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Abstract: Metabolomics, as a new omics technology, has been widely accepted by researchers and has
shown great potential in the field of nutrition and health in recent years. This review briefly introduces
the process of metabolomics analysis, including sample preparation and extraction, derivatization,
separation and detection, and data processing. This paper focuses on the application of metabolomics
in food-derived bioactive ingredients. For example, metabolomics techniques are used to analyze
metabolites in food to find bioactive substances or new metabolites in food materials. Moreover,
bioactive substances have been tested in vitro and in vivo, as well as in humans, to investigate the
changes of metabolites and the underlying metabolic pathways, among which metabolomics is used
to find potential biomarkers and targets. Metabolomics provides a new approach for the prevention
and regulation of chronic diseases and the study of the underlying mechanisms. It also provides
strong support for the development of functional food or drugs. Although metabolomics has some
limitations such as low sensitivity, poor repeatability, and limited detection range, it is developing
rapidly in general, and also in the field of nutrition and health. At the end of this paper, we put
forward our own insights on the development prospects of metabolomics in the application of
bioactive ingredients in food.
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1. Introduction

The concept of metabolomics was proposed by Professor Jeremy Nicholsonrst for the
first time in 1999, following proteomics, transcriptomics, genomics, and lipidomics [1,2].
It has become an important technology in the field of system biology since then [3].
Metabolomics mainly refers to the detection or identification of small molecules of cell
metabolism at specific time or under specific conditions. These small molecules are collec-
tively referred to as metabolites, including all the compounds produced or consumed by a
metabolic process, such as amino acids, sugars, lipids, and organic acids [3,4]. There are
two analysis methods, targeted metabolomics and non-targeted metabolomics [5]. Targeted
metabolomics analysis is the identification and quantitative analysis of metabolites after
selective extraction and purification, and the number of analyzed metabolites is relatively
small [6]. Targeted metabolomics is generally used when it is necessary to determine
changes in the content of one or more metabolites [7]. Non-targeted metabolomics analysis
mainly focuses on the detection of more metabolites, which is conducive to the determina-
tion of new metabolites [6,8]. For example, untargeted metabolomics can be used to explore
the possible presence of new metabolites [7].

Metabolomics has shown great development potential in food, medicine, nutrition,
and other fields. It is widely used in the field of food, for the detection of metabolites
in plants, cells or tissues, biological liquids, and other biological samples [9]. At present,
metabolomics has been applied in food safety, food quality control, food traceability, food
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processing, food nutrition, health, and other areas [10–12]. Due to the large variety of
chemical components of metabolites in food, current techniques can only detect a small
amount of the metabolites, and the technologies for metabolomics analysis need to be
further developed.

Techniques used for metabolomics analysis generally includes liquid chromatography-
mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS), and nuclear
magnetic resonance spectroscopy (NMR) [13]. In recent years, the application of these tech-
nologies in food metabolomics is increasing, although there were drops since 2020 which
was probably due to coronavirus (COVID-19) (Figure 1). These techniques have their own
advantages and disadvantages for the metabolomics analysis of different substances. GC-
MS and LC-MS are very sensitive and used more and more for metabolomics analysis [14].
MS is used to detect complex samples after separation and extraction. However, MS detec-
tion is selective to the polarity and volatile properties of the compounds and is destructive
in the analysis of living samples. NMR is used to investigate metabolites at the atomic level,
and it mainly includes hydrogen spectrum (1H NMR), phosphorus spectrum (31P NMR),
and carbon spectrum (13C NMR) [13]. Heteronuclear NMR is widely studied, but it has
many limitations compared to 1H NMR. For example, 31P NMR is mainly used for the mea-
surement of phosphorus-containing metabolites, such as ATP, NADP, and GTP [15–17], and
15N NMR is mainly used for the measurement of nitrogenous metabolites, such as protein,
DNA, and RNA [16,17], while 13C labeled NMR is mainly used for the determination of
downstream metabolites in the study of cellular metabolites [18]. These isotope-enhanced
NMR spectra can be used to assist in expanding the coverage of metabolites; however, the
sensitivity is relatively low and the cost is really high [19]. Therefore, 1H NMR is the most
widely NMR used in metabolomics at present, but the combination of heteronuclear NMR
with other techniques may be a potential application direction. Metabolomics approach
based on NMR spectroscopy is fast, simple, automatic and reproducible, and non-invasive,
but its detection sensitivity is low, so a large sample size of >1 µM concentration should be
guaranteed for the accuracy of the experiment [20,21]. At present, NMR is paid attention
to in the identification of new metabolites and the analysis of metabolites flux in living
cells [13]. NMR is still mainly used in the detection of metabolic components in living
samples such as cells to protect samples and it is the best choice for real-time metabolic
flux analysis [22]. In short, MS has been applied more and more in recent years because of
its high sensitivity and its combination with chromatography, while NMR is still popular
among researchers due to its overall efficiency and high throughput detection. In order
to obtain realistic and accurate results, more and more researchers combine NMR with
GC-MS and LC-MS to improve the accuracy of the studies.
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This paper reviews the application of metabolomics in the area of food nutrition and
health and reveals the health effects of food-derived bioactive ingredients. It provides a
new perspective for the research and development of functional food and the treatment of
chronic diseases.
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2. Process of Metabolomics Analysis

There are a variety of compounds in the metabolome, but there is still no good
technology which can identify the components of these compounds fully and effectively
at present. Metabolomics, as an important part of life science and biological system, has
made significant contributions to the bioactive ingredients in food and their health effects
on human beings through the analysis of changes in the metabolites [10]. Metabolomics is
used to separate and identify small molecules in blood, urine, feces, cells, culture media, or
food ingredients, and to study the related pathways [23]. The molecular weights of these
small molecules are generally under 1000 Da [3].

The procedure of metabolomics analysis mainly involves the following steps: sample
preparation, metabolite extraction, derivatization, separation and detection, and data
processing (as shown in Figure 2) [3]. Small changes in any of these steps may have a
significant impact on the final results.
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2.1. Sample Preparation

Sample preparation is the first step in metabolomics study. The quality of the prepared
samples is the key to the success of metabolomics analysis, so it is very important to choose
the appropriate preparation method for different samples.

The preparation methods are different for samples of various sources [24]. Keep-
ing metabolite compositions of the original samples unchanged as much as possible and
finding a suitable detection technology platform are two main problems in sample prepara-
tion. After the pretreatment of samples, choosing a suitable detection method can make
the detection results have better repeatability and extraction efficiency [25]. For exam-
ple, 4-chlorophenylalanine can be used to normalize the sample before GC-MS based
metabolomics treatment to improve the extraction accuracy and efficiency [25]. Before the
LC-MS based metabolomics sample is processed, the metabolites can be divided into differ-
ent components by the mixed mode solid phase extraction method, and the appropriate
column is selected to analyze the sample to improve the detection range of metabolites [26].
Methanol extraction can improve the quality of NMR spectra [27]. With the optimization of
pretreatment technology, some special sample preparation methods have also been pro-
posed. Solid phase microextraction (SPME) is widely accepted as a non-destructive method
for the preparation of liquid samples [28]. Tijana Vasiljevic and colleagues proposed a
method for preparing small samples of miniaturized SPME tips, which are coated with HLB
particles [29]. It was the first study to analyze caviar samples using small SPME and LC
successfully, and there was good extraction efficiency [29]. Wan Chan and colleagues com-
pared the performance of several different serum preparation methods based on UPLC-MS,
and found that serum samples prepared with methanol generated more accurate data [30].
In another study, it is showed that the speed of ultra-centrifugal treatment had a significant
impact on the metabolic profile of fecal water; in particular, the concentration of P-Cresol
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changed with the increase of rotational speed [31]. However, this method is only suitable
for NMR metabolomics studies at present.

For solid samples, freeze drying and grinding are required to reduce moisture in the
samples and increase the release of metabolites, respectively. Quenching is a very important
step to stop the metabolic processes, and this step includes adding liquid nitrogen, freezing,
heating, and adding acid [32]. The omission of this step may cause changes in the metabolite
composition by residual enzymes. However, time control is necessary in this step [32,33].
Sample preparation is a key step in metabolomics analysis [34]. How to prepare samples
quickly without changing the original metabolite composition and make the operation
repeatable are the problems to be solved in the future.

2.2. Metabolite Extraction

The step of metabolite extraction is generally the most rate-limiting step in metabolomics
analysis [35]. There are different extraction methods for different types of samples to maximize
the number, type, and concentration of the target metabolites. The selection of extraction sol-
vent also has a significant effect on the recovery rate and metabolic profiles. The extraction
solvents commonly used include water, chloroform, perchloric acid, methanol, acetonitrile,
and other solutions [36,37]. It is necessary to choose hydrophilic solvents such as water-
alcohol solutions for polar metabolites and hydrophobic solvents for non-polar metabolites.
Estelle Martineau et al. compared the extraction efficiency of methanol/CHCl3/H2O,
Acetonitrile/H2O, methanol/H2O, and Perchloric acid on mammalian cell metabolites, and
found that using methanol/CHCl3/H2O for extraction can extract more metabolites, with
good repeatability [35]. Karsten Seeger proposed a new method which extracts metabolites
directly from NMR tubes by slice selection after centrifugation, and it provided a new idea
for rapid determination of metabolites [38]. The most important thing of this method is that
it could extract as many stable target metabolites as possible without adversely affecting
subsequent analytical experiments [38].

2.3. Derivatization

This step is not always necessary. Generally, derivatization of the metabolites is
required to transform the non-volatile compounds into volatile compounds to facilitate
the analysis of metabolites and improve detection ability of the metabolites effectively
if using GC-MS [39]. For example, the physicochemical properties of compounds with
low ionization rate were changed by chemical derivatization to improve their ionization
rate. Sezin Erarpat and colleagues used ultrasonic-assisted ethyl chloroformate to derivate
l-methionine extract in human plasma and the recovery rate was up to 97.8 to 100.5%
using GC-MS which could be regarded as a green and economical method [40]. Stable
isotope labeling derivatization (SILD) is a novel sample pretreatment technology proposed
in recent years, with a great potential in food metabolomics research based on LC-MS [41].
Shuyun Zhu et al. investigated a derivative method based on quadruplex stable isotope
and developed 3-N-(D0-/D3-methyl-, and D0-/D5-ethyl-)-2’-carboxyl chloride rhodamine
6 G derivatization reagent, which can quickly and accurately quantify panaxadiol and
panaxatriol in food [42]. Several studies have shown that derivatization can improve the
ability of metabolite detection [43,44].

2.4. Separation and Detection

Separation and detection are important steps in metabolomics analysis. In the field of
food nutrition, common separation technologies mainly include GC, LC, and capillary elec-
trophoresis [13]. The separation of compounds is based on the adsorption capacity of each
molecule in the stationary phase, and it is also related to the selection of column, eluent,
fixation, and flow equivalence parameters [45]. In order to separate more metabolites, it
is necessary to choose appropriate separation modes according to the polarity of the com-
pounds. The separation technology is usually combined with high throughput detection
technology to obtain large amounts of data. The commonly used detection techniques are
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NMR and MS [13]. Although the sensitivity of NMR is low, it can be used for non-invasive,
rapid, and repeated analysis of a variety of metabolites at the µM levels [46]. It is simple
to operate and suitable for high-throughput untargeted metabolomics analysis [47]. Both
primary metabolites including amino acids, sugars, lipids, and organic acids, and secondary
metabolites including flavonoids and alkaloids can be detected by NMR. By contrast, the
sensitivity of MS is much higher, and it requires only a few µL of samples for analysis. MS
can be combined with different separation techniques or in series according to different
sample types [13]. GC-MS is mainly used to identify volatile and semi-volatile metabolites,
while substances without volatile properties need to be derivatized, separated before detec-
tion by GC-MS. However, GC-MS cannot recognize any secondary metabolites [34]. Unlike
GC-MS, LC-MS does not require complex pretreatment of samples, and it can directly
separate and detect metabolites after extraction [34]. LC-MS is more comprehensive in
metabolite identification and can determine secondary metabolites such as flavonoids as
well as primary metabolites such as amino acids in plants.

Although current metabolomics techniques generally use a single detection tool, each
technique has its own advantages and disadvantages. In order to identify and characterize
more metabolites, combination of NMR and MS may achieve greater results. Manuja Kalu-
arachchi and colleagues identified metabolites in human plasma and serum by combination
of 1H NMR and UPLC-MS [14]. They identified 4 metabolites with significant differences
in plasma and serum by 1D NMR, and 10 other significant different metabolites by UPLC-
MS, and most of them are found on glycerophospholipids [14]. Dong-sheng Zhao et al.
determined the mechanisms of dioscorea bulbifera rhizome (DBR) on rat hepatotoxicity by
integrating GC-MS and 1H NMR, and obtained a new potential therapeutic target, thus
achieving an effective application of multi-platform metabolomics technology [48]. In addi-
tion, the introduction of chemicals in NMR tubes increased the likelihood of identifying
compounds with specific physical and chemical properties; the 15N-edited NMR enabled
specific binding to compounds containing free carbonyl [49]. The method of metabolic fin-
gerprint analysis based on ultra-high-performance liquid chromatography–high-resolution
mass spectrometry (UHPLC-HRMS) was optimized by using ethylene bridged hybrid
C18 column, which showed good chromatographic resolution and realized the effective
detection of infected metabolites in wheat [50]. Moreover, the optimization of parameters
has been gradually studied. The researchers compared the Isotopologue Parameters Opti-
mization (IPO) processing and manual processing of the original HPLC-TOF-MS data, and
the parameters selected by IPO showed higher repeatability, and therefore it can be used to
evaluate the optimum XCMS [51]. However, IPO need to take several days or even weeks
to calculate the optimization parameters. In contrast, AutoTuner gives more robust and
high-fidelity results [52]. MetaboAnalystR 3.0 is proposed as a new optimization process,
which can not only optimize and correct parameters effectively, but also predict active
pathways accurately [53]. In recent years, a hybrid metabolomics method based on mass
spectrometry also attracted much attention. By bridging the advantages of targeted and
untargeted metabolomics, more accurate results and more metabolites can be gained [54].

Different analytical instruments have different emphases. Considering the character-
istics of samples and different analytical methods, a variety of separation and detection
instruments can be used together to make the obtained metabolic data more comprehensive.

2.5. Data Processing

Data processing is an essential step in the process of metabolite screening, through
which the changes of metabolites can be visualized and the possible metabolic pathways
leading to these changes can be investigated using the KEGG database. Statistical analysis
can help us to understand the metabolites in food and their impact on human health.
Identification of metabolites is the most challenging step in metabolomics analysis [55].
The metabolites in the samples were obtained by comparing with the data in various
resource databases. Choosing the right data processing method can greatly improve the
accuracy of data analysis. There are many metabolome databases such as Metlin [14],
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Human Metabolome Database (HMDB) [56], KNApSack Database [57], and MassBank [58].
After aligning the information with these reliable databases and with multivariate statistical
analysis, the obtained raw data can be converted to more meaningful conclusions, such
as biomarkers.

Multivariate statistical analysis methods include principal component analysis (PCA),
partial least squares discriminant analysis (PLS-DA), orthogonal partial least squares
discriminant analysis (OPLS-DA), least absolute shrinkage and selection operator (LASSO),
linear discriminant analysis (LDA), and so on [59,60]. Among which, PCA and PLS-DA
are the most commonly used statistical methods in the field of metabolomics. PCA is a
commonly used unsupervised dimensionality reduction method for metabolite quantity
analysis, which reduces the data set to fewer dimensions to obtain greater variance [61].
It can help us to visualize the metabolic data, trend, and cluster. It has been reported
recently that PCA was used in combination with quadrangular discriminating analysis
(PCA-QDA) to identify the MS data of cancer samples, and its accuracy and specificity
reached more than 90%, and therefore it can be called a satisfactory classification model [62].
PLS-DA is a supervised statistical analysis method that maximizes the correlation between
variables, and it is often used to screen metabolites and to analyze overall metabolic changes
between groups [63]. The availability of PLS-DA is good, and it can be used to process
multiple dependent categorical variables simultaneously. However, PLS-DA is prone to
overfitting [63]. In order to avoid this problem, based on the advantages of PLS-DA, OPLS-
DA can divide the data into Y-related variation and Y-independent orthogonal variation
and eliminate the variables unrelated to the experiment [64]. R2 and Q2 parameters are
used to evaluate the prediction ability of the OPLS-DA model, and variable importance
in the projection (VIP) can be generated from the model. VIP > 1.0 indicates that there
are important potential biomarkers in the OPLS-DA model [65]. The authors compared
PLS-DA with OPLS-DA in terms of model fitness and interpretability; although both are
applicable, OPLS-DA had a higher interpretability [66]. At present, the co-analysis of
PCA and OPLS-DA has become the mainstream trend of metabolomics to discriminate
samples. Combination of more analytical models may be a future direction. Currently,
the application of OPLS-DA is mainly to screen and identify biomarkers through s-plot/s-
line, permutation, and VIP [67,68]. Using these methods to investigate the changes of
metabolites may be a development direction in the future.

LASSO is a model selection method, and it can predict the phenotype by regression
analysis of metabolites [69]. LDA can classify the samples according to the source and
maximize the linear separation of the classes [70]. Kaitlyn M Mazzilli and colleagues
evaluated the effects of various daily diets intake on serum metabolism using LASSO and
found 102 related metabolites [71]. Virgilio Gavicho Uarrota et al. identified the metabolic
components of cassava postharvest physiological deterioration (PPD) through PCA and
PLS-DA models and realized good sample prediction [60]. The results provided good
evidence for the metabolic differentiation of cassava during PPD. Moreover LDA and PCA
in cluster analysis were considered to be suitable methods for distinguishing sex differences
from organ differences [72]. For example, argininosuccinate showed significant differences
between males and females in kidney tissue, and in the ventricle, males had significantly
higher levels of free carnitine and total esterified carnitines than females [72]. So, targeted
metabolomics is a good technique to test sex differences.

3. Application of Metabolomics in Nutrition and Health

Healthy diet has received widespread attention nowadays. People are gradually
aware of the nutritional role of some food-derived bioactive ingredients in the prevention
and regulation of chronic diseases [73]. Bioactive ingredients from plants and animals
have been used in the development of functional foods and the treatment of diseases,
such as peptides, polyphenols, and lipids, which are widely found in food and medicine.
César G. Fraga et al. reviewed the health effects of polyphenols on diabetes and cardiovas-
cular diseases, and their interactions with other bioactive components, and showed that
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eating enough polyphenol-rich foods can regulate chronic diseases and bring health bene-
fits to humans [74]. Subhadeep Chakrabart et al. introduced the food sources of various
bioactive peptides, including milk, eggs, soybeans, wheat, and fish, which can be used
as lead compounds in the development of health supplements and functional foods [75].
However, the healthy nutritional effects and bioavailability of bioactives in food need to be
characterized by some parameters [73]. Metabolomics, as a new omics technique, plays an
important role in the qualitative and quantitative analysis of metabolites [76]. Here, we
introduce the characterization of bioactive ingredients in foods by using metabolomics tech-
niques and the health effects of these bioactive ingredients on cells, animals, and humans.
Metabolomics has made an important contribution to the development and utilization of
functional food. The applications of metabolomics in food-derived bioactive ingredients
are summarized in Table 1.

Table 1. Metabolomics applications in food-derived bioactive ingredients.

Main
Metabolites

Sample
(Sources)

Analytical
Technique Application of Metabolomics Reference

Flavonoids Soybean seeds LC-ESI-MS/MS
Evaluated the dynamic changes of

metabolites in soybean seeds before and
after germination.

[77]

Amino acids,
sugars, choline Mung bean NMR

Evaluated the dynamic changes of
metabolites in mung bean at different

germination stages.
[78]

Flavonoids and
polyphenols Green tea bud UPLC-QTOF-MS

Combined the characteristic metabolites
with in vitro biological activities to

determine the health effects of
natural metabolites.

[79]

Isoflavones and alkaloids Lupinus albus fractions
1H NMR

UHPLC-ESI-MS/MS

Identified the effects of different extract
components on the bioactivities

of metabolites.
[80]

Procyanidin C1, orientin,
quercetin, etc. Hawthorn UHPLC-Q-TOF/MS

LC-MS/MS

Screened the metabolites with specific
biological activities by combining

various types of stoichiometry.
[81]

Polyphenols,
glucosinolates and

monomeric
anthocyanins

Four
Brassicaceae
microgreens

UHPLC-QTOF
Compared the changes of metabolite

concentrations before and after simulated
gastrointestinal digestion in vitro.

[82]

Polyphenol Red beet and amaranth UHPLC-QTOF Identified the effects of different storage
periods on metabolite changes. [83]

Phenyllactate and ferulate
Soybean
protein

hydrolysate

UHPLC/MS/MS2
GC/MS

Analyzed the compounds with
significant effects on cell growth and

IgG production.
[84]

Ornithine and
citrulline

Soybean
hydrolysates LC-MS/MS Screened productivity markers by

comparing cell growth condition. [85]

Phenolic
substances Red kidney bean extracts NMR

LC-MS

Analyzed the antiproliferative
mechanism of different chemical

components on B16-F10 melanoma cells.
[86]

Alanine, aspartate
and glutamate CG UPLC-MS/MS

Studied the effects of different
concentrations of CG on
L-02 cells metabolism.

[87]

Glutamate and lactate Exendin-4 NMR
Investigated the mechanism of protective
effect of exendin-4 on mouse glomerulus

mesangial cells.
[88]

Glycerolipid, cyanomino
acid, inositol

phosphate, etc.
Vitamin C 1H NMR

Determined the effect of half inhibitory
concentration of Vitamin C on

cell metabolism.
[89]

Alanine,
Aspartate,

glutamate, etc.
Emodin 1H NMR

Evaluated the cytotoxic effects of high
concentrations of emodin on cells. [90]

Lactate and
glucose

Doxorubicin and
dexrazoxane

1H NMR
Identified the important factor of

dextroprazole induced cardiotoxicity. [91]
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Table 1. Cont.

Main
Metabolites

Sample
(Sources)

Analytical
Technique Application of Metabolomics Reference

Nicotinamide,
nicotinic acid,
Arginine, etc.

Quinoa saponins UHPLC-MS

Combined the metabolomics with the
changes of intestinal microbes in rats and

identified the differential effects of
quinoa saponins on different sexes.

[92]

Phosphatidylcholine and
palmitic acid Corn silk UPLC-ESI-Q-TOF/MS

Identified the changes of diabetes
markers through the differences of serum

metabolites in rats.
[93]

Flavonoids Fenugreek UPLC-Q-TOF-MS
Investigated the function of fenugreek

flavonoids in regulating blood glucose by
serum metabolomics.

[94]

Valine, leucine, LPCs, etc. RS3 UHPLC-LTQ/
Orbitrap MS

Identified the antidiabetic mechanism of
RS3 by urine metabolomics. [95]

Alanine,
aspartate,

glutamate, etc.
GAP LC-MS

Studied the regulation of GAP on mice
with nonalcoholic fatty liver by

serum metabolomics.
[96]

Phenylalanine,
tyrosine and tryptophan EP LC-MS

Combined the metabolomics with
molecular docking technology to obtain

effective bioactive components.
[97]

Arginine and
proline

The hydrolysates of yak
bone glue UPLC-QTF/MS

Determined the anti-obesity mechanism
of the hydrolysates of yak bone glue by

fecal metabolomics.
[98]

Propionic acid, taurine,
glutathione, etc. Astaxanthin LC-MS Clarified the mechanism of astaxanthin

alleviating oxidative stress in rats. [99]

Galactose, galactonate
and lactic

Cheese, milk and soy
beverages

GC-MS
1H NMR

Explored possible food biomarkers of
human intake by metabolomics. [100]

5-(dihydroxyphenyl)-γ-
valerolactones and

4-hydroxyl-5-(phenyl)-
valeric acids

Red wine UHPLC−TOF-MS

Determined the health effects of
moderate red wine consumption on

human metabolism by urine
metabolomics and fecal metabolomics.

[101]

Lysophosphatidylcholines,
lysophos-

phatidylethanolamines and
acylcarnitines

Garlic supplements HPLC-ESI-QTOF-MS
Verified the function of garlic

supplement in enhancing immunity by
fingerprint metabolomics.

[102]

3,8-dihydroxy-urolithin
derivatives and

phenyl-γ-valerolactones

A (poly) phenols-rich
test drink UHPLC-QQQ

Determined the regulating mechanism of
polyphenol beverage on diabetes patients

by blood and urine metabolomics.
[103]

Choline ECa 233
1H NMR

LC-MS/MS
Evaluated the drug bioavailability of ECa

233 by metabolomics. [104]

3.1. Application of Metabolomics in the Discovery of Bioactive Substances in Plants

People concern about nutrition and high quality nowadays. Application of metabolomics
in foods can help us to understand the biochemical indicators in food, facilitate the production
and development of healthy food, and alleviate the problems affecting human health due to
nutrition [105]. Here, we mainly introduce the bioactive substances in plants. Metabolomics
characterizes the relationship between genotype and phenotype, and it has a good pre-
dictability [106].

Plants store nutrients differently at different growth stages. For example, many
biochemical indexes change before and after seed germination, and the accumulation of
metabolites is different [107]. Moreover, studies have shown that bioactive chemicals were
higher in young leaves and epidermis parts of plants than in the mature parts [108,109].

Metabolomics can be used not only to screen valuable bioactive substances, but also
to analyze the metabolite changes in different maturation stages and other processes. Stud-
ies have shown that some micronutrients, such as isoflavones and polyphenols, were
significantly increased after soybean germination or sprout, with increased antioxidant
properties [110]. A previous study analyzed the metabolite changes of two soybean seeds
before and after germination by LC–ESI–MS/MS and found that the main different metabo-
lites were flavonoids [77]. A total of 114 flavonoids metabolites were found in two soybean
seeds and sprouts, including isofavones, dihydrofavone, chalcones, tannin, flavonoid car-
bonoside, flavonoid, anthocyanins, and other flavonoids [77]. With the information of
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the changes in the metabolites, they were able to detect six main metabolic pathways and
generate more valuable information for the area [77]. Xiangyu Wu et al. investigated
metabolite changes of mung bean at different germination stages using NMR and identified
63 metabolites in seeds and culture medium [78]. There were significant differences in
amino acids, sugars, choline, and some secondary metabolites at different stages of germi-
nation [78]. Chunhui Xu and colleagues analyzed the relationship between the changes
of total phenolic content (TPC) and total flavonoid content (TFC) and their antioxidant
activities in vitro, as well as the inhibitory effects of α -glucosidase and pancreatic lipase in
the process of green tea bud ripening, using UPLC-QTOF-MS [79]. PCA and hierarchical
clustering analysis (HCA) showed that there were significant differences in metabolites
among green tea samples with different ripening degrees, while PLS-DA and OPLS analysis
showed that the levels of flavonoids and polyphenols decreased with the maturation of tea
plants [79].

Another study found 35 metabolites total in the extract of Lupinus albus fractions
by 1H NMR from four different fractions [80]. The 2,2-diphenyl-1-picrylhydrazyl radical
(DPPH) scavenging activity and α-glucosidase inhibition activity of chloroform fractions
were significantly higher than those of methanol, ethyl acetate, and hexane fractions [80].
Then, UHPLC-ESI-MS/MS was used to analyze and evaluate the organic extract, and
21 different metabolites were identified, among which isoflavones and alkaloids were
the main components [80]. Through metabolomics, effective extraction fractions can be
found to improve the utilization of bioactive components. Yan Cui et al. applied targeted
metabolomics to screen components from hawthorn metabolites which inhibit thrombin ac-
tivity, using UHPLC-Q-TOF/MS and LC-MS/MS, and discovered seven bioactive markers
which were then investigated for their inhibitory effects on thrombin and possible key ac-
tive sites [81]. With targeted metabolomics, researchers were able to find functional related
bioactive substances.

The digestion process also has an effect on metabolites. Merve Tomas and colleagues
conducted metabolomics analysis on the components of four cruciferous micro-vegetables
before and after simulated gastrointestinal digestion in vitro by UHPLC-QTOF [82]. Com-
pared with fresh samples, even after simulated digestion in vitro, the concentrations of
total polyphenols, glucosinolates, and total monomeric anthocyanins in the four micro-
vegetables decreased [82]. However, it proved that these four micro-vegetables contain
bioactive substances that are beneficial for human health [82]. Similarly, the metabolic
profile of red beet and amaranth after simulated gastrointestinal digestion during different
storage periods were measured using UHPLC-QTOF [83]. The total polyphenol content
and total antioxidant capacity of both microgreens also decreased after gastrointestinal
digestion [83]. The results of the above metabolomics studies indicated that the practical
application value of these bioactive substances is affected by gastrointestinal digestion.
However, the reasons for this change may require further research.

These studies showed the application of metabolomics in the changes of bioactive
substances in plants during different processes. These studies are helpful to the develop-
ment of new nutritional foods. However, there are still many problems. For example, the
enrichment method of the bioactive substances, the consumption ranges, the possible side
effects, all need to be further explored. Although the metabolites and phenome of plant
and animal food ingredients have been well reported, the role of these metabolites in the
human body remains to be determined. The changes of these nutrients after digestion in
human gastrointestinal tract and the extent to which they play a role in the human body,
as well as the impact of individual dietary patterns or habits and other related metabolite
changes need to be further studied. The functions of bioactive ingredients also need to be
further purified and investigated using metabolomics, which will be a huge challenge.

3.2. Application of Metabolomics in the Effect of Bioactives In Vitro

Metabolomics was mainly applied in vivo at the beginning, and it has been gradually
used in in vitro studies [111]. For the determination of different bioactive substances,
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especially substances far from the current human normal diet, cell experiments can help
us to investigate the effects of these substances on human physiological conditions [112].
Bioactive substances are taken up by the cells and undergo various transformation reactions
in the cells and their changes within the cells reflect the effects of the compounds. The
effects of bioactive substances in some potential food ingredients on cellular metabolism
have been reported previously [113,114].

Abhishek J. Gupta and colleagues analyzed the effect of nutritional components of
soybean protein hydrolysate on the Chinese hamster ovary (CHO) cells growth and total im-
munoglobulin (IgG) production and identified 410 metabolites from soybean hydrolysates
by UHPLC/MS/MS2 and GC/MS [84]. Jason Richardson et al. analyzed the different mark-
ers in soybean hydrolysates used in cell culture and their changing mechanisms through
seven different LC-MS/MS identification methods and detected a total of 125 metabolites
and 4131 short peptides of different lengths [85]. By comparing the growth of two different
CHO cell lines, untargeted metabolomics was used to investigate markers of different
batches of soybean hydrolysates and analyze the performance of soybean hydrolysates [85].
In another study, Jia-hui Nie et al. compared the effects of chemical components in the
coat (RKBC) and kernel (RKBK) of red kidney bean extracts on the proliferation of B16-F10
cells, and found that there were significant differences in the content of component among
organic acid/amino acid region, sugar region, and aromatic region, using NMR [86]. Fur-
thermore, RKBC contains a variety of phenolic substances, which inhibited the proliferation
of B16-F10 cells. Application of metabolomics contribute significantly to the development
of functional food and drugs to inhibit melanoma [86].

The effects of different concentrations of bioactive substances on cells can also be ana-
lyzed by metabolomics. Different metabolites in cells treated with different concentrations
of Chrysophanol-8-o-β-D-glucoside (CG) were found significantly separated by UPLC-
MS/MS, and 42 major differential metabolites were selected [87]. Through multivariate
statistical analysis, 26 of the 42 major metabolites were identified as differential metabolites
between the high concentration group and control group, and 23 of them were differential
metabolites between the low concentration group and medium concentration group. These
differences were mainly due to differences in amino acid metabolism pathways. Another
study identified a total of 30 metabolites from the control, positive, and exendin-4 treatment
groups by NMR, of which 11 were differential metabolites [88]. Further pathway analysis
revealed that the damaging effect of tert-butyl hydroperoxide (t-BHP) on cells was mainly
manifested by the changes in intracellular glutamate, lactate, and energy production, while
exendin-4 ameliorated these changes and protected the cells. Hui Li and colleagues investi-
gated the effects of semi-inhibitory concentration of vitamin C on metabolism of mouse
macrophage RAW264.7 and human myeloid leukemia cell line K562 [89]. The results
showed 25 differential metabolites in RAW264.7 cells and 6 differential metabolites in K562
cells [89]. With the changes of these metabolites, they determined the safety and efficacy of
high concentrations of vitamin C [89].

Chen et al. explored the toxic effect of emodin on HepG2 cells by using non-targeted
metabolomics method based on NMR [90]. After treatment with different concentrations of
emodin, they found 33 metabolites in cell extracts and 23 metabolites in cell medium [90].
They showed that 100 µM emodin had a significant inhibitory effect on HepG2 cells, and
these effects involved eight related metabolic pathways [90]. Similarly, Matthieu Dallons
and colleagues also found that 0.3 µM doxorubicin caused the separation of metabolites, and
23 metabolites were detected by 1H NMR [91]. With further study, the authors identified
mitochondrial metabolic dysfunction was an important factor in cardiotoxicity caused
by dexrazoxane [91]. All the above studies showed that metabolomics can be used to
determine the effects of different concentrations of bioactive substances on cells, which can
be regarded as a new method for drug evaluation or drug toxicity targets screening.

Metabolomics is an important technique in the investigation of the regulatory effects
of the food-derived bioactive ingredients. More evidence is still needed to understand
the effects of these bioactives in humans. For example, in addition to the analysis of
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the composition of the culture medium, metabolomics can also be used to analyze the
composition of the supernatant or lysate of the cells. Moreover, the utilization of food-
derived bioactive ingredients after the transformation of intracellular substances needs
further study. Future studies also need to validate the effects of different bioactives in vivo.

3.3. Application of Metabolomics in the Effect of Bioactives in Animals

Metabolomics plays an important role in understanding the physiological and patho-
logical states of animals and human beings and discovering specific biomarkers [80]. Urine
is the most commonly used body fluid for metabolomics analysis because urine con-
tains less protein, and it does not need complex preparation. Serum, plasma, and tissue
homogenate are also used for metabolite measurements [115]. The effects of bioactive
substances from some potential food ingredients in animals have been reported using
metabolomics approach previously [116,117].

Quinoa, as a crop with high nutritional value, is gradually gaining popularity. Al-
though various health effects of quinoa saponins have been reported, its safety is still
controversial. Ruoyu Zhang and colleagues investigated the changes of metabolites in
urine of rats of different genders under the treatment with saponins of chenopodium quinoa
wild, using UHPLC–MS [92]. They found that the same dose of quinoa saponins produced
different toxic effects in rats of different sexes [92]. However, in the non-toxic range, quinoa
saponins have certain application value. The study also suggested that metabolomics can
play a role in gender-specific studies.

Corn silk has been reported to be effective in the treatment of diabetes [118]. The
effects of corn silk on serum metabolites of diabetic rats were investigated using UPLC-
ESI-Q-TOF/MS, and the results showed that 26 metabolites altered, with the levels of
phosphatidylcholine and palmitic acid, the markers of diabetes, decreased [93]. Fenugreek
flavonoids play a role in the regulation of diabetes, and 19 different flavonoids were
identified in fenugreek using UPLC-Q-TOF-MS, of which 11 were metabolic biomarkers,
mainly involved in lipid metabolism and amino acid metabolism, and the hypoglycemic
function may be related to its protective effect on kidney [94]. Caijuan Zhang et al. examined
the changes of metabolites in urine of diabetic mice after resistant starch 3 (RS3) and
metformin treatment using UHPLC-LTQ/Orbitrap MS and identified 29 biomarkers which
were involved in amino acid metabolism, lipid metabolism, and other pathways [95]. Fei
Ren and colleagues analyzed the changes of serum metabolites of ganoderma amboinense
polysaccharide (GAP) in mice with non-alcoholic fatty liver disease induced by high fat
diet by LC-MS [96]. There were 18 biomarkers identified by hierarchical clustering and
these metabolites involved in amino acid metabolism, TCA cycle, lipid metabolism, fatty
acid metabolism and synthesis, and so on [96]. According to the results of metabolomic
analysis, it is possible that GAP may protect the mitochondrial metabolic function [96].

Echinacea (L.) Moench (EP) has a control effect on the tumor growth of hepatoma
mice [119]. The serum metabolic profile of mice after EP treatment was investigated by LC-
MS and the results showed that the 12 differential metabolites were significantly improved,
mainly involving in the biosynthesis of phenylalanine, tyrosine, and tryptophan and the
metabolism of phenylalanine [97]. The effective bioactive ingredients can be obtained by
combining molecular docking [97]. The hydrolysates of yak bone glue play a role in the
regulation of obesity. The effects of the hydrolysates of yak bone glue on fecal metabolites
of high-fat obese mice were studied by UPLC-QTF/MS, and 666 and 705 metabolites were
detected in the positive and negative ion modes, respectively [98]. Further analysis showed
that the anti-obesity effect of the hydrolysates of yak bone glue may be related to the
changes of intestinal microorganisms, mainly involving in the amino acid metabolism
pathway [98]. Similarly, the researchers used LC-MS to identify the effects of saponification
and non-saponification astaxanthin on the metabolites in the plasma of oxidative stress
rats, and a total of 80 potential biomarkers were identified [99]. Further comparative
analysis showed that saponification astaxanthin group had a better therapeutic effect on
oxidative stress, and this therapeutic effect was also related to the changes of intestinal
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microorganisms [99]. In addition to analyzing the metabolic mechanism of these bioactive
components in animals, metabolomics can also be combined with molecular docking
technology, which will play a certain guiding role in the development of functional food in
the future.

Metabolomics analysis of biological fluids predict novel biomarkers or specific biomark-
ers, which provides insights for the prevention and treatment of diseases. However, there
is still a long way to go before this stage, and long-term clinical studies are needed to
determine their specific effects in humans.

3.4. Application of Metabolomics in the Screening of Bioactives for Human Trials

To evaluate the safety and effectiveness of a new food or drug, clinical studies are an
essential step [120]. Metabolomics is being used in clinical trials more and more [121]. The
screening of bioactive components and the analysis of metabolic changes caused by diseases
or bioactive components are important applications of metabolomics in clinical research.

Food intake biomarkers (FIBs) are specific metabolic components produced after
the consumption of a specific food. The existing dose and time have a clear response
range which are important indicators for assessing their dietary intake in humans [122].
Non-targeted metabolomics was used to search for possible FIBs of several foods [100]. It
was reported that galactose and galactonate levels in the serum of 11 healthy volunteers
were significantly increased after drinking milk for 1 h, using GC-MS and 1H NMR,
lactic acid levels in 1 h and 2 h after eating cheese were significantly higher than that in
milk and soybean drinks, and Pinitol levels significantly increased after intaking of soy
beverages [100]. Therefore, these altered metabolites were considered as candidate FIBs for
dairy products and alternative dairy products. The results were also validated in the urine
samples [100]. Although there were shortcomings, this study provided a new direction for
searching FIBs in food.

Drinking alcohol in moderation is thought to be beneficial for health because of
the presence of phenols in alcohol [123]. Adelaida esteban-fernandez et al. investigated
the effects of moderate red wine intake on human metabolism through non-targeted
metabolomics, and the results showed that the phenol metabolites from microorganisms
such as 5-(dihydroxyphenyl)-γ-valerolactones and 4-hydroxyl-5-(phenyl)-valeric acids were
significantly up-regulated, indicating that the intake of red wine had a certain impact on
the intestinal microbial balance [101]. Urine metabolome and fecal metabolome confirmed
the conclusions [101]. The effects of garlic supplements on human metabolism can also
be studied using metabolomics. The researchers used HPLC-ESI-QTOF-MS to identify
metabolites in the plasma of volunteers after garlic supplements treatment, and found that
26 metabolites were significantly changed [102]. Further metabolomics studies showed that
garlic supplements could improve human immune function mainly through phospholipid
metabolism [102]. Moreover, garlic contains anti-glycosylation components, which has
potential therapeutic function for diabetes and other chronic diseases [102]. Another
study used targeted metabolomics to analyze the metabolites in blood and urine of adult
patients with prediabetes after drinking a (poly) phenols-rich test drink for 24 h, and
quantified a total of 110 gut microbial derived (poly) phenolic metabolites using UHPLC-
QQQ [103]. The results showed that the levels of 3,8-dihydroxy-urolithin derivatives
in plasma and phenyl-γ-valerolactones in urine were significantly reduced, consistent
with the changes of some specific intestinal microbes, and it indicated that changes in
intestinal microbial population of diabetic patients resulted in changes in the metabolism
of β-cationic substances [103]. It provided a new reference direction and therapeutic target
for the treatment of chronic metabolic diseases such as diabetes. Phanit Songvut and
colleagues analyzed plasma metabolites in volunteers after taking extract of Centella asiatica
(ECa 233) using 1H NMR and LC-MS/MS and found that the levels of choline in the plasma
of the volunteers was significantly increased after taking ECa 233 500 mg/day [104]. The
results indicated that metabolomics also has some contribution to the determination of drug
bioavailability. Although the application of metabolomics in humans is relatively small,
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the above content is sufficient to reflect the powerful role of metabolomics in identifying
the effective ingredients of food. Tt will make important contributions to the supplement
of human nutrition and the regulation of chronic diseases.

Application of metabolomics in clinical trials could provide a comprehensive under-
standing of the overall situation in humans. It can be used not only to discover the changes
and effects of different bioactive substances on human metabolites, but also to determine
the health effects of various bioactive ingredients. However, the changes of metabolites
may be affected to some extent by physical conditions, health status, and living habits of
the individuals. The long-term accumulation of unknown components, the measurement
deviation caused by the rapid digestion and absorption of some substances, the interference
caused by different excretion ways of metabolites, and the limitation of the number of
people will all bring a lot of inconvenience to clinical observation.

4. Conclusions

Metabolomics as a new omics technology is gradually being accepted by researchers
and has made significant research progress so far. Compared with proteomics and ge-
nomics, metabolomics is more correlated with physiology. At present, this method has
been applied in medicine, nutrition, toxicology, and other fields. The key of metabolomics
analysis is to interpret the biological information underlying a large amount of raw data
through processing and statistics. Metabolomics is mainly the study of endogenous and
exogenous compounds or metabolites in living organisms. It can not only be used to evalu-
ate the metabolism of nutrients in vivo and in vitro, but also to evaluate their influences
on biochemical environment after diseases or treatments. It will help us to understand
the pathogenesis of chronic diseases, predict biomarkers of related diseases, analyze the
composition of food, and evaluate the quality and safety of food. Metabolomics can be used
to analyze and identify abnormal metabolites to find biomarkers leading to certain diseases,
which is helpful for disease diagnosis and new drug development. It can also be used to
predict and analyze the metabolites changes after food or diet intake and extend the bioac-
tive substances for the development of functional food or drugs. Nutritional metabolomics
is the use of metabolomics to study the interaction between diet and metabolism under
different health status or disease conditions. It will help us to discover and develop new
drugs or functional foods and provide approaches and tools for mechanistic research.

5. Challenges and Future Perspectives

At present, metabolomics techniques are still not able to analyze all metabolites pro-
duced in metabolic pathways, as some metabolites levels are too low to be detected as
bioactive substances, or distorted into false positives by combination effects [124]. Experi-
mental data are greatly affected by non-experimental factors. The main methods used for
data analysis are PLS and PCA, which are mainly applied to linear data and rarely applied
to nonlinear data. However, some data are not linear, and the processing of non-linear data
is complex [125]. Using the above methods may cause the loss of non-linear correlation
between samples. The inapplicability of each technology platform, the incompleteness
of database, and the triviality of each step need to be further optimized. The underlying
mechanisms of how bioactives play their roles needs to be further investigated. Many
factors such as age, gender, weight, lifestyle, health status, and other individual differ-
ences need to be further studied. There is still a lot to be improved, including the length
of observation time, the effect of digestion and absorption on the bioactive components,
the discovery of metabolic pathways, and the accuracy of qualitative and quantitative
analysis of metabolites. In summary, metabolomics research in the clinical trials need to be
strengthened to accelerate the development of functional foods and drugs.

With the continuous development of metabolomics, it has made more and more contri-
butions to the scientific field as a tool for analysis and prediction. However, in order to gain
more recognition, more sensitive, fast, and advanced analysis and processing tools will be-
come an indispensable requirement for the development of metabolomics in the future. Due
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to the immaturity and incompleteness of analytical instruments, techniques, and the opera-
tion of data collection, it is necessary to improve and establish a rational system for clinical
diagnosis. For example, combining multiple omics platforms, increasing the number of
metabolites recognized, optimizing each processing step, shortening the experimental time,
and improving the sensitivity of the instrument should all be improved to increase repeata-
bility. As an important analytical tool of metabolomics, the application of database is also
indispensable. For example, HMDB is the most important human metabolome database,
including metabolites, NMR data, MS data, and spectral data, and has been applied in
many fields such as lipidomics, biochemistry, nutrition science, and so on [126]. METLIN
molecular standards database is a biochemical database with more than 850,000 molecular
standards [127]. The expanded and supplemented database METLIN MS2 can not only clar-
ify the molecular structure, but also identify more microbial and human metabolites [127].
For the search of information on the structure and function of volatile organic compounds,
KNApSAcK Metabolite Ecology Database is a good choice [128]. In addition, a compre-
hensive R package, MetaboAnalystR, has been developed recently, involving 11 analysis
modules and including more than 500 functions, which can be used to analyze compounds,
pathways, metabolites, and other related information. [129]. A cloud-based knowledge
database called “The Metabolome of Food” is currently being built, and it includes human
and microbial metabolites, phytochemical composition, and metabolic pathways [130]. In
the future, it may become one of the important databases in the field of food nutrition. At
present, various databases have been updated. From 2007 to 2022, for example, the number
of compounds in the HMDB increased from 2180 to 217,920 [126,131]. The databases need
to be continuously supplemented and updated with more new biomarkers. For the appli-
cation of metabolomics in food-derived bioactive ingredients, based on in vitro and in vivo
experiments, more studies on human trials are still needed to understand the health effects
of bioactive ingredients in humans. It is also necessary to expand bioactive components
and improve their bioavailability. Metabolomics is increasingly used in the field of food
and nutrition. It will become an important technology for the development of functional
food in the future.
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