, Cornforth et al. (64) also reported higher levels of relative expression in in vitro
biofilm models (close-packed cells, the highest local density achievable) than in in vitro
planktonic models.

In summary, our results provide a finely resolved mapping of the QS reaction norm
to environmental density in PAO1, on both the collective and single-cell scales. On the
population scale, we saw a graded linear response across a range of cellular densities
(1 � 108 cells/mL to 2 � 109 cells/mL) and significant individual-scale bimodality at
higher densities. We further resolved this linear population response (Fig. 2) into a
combination of the likelihood of being responsive and the intensity of response
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(Fig. 4). In an infection context, our results indicate that there is no hard threshold sep-
arating a subquorate “stealth” mode and a quorate “attack”mode (65). One implication
is that attempts to control virulence and biofilm expression in medicine and industry
via QS inhibition could have impacts across a wider spectrum of population densities.
In this applied context, it is important to assess the generality of our results and ask,
how do QS reaction norms vary across strains and species of QS bacteria? How do they
vary across environments? More broadly, our work undermines the threshold concept
of a “quorum,” instead placing QS bacteria in the graded world of reaction norms.

MATERIALS ANDMETHODS
Bacterial strains and growth conditions. The two main bacterial strains used in this study were

P. aeruginosa NPAO1 (Nottingham-PAO1) containing the PlasB::gfp(ASV) quorum sensing reporter pMHLAS
(47) and a double signal synthase mutant incapable of producing QS signal molecules, P. aeruginosa
NPAO1 DlasI DrhlI containing the same PlasB::gfp(ASV) quorum sensing reporter, pMHLAS. A complete ta-
ble of strains used can be found in Table S1. Overnight cultures were grown in lysogeny broth (LB) supple-
mented with 50 mg/mL gentamicin to maintain the pMHLAS plasmid, with shaking at 37°C. Experiments
were conducted in lightly buffered (50 mM 3-(N-morpholino)propanesulfonic acid [MOPS]) M9 minimal
defined media composed of an autoclaved basal salts solution (Na2HPO4, 6.8 g L21; KH2PO4, 3.0 g L21;
NaCl, 0.5 g L21) and filter-sterilized 1 mM MgSO4, 100 mM CaCl2, and 1� Hutner’s trace elements with
casein digest as the sole carbon source (Thermo Fisher Difco casein digest; catalog no. 211610).

Controlling culture carrying capacity.We manipulated density by controlling the limiting resource
in the media, carbon, allowing us to tune the carrying capacity of each treatment (Fig. S1). To cover a va-
riety of densities, we generated a carbon range between 0.05% and 0.25% via dilutions of a 0.5% carbon
minimal medium stock for a total of 13 different carrying capacities with three replicates each. This pro-
duced a range of densities environments from 1.18 � 108 cells/mL to 2.02 � 109 cells/mL. Overnight cul-
tures were grown in LB with gentamicin at 50 mg/mL and centrifuged at 8,500 � g for 2 min. The cells
were then washed twice with carbonless minimal medium, and then each carbon treatment was
adjusted to an OD600 of 0.05. Then, 200 mL of each sample was added to a 96-well microplate. Plates
were incubated with shaking at 37°C in a Cytation/BioSpa plate reader, and growth curves were gener-
ated by absorbance (OD600) readings taken at 30-min intervals.

Measuring population QS response. To measure population response, we performed growth curve
experiments as previously described using PAO1 PlasB::gfp(ASV), additionally taking fluorescence read-
ings at 30-min intervals. Fluorescence was recorded when populations reached the end of their expo-
nential growth phase, before they entered stationary phase. Background fluorescence of the reporter
was determined with the QS signal-deficient mutant PAO1 DlasI DrhlI PlasB::gfp(ASV). The population
microplate data (Fig. S2) and averaged microscope data (Fig. 2) agreed, so the latter are provided in the
primary text.

Measuring individual QS response. To measure individual response, we performed growth curve
experiments as described above but removed samples for microscopy once cells reached end exponen-
tial phase. Since we controlled carrying capacity with the amount of carbon, the exact time that cells
reached the end of exponential growth differed across treatments by 2 to 3 h. To robustly sample cul-
tures at this specific point, the slope of the two most recent time points on the growth curve was moni-
tored and samples were taken as the slope approached 0. Replicate wells were kept growing to confirm
that the treatment entered stationary phase right after the sampling time point. We also determined
that our results are generalizable even when sampling at a predetermined hour across concentrations
(Fig. S5). Samples were stained with propidium iodide to differentiate between live and dead cells, and a
small aliquot (5 mL) was added to a 0.01% poly-L-lysine-coated slide to immobilize cells and immediately
imaged to avoid changes in expression between sample acquisition and imaging in the dark on a Nikon
Eclipse TI inverted microscope at a magnification of �20. Live-cell fluorescence microscopy was used for
this study, as fluorophores can be sensitive to fixation/permeabilization. These techniques can result in a
decrease in fluorescence and therefore decrease in the observable dynamic range. Bright-field, green
fluorescence (20% Lumencor light engine power, 200-ms exposure, and 64� gain [sufficient for imaging
of low-fluorescence cells without saturating pixel intensity]), and red fluorescence (20% Lumencor light
engine power, 800-ms exposure, and 64� gain) channels were captured. Between 5,000 and 15,000
individual cells were captured for each sample. Aliquots were diluted immediately before imaging with
carbonless minimal medium when required to ensure an even distribution of cells.

Single-cell image analysis. A custom macro in ImageJ was written to analyze the image data, out-
lined in Fig. S8. The macro uses ImageJ’s “analyze particles” command to identify single cells on the
bright-field image. This generated a region of interest (ROI) for each individual cell, and these ROIs were
overlaid onto the corresponding fluorescent image. The red fluorescence channel was used to identify
dead cells with compromised membranes, which were excluded from further analysis. The green fluores-
cence channel reflected the QS reporter, and pixel intensity was measured as a proxy for level of QS
response. This tabulated live cell expression data was then analyzed using Stata statistical software
release 17 from StataCorp LLC. In order to improve the fit of the mixed models, the lowest pixel intensity
measurement in the highest-carbon PAO1 DlasI DrhlI PlasB::gfp(ASV) treatment was subtracted from all
pixel intensities so that expression started at 0.
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Statistical-analysis summary. The analysis was done using Stata statistical software release 17 from
StataCorp LLC and the additional third-party resources (66–70). Each of the 39 populations was fit to a fi-
nite mixture model of two gamma distributions. The latent classes in the mixture model correspond to
OFF and ON cells. Gamma distributions are preferred to normal distributions, as gene expression is
strictly nonnegative and necessarily right skewed. The models provide maximum likelihood estimates of
the proportion of cells in each latent class and the shape and scale parameters of the component
gamma distributions. Mean expression level for each distribution is the product of shape and scale pa-
rameters. Information criteria for aggregate mean expression level were also calculated using Stata. The
analysis supplement is hosted at https://github.com/GaTechBrownLab/Rattray-2022.
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