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Abstract
Background and aim: Multimodal large language models (LLMs) have shown potential in 
processing both text and image data for clinical applications. This study evaluated their 
diagnostic performance in identifying retinal diseases from optical coherence tomography 
(OCT) images.
Methods: We assessed the diagnostic accuracy of GPT-4o and Claude Sonnet 3.5 using two 
public OCT datasets (OCTID, OCTDL) containing expert-labeled images of four pathological 
conditions and normal retinas. Both models were tested using single-shot and few-shot 
prompts, with an overall of 3088 models’ API calls. Statistical analyses were performed to 
evaluate differences in overall and condition-specific performance.
Results: GPT-4o’s accuracy improved from 56.29% with single-shot prompts to 73.08% with 
few-shot prompts (p < 0.001). Similarly, Claude Sonnet 3.5 increased from 40.03% to 70.98% 
using the same approach (p < 0.001). Condition-specific analyses revealed similar trends, with 
absolute improvements ranging from 2% to 64%. These findings were consistent across the 
validation dataset.
Conclusion: Few-shot prompted multimodal LLMs show promise for clinical integration, 
particularly in identifying normal retinas, which could help streamline referral processes in 
primary care. While these models fall short of the diagnostic accuracy reported in established 
deep learning literature, they offer simple, effective tools for assisting in routine retinal 
disease diagnosis. Future research should focus on further validation and integrating clinical 
text data with imaging.
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Plain language summary 

LLMs in retinal disease detection

This study explores the use of multimodal large language models (LLMs), such as 
GPT-4o and Claude Sonnet 3.5, to aid in diagnosing retinal diseases from OCT (optical 
coherence tomography) images. Unlike traditional deep learning models, which require 
large datasets and complex setups, multimodal LLMs are easier to implement and can 
process both image and clinical text data, potentially simplifying workflows in primary 
care. We tested single-shot prompts (no reference images) and few-shot prompts (with 
reference images) using publicly available OCT datasets. Both models demonstrated 
improved accuracy with few-shot prompts: GPT-4o’s accuracy increased from 56% to 73%, 
while Claude Sonnet’s rose from 40% to 71%. These gains were especially noticeable in 
identifying normal retinas, highlighting the potential for multimodal LLMs to support initial 
screenings and prioritize cases needing specialist care. While deep learning models still 
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Introduction
In ophthalmology, AI has shown promise in ana-
lyzing imaging data for conditions such as age-
related macular degeneration (AMD), diabetic 
retinopathy (DR), and other retinal diseases.1–3 
Recently, multimodal large language models 
(LLMs) have gained attention for their capabil-
ity to process both textual and visual data, which 
are essential for interpreting medical images 
alongside clinical information.4 These systems 
hold the potential to enhance diagnostic accu-
racy in a range of image-based tasks within 
ophthalmology.5

Retinal diseases, such as AMD, DR, and central 
serous retinopathy (CSR), are common condi-
tions requiring timely and accurate diagnosis.6,7 
Typically, the diagnostic process involves detailed 
examination by ophthalmologists, using optical 
coherence tomography (OCT) to capture high-
resolution cross-sectional images of the retina.6 
OCT is highly efficient in diagnosing and moni-
toring these conditions, allowing precise visuali-
zation of retinal layers and pathologies.6 However, 
interpreting OCT images demands specialized 
expertise and can be time-consuming given the 
increasing patient load in ophthalmic clinics.6 
Deep learning models have already proven highly 
effective in diagnosing retinal diseases using OCT 
images, achieving expert-level accuracy and high 
diagnostic performance with area under the 
receiver operating characteristic curve (AUROC) 
values over 93% in large datasets.8,9

While deep learning models have shown high 
diagnostic accuracy, multimodal LLMs present a 
distinct advantage. They are easier to use, require 
no complex software setups, support zero-shot 
and few-shot learning, and seamlessly integrate 
textual and visual data.10,11 These models could 
streamline the diagnostic workflow by analyzing 
OCT images alongside clinical notes, offering 

diagnostic suggestions that could assist primary 
care providers in making initial assessments. This 
approach can potentially reduce the burden on 
ophthalmologists, allowing for more efficient 
referrals and enabling quicker access to special-
ized care for patients with retinal diseases.

“Few-shot” learning is a key technique that has 
been shown to significantly improve the perfor-
mance of LLMs.12 In a few-shot prompts for 
vision-based tasks, the model is provided with 
example images from specific disease categories, 
allowing it to learn and refine its diagnostic capa-
bility based on visual references.12,13 This 
approach has proven to enhance the accuracy of 
LLMs, especially in complex multimodal tasks 
like image interpretation.14

This study evaluates the diagnostic performance 
of state-of-the-art multimodal LLMs in classify-
ing retinal diseases from OCT images. We com-
pare “single-shot” and “few-shot” prompts in this 
task. The focus is on assessing overall and condi-
tion-specific accuracy against expert ophthalmol-
ogist diagnoses.

Materials and methods

Study design and dataset
This study evaluated the diagnostic performance 
of two multimodal LLMs—OpenAI’s GPT-4o 
and Anthropic’s Claude Sonnet 3.5—in diagnos-
ing retinal diseases using OCT images (Figure 1).

The study utilized the publicly available OCTID 
dataset, which contains labeled images of various 
retinal pathologies, including age-related macular 
degeneration (AMD), diabetic retinopathy (DR), 
central serous retinopathy (CSR), and macular 
hole (MH). The ground truth labels for these 
conditions were provided by expert retinal 

outperform LLMs in diagnostic accuracy, the simplicity and versatility of multimodal LLMs 
make them promising tools for primary care. Future studies should focus on integrating 
these models with more clinical text data to better support early diagnosis and streamline 
referrals for retinal diseases in diverse clinical settings.

Keywords: large language models (LLMs), multimodal AI, OCT, prompt engineering, retinal 
diseases
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specialists. The dataset consists of 572 OCT 
images: 55 AMD, 107 DR, 102 CSR, 102 MH, 
and 206 normal images, with normal images used 
for comparison.15

Validation: In addition to the OCTID dataset, we 
performed a validation step using a random sam-
ple of 200 images from the Optical Coherence 
Tomography Dataset for Image-Based Deep 
Learning Methods (OCTDL). This validation 
dataset consists of images labeled according to 
disease group and retinal pathology. For this study, 
67 images of diabetic macular edema (DME), 67 
images of AMD, and 66 normal images were ran-
domly selected for validation.16 The selection pro-
cess ensured random sampling from each category 
to maintain a balanced representation.

Model prompts and prompt engineering
To assess the diagnostic accuracy of each model, 
two types of prompts were utilized:

Single-shot Prompt: The models received structured 
instructions to classify each OCT image into one of 
the specified retinal conditions. For the OCTID 
dataset, the models were asked to categorize the 
images into one of five conditions: AMD, DR, CSR, 
MH, or normal. For the validation dataset, the 
models were asked to categorize the images into one 
of three conditions: AMD, DME, or normal.

Few-shot Prompt: The models were provided with 
reference images from each condition category—
selected by expert ophthalmologists—alongside the 

instructions. For the OCTID dataset, reference 
images for each of the five conditions (AMD, DR, 
CSR, MH, and normal) were included. For the vali-
dation dataset, reference images for three conditions 
(AMD, DME, and normal) were provided. We 
adopted this approach because the literature shows 
that providing examples helps the model recognize 
critical features more accurately, particularly when 
training data are limited.17,18 This also simulates 
clinical practice, where physicians often refer to 
known cases when diagnosing new patients.

Both prompts were designed to mimic real-world 
diagnostic scenarios in ophthalmology. The  
full-prompt text and the reference images used  
in the few-shot approach are provided in the 
Supplemental Materials Section 1.

Infrastructure
The LLMs were implemented using Python (ver-
sion 3.9). GPT-4o was accessed via the OpenAI 
application programming interface (API) using 
the completions.create function, while Claude 
Sonnet 3.5 was accessed via the Anthropic API 
using the messages.create function. Each OCT 
image was base64-encoded before being sent to 
the models through the respective APIs.

To ensure anonymity and randomization, the 
names of the OCT images’ files were anonymized 
in the code prior to entry into the models, and the 
order of images was randomized to prevent any 
condition-specific ordering or bias. The images 

Figure 1. A flowchart summarizing the study’s design.
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were entered consecutively, meaning images of 
different conditions (AMD, DR, CSR, MH, and 
normal OCT images) were mixed and not ana-
lyzed by condition-specific batches.

Each OCT image was classified twice by both 
models—once using the single-shot prompt and 
once using the few-shot prompt. A total of 3088 
API calls were made across both models.

Statistical analysis
We calculated the means and 95% confidence 
intervals (CI) of the correct diagnoses for each 
model (GPT-4o and Claude Sonnet 3.5) com-
pared to the ground truth for all conditions. 
Additionally, we computed the overall perfor-
mance of each model, combining the results of 
the single-shot and few-shot iterations. To assess 
whether the few-shot learning approach led to 
significant improvements over the single-shot 
approach, we performed paired t-tests for each 
model (GPT and Claude), both in general and 
within each specific condition (AMD, DR, CSR, 
and MH).

Furthermore, we evaluated the performance of 
the models on the validation dataset (OCTDL) 
and compared it to the original dataset (OCTID). 

Statistical analyses were conducted to check for 
significant differences in diagnostic accuracy 
between the two datasets, for each model and 
across both single-shot and few-shot iterations. 
This allowed us to assess the generalizability of the 
model’s performance when applied to different 
datasets. Statistical significance was set at p < 0.05, 
and all tests were two-sided. We used R software 
(USA) (version 4.1.2) for the statistical analysis. 

Results

Overall performance between single-shot and 
few-shot prompts
The overall performance of the models was evalu-
ated by comparing the mean correct diagnoses 
across all cases. For GPT, the mean accuracy for 
single-shot prompts was 56.29% (CI: 52.22%–
60.37%), while for few-shot prompts, the mean 
accuracy was 73.08% (CI: 69.43%–76.72%). For 
Claude, the single-shot performance was lower, 
with a mean accuracy of 40.03% (CI: 36.01%–
44.06%), and the few-shot performance reached 
a mean of 70.98% (CI: 67.25%–74.71%). Both 
models showed a statistically significant improve-
ment in performance from single-shot to few-shot 
prompts (p < 0.001 for both GPT and Claude, 
Figure 2).

Figure 2. Diagnostic accuracy between single and few shot prompts for the two models overall.
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Condition-specific performance comparison 
between few and single-shot prompts
For individual conditions, both GPT and Claude 
demonstrated performance improvements between 
single-shot and few-shot learning scenarios, as 
shown in Table 1. For AMD, GPT’s accuracy 
improved by 29.09% (p < 0.001), and Claude’s 
accuracy improved by 34.55% (p < 0.001). For 
CSR, GPT showed a performance gain of 29.41% 
(p < 0.001), while Claude’s accuracy decreased by 
15.69% (p = 0.005). In DR cases, GPT’s accuracy 
increased by 34.58% (p < 0.001), and although 
Claude had no correct diagnoses in the single-shot 
setting, its performance in the few-shot scenario 
was significant (p < 0.001). For MH, GPT 
improved by 8.83% (p = 0.006), while Claude 
improved by 18.63% (p < 0.001). In the normal 
cases, GPT showed no significant change 
(p = 0.547), while Claude’s improvement was 
highly significant, with a 64.08% increase in cor-
rect diagnoses (p < 0.001; Figure 3).

GPT-4o versus Sonnet 3.5 overall performance 
across single-shot and few-shot prompts 
performance
The overall performance of GPT across both few-
shot and single-shot conditions was 64.69% (CI: 
61.45%–67.92%), while Claude’s overall perfor-
mance was 55.51% (CI: 52.39%–58.63%). A 
paired t-test comparing the overall performance of 
GPT and Claude showed a significant difference, 
with GPT outperforming Claude (p < 0.001).

Validation dataset
In the validation dataset, the overall and condi-
tion-specific performances for both models 
improved significantly with few-shot prompts 
compared to single-shot prompts (Tables S1 and 
S2 in the Supplemental Materials, Section 2). 
The improvements ranged from 23.4% to 51.5% 
for GPT-4o, and from 22.5% to 56.3% for 
Claude Sonnet 3.5, with all differences statisti-
cally significant except for Claude in DME 
(p = 0.118; Figure 4).

When comparing the test and validation datasets, 
GPT-4o showed a 2.7% decrease in overall accu-
racy in the validation dataset (64.7% in the test 
set vs 62.0% in the validation, p = 0.048). The 
single-shot performance of GPT-4o dropped by 
3.8% (56.3% vs 52.5%, p = 0.042), while the few-
shot performance showed a 1.6% decrease 
(73.1% vs 71.5%, p = 0.065). For Claude Sonnet 
3.5, the overall performance improved by 6% in 
the validation dataset (55.5% in the test set vs 
61.5%, p = 0.032). The single-shot accuracy for 
Claude increased by 8% (40.0% vs 48.0%, 
p = 0.023), and the few-shot accuracy improved 
by 4% (71.0% vs 75.0%, p = 0.039; Table S3 in 
the Supplemental Materials, Section 3).

Discussion
This study evaluated the diagnostic performance 
of multimodal LLMs, GPT-4o, and Claude Sonnet 
3.5, in interpreting retinal OCT images. The 

Table 1. Models performance and improvement across prompts and conditions.

Condition Model Single-shot performance (CI) Few-shot performance (CI) Improvement (%) p-Value

AMD GPT 18.18% (7.66%, 28.70%) 47.27% (33.65%, 60.89%) 29.09% <0.001

Claude 29.09% (16.70%, 41.48%) 63.64% (50.51%, 76.76%) 34.55% <0.001

CSR GPT 45.10% (35.28%, 54.92%) 74.51% (65.91%, 83.11%) 29.41% <0.001

Claude 65.69% (56.32%, 75.06%) 50.00% (40.13%, 59.87%) −15.69% 0.005

DR GPT 15.89% (8.85%, 22.93%) 50.47% (40.84%, 60.10%) 34.58% <0.001

Claude 0.00% 21.50% (13.58%, 29.41%) 21.50% <0.001

MH GPT 83.33% (75.98%, 90.69%) 92.16% (86.85%, 97.46%) 8.83% 0.006

Claude 70.59% (61.59%, 79.58%) 89.22% (83.09%, 95.34%) 18.63% <0.001

Normal GPT 79.61% (74.06%, 85.16%) 81.55% (76.21%, 86.89%) 1.94% 0.547

Claude 35.92% (29.32%, 42.53%) 100.00% 64.08% <0.001
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results demonstrated a significant improvement in 
diagnostic accuracy when using few-shot prompts 
compared to single-shot prompts, with both mod-
els showing consistent performance gains across 

most retinal conditions in two datasets. The effect 
of using reference images was crucial in enhancing 
model accuracy, highlighting its value in multi-
modal medical image analysis tasks.

Figure 3. A visual representation of the models’ performances across the prompts and conditions.

Figure 4. Performance in the validation dataset.
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GPT-4o’s overall accuracy improved by an aver-
age of 16.79%, reaching an accuracy of 73%, with 
the highest gains seen in DR (34.58%). Claude 
Sonnet 3.5 demonstrated similar benefits, achiev-
ing a notable 64.08% increase in accuracy for 
identifying normal retinas, bringing its overall 
accuracy to 70.98%. While Claude’s performance 
dipped slightly in CSR, the improvement across 
other conditions remained robust. These findings 
highlight how few-shot prompts, leveraging visual 
context, significantly enhance model accuracy, 
particularly in complex cases such as AMD and 
DR. This consistent trend not only highlights the 
capabilities of LLMs in diagnosing OCT images 
with a reasonable degree of accuracy but also 
underscores the significant impact of prompt engi-
neering in enhancing the diagnostic performance 
of multimodal LLMs. These findings align with 
our previous work, where few-shot prompts with 
reference images improved LLM diagnostic accu-
racy in glaucoma detection via fundus images. 
There, GPT-4o’s accuracy increased by 39.8% 
and Claude Sonnet 3.5’s by 64.2% (14), further 
demonstrating how prompt engineering consist-
ently enhances multimodal LLM performance.

Although the accuracy of multimodal LLMs is 
promising, it falls short compared to the high 
accuracy typically reported for deep learning 
(DL)-based models. In our study, a few-shot 
GPT-4o achieved an accuracy of 73.08%, and 
Claude Sonnet 3.5 reached 70.98%, which is 
below the 91% to 99% accuracy range often 
reported in DL models for retinal diseases.19–22 
Studies like those by Leandro et  al. and 
Rajagopalan et al. reported accuracies exceeding 
97% for conditions such as DME and AMD, 
highlighting the robustness of DL models, which 
are optimized for image classification using large 
datasets.21,22 However, one aspect where our few-
shot LLMs show competitive results is in identify-
ing normal retinas. Claude Sonnet 3.5, particularly 
in the few-shot setting, demonstrated high accu-
racy in recognizing healthy retinas, comparable to 
the 93% to 99% range seen in DL studies like 
Leandro et al.’s work.22 This suggests that a few-
shot LLMs could be effectively utilized for initial 
screening of normal retinal cases, potentially 
streamlining the diagnostic workflow by efficiently 
ruling out healthy cases in primary care settings.

Additionally, other few-shot approaches have 
shown some promising results in addressing  
data scarcity for rare retinal diseases. Yoo et  al. 

demonstrated that a generative adversarial net-
work (GAN)-based few-shot learning strategy 
could improve deep learning in diagnosing rare 
pathologies from OCT images, underscoring the 
adaptability of few-shot methods to limited data-
sets.23 Yet, the potential of multimodal LLMs to 
integrate imaging with clinical decision-making 
extends beyond retinal diseases. Choi et al. illus-
trated how GPT-4 could calculate safety indica-
tors and predict contraindications for laser vision 
correction by processing unstructured ocular 
data, further showcasing the versatility of multi-
modal LLMs in ophthalmic practice.18

LLMs offer additional distinct advantages, par-
ticularly their multimodal capabilities and ease of 
use. Unlike deep learning models, which require 
sophisticated software and large datasets,24 LLMs 
like GPT-4o and Claude Sonnet 3.5 can be easily 
deployed in clinical environments without exten-
sive setup.11,25 Their ability to process both clini-
cal notes and visual data, such as intraocular 
pressure, fundus images, OCT scans, and visual 
field results, could streamline workflows in pri-
mary care. This support can help general practi-
tioners with diagnostic decisions and enable faster 
referrals to specialists, particularly valuable in 
resource-limited settings with limited access to 
ophthalmologists.

Based on our results, multimodal LLMs could 
assist in clinical settings, particularly in identify-
ing normal optic nerve with high accuracy, which 
could streamline referrals and reduce the work-
load on ophthalmologists.26 This would allow 
specialists to focus on more complex cases. 
However, while the improvements from prompt 
engineering are promising, they also highlight the 
importance of effective interaction with these 
models. Future healthcare providers may need 
training on how to craft prompts to maximize the 
diagnostic potential of LLMs and integrate them 
into clinical workflows efficiently.27

This study has limitations. Although we used two 
datasets with anonymized file names for both 
testing and validation, we were unable to perform 
direct comparisons across all specific conditions, 
as the validation dataset did not include the same 
five retinal conditions.15,16 Additionally, some of 
the images in the datasets may have been part  
of the models’ original training, which could  
have influenced performance. Finally, our analy-
sis focused solely on imaging, whereas clinical 
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practice typically involves integrating imaging 
with clinical data.7 Future work should focus on 
better integration of clinical and imaging data for  
more comprehensive testing and performance 
refinement.

In conclusion, the promising results of few-shot 
prompted multimodal LLMs suggest they could 
be integrated into clinical practice to streamline 
and ease the diagnostic process, particularly in 
primary care settings. While these models still fall 
short in diagnostic accuracy compared to deep 
learning techniques, their simplicity and ease of 
use offer practical solutions for assisting in rou-
tine retinal disease diagnoses. Future research 
should focus on further testing and validation of 
these models, including fine-tuning, while also 
exploring the integration of clinical text data with 
imaging to enhance their diagnostic capabilities 
and potential clinical utility.
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