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Abstract

Control of human mobility is one of the most effective measures to prevent the spread of

coronavirus disease 2019 (COVID-19). However, the imposition of emergency restrictions

had significant negative impacts on citizens’ daily lives. As vaccination progresses, we need

to consider more effective measures to control the spread of the infection. The research

question of this study is as follows: Does the control of home range correlate with a reduction

in the number of infected people during the COVID-19 pandemic? This study aims to clarify

the correlation between home range and the number of people infected with SARS-CoV-2

during the COVID-19 pandemic in Ibaraki City. Home ranges are analyzed by the Minimum

Convex Polygon method using mobile phone GPS location history data. We analyzed the

time series cross-correlation between home range lengths and the number of infected peo-

ple. Results reveal a slight positive correlation between home range and the number of

infected people after one week during the COVID-19 pandemic. Regarding home range

length, the cross-correlation coefficient is 0.4030 even at a lag level of six weeks, which has

the most significant coefficient. Thus, a decrease in the home range is a weak factor corre-

lated with a reduction in the number of infected people. This study makes a significant contri-

bution to the literature by evaluating key public health challenges from the perspective of

controliing the spread of the COVID-19 infectuion. Its findings has implications for policy

makers, practitioners, and urban scientists seeking to promote urban sustainability.

Introduction

Background

The coronavirus disease 2019 (COVID-19) pandemic has drastically changed our daily lives.

The rapid increase in the number of infected people risks causing a breakdown of the medical

system. Control of human mobility is considered one of the most effective measures to prevent

the rapid spread of COVID-19 [1]. For example, in the Osaka metropolitan area, states of

emergency have been declared four times since January 2020 [2], with more substantial restric-

tions imposed on the activities of people living in areas closer to the city center [3]. The
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Subcommittee on Novel Coronavirus Disease Control in Japan requested citizens to reduce

human mobility by 50% during this time [4]. However, the imposition of emergency restric-

tions had significant negative impacts on the daily lives of citizens. For example, excessive

restrictions caused a deterioration of mental health [5]. As vaccination progresses, we need to

consider more effective measures to control the spread of the infection.

The research question of this study is as follows: Does the control of home range correlate

with a reduction in the number of infected people during the COVID-19 pandemic? In other

words, this study verifies the possibility of predicting the number of infected people based on

the control of human mobility. In particular, it is difficult to predict the number of infected

people in suburban cities because of their high human mobility. Therefore, this study focuses

on the aspect of home range in human mobility. Home range is defined as the areas that indi-

viduals traverse in the course of their daily activities, such as working and shopping [6]. Home

range is an essential indicator for policymakers to assess and facilitate the achievement of the

daily mobility activities of residents. For example, the “Location Optimization Plan” [7] is a

policy that aims to maintain the home range around transit stations in Japan. Understanding

the time series cross-correlation between home range and the number of infected people

would support policymakers to develop policies for controlling the spread of the COVID-19

infection.

Purpose

This study aims to clarify the time series cross-correlation between home range and the num-

ber of people infected with SARS-CoV-2 during the COVID-19 pandemic in a suburban city.

Home ranges were analyzed by the Minimum Convex Polygon (MCP) method using mobile

phone GPS location history (LH) data. LH data includes location history data collected from

individual devices, unlike area-based data such as Google mobility reports [8].

In this study, the pandemic period was set from January 2020 to July 2021. In Japan, the

first case of SARS-CoV-2 infection was confirmed in January 2020. From April to May 2020,

the first state of emergency was declared for all prefectures. In 2021, states of emergency were

declared repeatedly, mainly in Osaka prefectures, from January to February, April to June.

After July 2021, vaccination progress in Japan. Therefore, the analysis period, from January

2020 to July 2021, is thought to be the COVID-19 pandemic period in Japan. A timeseries anal-

ysis was conducted using panel data of every Wednesday from April 2020 to July 2021, a time

frame where four waves of the pandemic were witnessed in Japan. This study analyzed the

time series cross-correlation between the home range lengths and the number of infected

people.

The case study research was conducted in Ibaraki City, which is a typical suburban city in

the Osaka metropolitan area. Fig 1 shows the location of Ibaraki City, which has a population

of approximately 280,000, and an area of 10 km east-west and 17 km north-south [9]. The map

in Fig 1 was the open-source Arc GIS PRO and complied with the copyright [10]. Due to the

city’s extensive train network, residents can commute in about 30 min to Osaka City or Kyoto

City. Fig 1 shows the distance from the central area of Ibaraki City, where the Ibaraki City

Government Hall is located. Osaka Station, located in the central area of Osaka, is 15 km away

from the central area of Ibaraki City. This distance helps us understand the home range extent.

In Ibaraki City, home range decreased by approximately 50% during the first state of emer-

gency [11]. In addition, dense clusters of people were formed in the parks as well as in the sta-

tions during the period [12]. The frequency of walking and bicycle trips increased during the

period [13]. These studies suggest that the home range had decreased to a neighborhood scale

due to the restrictions imposed during the COVID-19 pandemic in Ibaraki City.
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Literature review

Many studies analyzed the factors associated with the number of people infected with SARS--

CoV-2. For example, it was reported that the risk of infections was correlated with chronic

exposure to various outdoor air pollution [14]. One effective policy for redusing the airpolu-

sion is to reduce the human mobility related to the transportation infrastructure [15,16]. Dur-

ing the lockdown restricting human mobility, it was found to reduce air pollution in some

cities [17,18]. Therefore, the originality of this study is to focus on human mobility to estimate

the number of people infected with SARS-CoV-2.

For the analysis of human mobility, many studies used mobile phone data. Regarding

mobile phone data, GPS location history data is the state-of-the-art technology that has started

to gain attention in the COVID-19 pandemic. In particular, many studies focused on Wuhan,

where the first infected person was identified. In the early stages of the pandemic, the spatial

distribution of the number of infected people was found to explain the movement of the popu-

lation from Wuhan between January 1 and January 24, 2020 [19]. After January 24, 2020, find-

ings suggested that the lockdown reduced the number of COVID-19 cases in Wuhan by

limiting human mobility within the city [20]. Based on these results, simulations to determine

the feasibility of measures for the successful control and containment of the COVID-19 pan-

demic showed the necessity of restricting human mobility by 20%-40%, using the case of Shen-

zhen in China [21]. In the United States, human mobility was severely restricted during the

early stages of the pandemic [22]. Using mobile phone data across the United States from Jan-

uary 1 to April 20, 2020, it was found that COVID-19 transmission correlated strongly with

mobility patterns [23]. In addition, based on mobile phone data from March 1 to June 9, 2020,

a positive correlation was found between the number of infected people and mobility inflow at

the country level in the United States [24]. Compared to these studies, the originality of this

Fig 1. Locations of Osaka Prefecture and Ibaraki City. The thin lines indicate the location of Osaka Prefecture, and the thick lines indicate the

location of Ibaraki City. The red point is the central area of Ibaraki City, where the Ibaraki City Government Hall is located. The red dotted circles

indicate the distance from the center of Ibaraki City. The distances are 5 km, 10 km, 15 km, and 20 km.

https://doi.org/10.1371/journal.pone.0267335.g001
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study is to clarify the time series cross-correlation between human mobility and the number of

people infected with SARS-CoV-2.

Regarding the time series cross-correlation, it was found that the restriction of human

mobility has a time lag effect on the growth rates of COVID-19 cases [25]. In China, human

mobility is strongly correlated with COVID-19 cases, with lags of 10 days and a correlation

coefficient of 0.68 from January 17 to February 19, 2020 [26]. In Indonesia, human mobility is

also correlated with COVID-19 cases with lags of 7–14 days and a correlation coefficient of

about 0.50 from March 1 to July 31, 2020 [27]. In the European context, the spread of COVID-

19 was positively correlated with the number of people staying in each area and with human

mobility between March 1 to June 6, 2020, at lag levels of one, two, and three weeks [28]. This

could be attributed to the fact that in Europe, lockdowns generally affect long-distance travel

behavior [28]. In addition, between January 1 and April 15, 2020, it was found that the esti-

mated adequate reproduction number of COVID-19 correlated strongly with human mobility

(or social contact) in Tokyo, Japan [29]. The changes in human mobility pertaining to nightlife

spaces were more significantly associated with the number of COVID-19 cases [30]. Those

studies indicate that the number of infected people correlated with human mobility during the

early stages of the pandemic.

The novelty of this study is to analyze the time series cross-correlation during the pan-

demic, which is from every Wednesday from April 2020 to July 2021. In Japan, the state of

emergency was called a “soft lockdown” [31] because the Japanese government did not restrict

the activities of individuals [32]. Therefore, most citizens could at least go out in a limited

capacity even under the state of emergency. That suggests that home range might correlate

slightly with the spread of the infection. This study will allow policymakers to develop policies

for controlling the infection during the COVID-19 pandemic in the medium to long term.

Materials and methods

Location history data

The study used LH data collected by Agoop Corporation. Agoop Corporation collected the LH

data by obtaining consent from users, who contracted with a specific mobile phone carrier

company or installed specific applications [33]. All participants were provided with informa-

tion regarding the type of data collected, purpose of use and provision to third parties, and a

privacy policy [34]. That means that informed consent was obtained from all subjects based on

the privacy policy. However, the consent is not written paper because it is digital data using

mobile phone. Additionally, the subjects can stop sending their human mobility data anytime

by changing their mobile phones’ settings. Agoop Corporation provides anonymized LH data

for research purposes. Due to the availability of high-quality data in a Japanese context, many

studies utilized LH data relating to the spread of COVID-19 [10–12]. This research protocol

was approved by the ethics committee of the Graduate School of Life Science, Osaka City Uni-

versity (No.21-40). Additionally, all methods were carried out in accordance with “Guidelines

for the Use of Device Location Data,” a common regulation for location data analysis in Japan

[35]. The guideline prohibits using GPS data for any purpose that involves identifying individ-

ual users to protect the privacy of users’ GPS location history.

Depending on the mobile phone type, the LH data were collected in the form of logs

approximately every 15 min, and the LH data were obtained from mobile phones with users’

consent. In Ibaraki City, the number of logs was approximately 1,600,000 per day, and the

number of users was approximately 12,000, indicating that 5% of the residents of Ibaraki City

was adequate for analyzing the home range of residents.
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The variables in the LH data used in this study were user ID, year, month, day, hour, min-

utes, and latitude and longitude. The user IDs are anonymized 96-digit alphanumeric codes,

the permanent ID assigned to each device, and enable panel data analysis.

Time series cross-correlation

This study used a time series analysis method to analyze the cross-correlation between home

range length and the number of infected people. The time-series cross-correlation allows us to

understand the similarity of data in a time series and the lag of the period. In this study, the lag

was set to eight weeks, considering that the duration between the date of exposure and onset of

symptoms is usually a few weeks [36].

The analysis period was from April 2020 to July 2021, during which Japan experienced four

waves, and a state of emergency was imposed four times in Ibaraki City. On April 7, 2020,

when a state of emergency was declared in all prefectures, the Japanese government requested

people to stay at home. Following the end of this state of emergency, the Japanese government

attempted to recover the economy through various measures such as the “Go-To Travel” cam-

paign for the hotel and restaurant industries [37]. However, by the winter of 2020, the number

of infected people had gradually increased [38]. A second state of emergency was subsequently

declared from January 14 to February 28, 2021. The Japanese government also developed pri-

ority preventive measures before the next emergency declaration [2]. These priority preventive

measures were in effect from April 5 to June 24, 2021, and a third state of emergency was

declared from April 25 to June 20, 2021. A second set of priority preventive measures was

introduced from June 21 to August 1, 2021, and a fourth state of emergency was declared from

August 2 to September 30, 2021. While vaccination for healthcare workers began in February

2021 [2], vaccination for older people and adults in Ibaraki City began in May 2021. This study

focuses on the period between April 2020 and July 2021, prior to the fourth emergency decla-

ration, shortly after the beginning of the vaccination campaign.

Home range length

This study followed the method of the authors’ previous study [11]. Home range length was

analyzed using the MCP method, which analyzes zones that connect the outermost observa-

tion points [39]. The advantage of this method is its simplicity and intuitive use.

Using the MCP method, this study analyzed two types of home range lengths (HR-lengths):

HR-length (Farthest Distance) and HR-length (Total Travel Distance). HR-length (Farthest

Distance) is the distance to the farthest point moved from the home. The home was estimated

by the starting home point after 0:00. The HR-length (Farthest Distance) allows us to under-

stand the extent of the area traveled. HR-length (Total Travel Distance) is the total distance

covered every day in the time period under consideration. Since the data are acquired every 15

min, the actual HR-length (Total Travel Distance) cannot be calculated. However, the HR-

length (Total Travel Distance) allows us to estimate the total travel distance. The HR-length

(Total Travel Distance) was used as an indicator in a previous study [29].

The analysis process is summarized in Fig 2. The map in Fig 2 was the open-source Arc GIS

PRO and complied with the copyright [10]. Changes in HR-length (Farthest Distance) and

HR-length (Total Travel Distance) during the COVID-19 pandemic were analyzed. In addi-

tion, these two HR-lengths were analyzed the cross-correlation with the number of people

infected.

The study analyzed LH data in Ibaraki City. However, this data included the logs of people

who only passed through Ibaraki City, such as people commuting from Tokyo to Osaka by

express. Therefore, to isolate the data of people living in Ibaraki City, the study extracted user
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IDs of the first log located in Ibaraki City after 0:00 h of every day. The study then analyzed the

user ID data that appeared for more than two days in the analyzed period. The intent of the

study was to analyze the user IDs of individuals living in Ibaraki City, not those just passing

through it. With respect to the LH data of the user ID, this study analyzed the home range

from 0:00 to 23:59 h.

This study analyzed the change in home range based on the LH data from every Wednes-

day, considering the home range changes that occurred between weekdays and holidays [11].

On weekdays, people are involved in steady-state activities such as work. Wednesday was cho-

sen because suitable for analyzing the impact of the COVID-19 pandemic. Wednesday was

chosen as the most appropriate day of the week to analyze the impact of the COVID-19 pan-

demic for a number of reasons. Wednesday is the weekday with the fewest holidays from April

2020 to July 2020: only May 6, 2020, and May 5, 2021, were holidays. Furthermore, December

30, 2020, marked the beginning of the year-end vacation. Moreover, on December 30, many

people tend to be off work and school during the year-end vacations.

Number of infected people

This study analyzed the number of people infected with SARS-CoV-2 in Ibaraki City. Data

published on the webpage of the Ibaraki City Government was used for the purpose of the

study [40]. The number of people infected was calculated as the total number of people

infected each week from Monday to Sunday. Since many hospitals are closed on Sundays, this

calculation method was deemed appropriate for use in the Japanese context.

Fig 2. Analysis process to analyze the home range. The upper figure is a 3D spatiotemporal map, and the lower figure is 2D. In process 1, the personal

space-time paths between 0:00 to 23:59 h were drawn. In process 2, the home range distance for each mobile phone user is calculated from the latitude

and longitude difference between the starting home point and the farthest point moved from the home after 0:00 h. The home was estimated by the

starting home point after 0:00. In process 3, the distance of the mobile phone user is averaged to calculate the HR-length (Farthest Distance) and HR-

length (Total Travel Distance) of every day. The space-time paths are the imaginary paths of 50 people.

https://doi.org/10.1371/journal.pone.0267335.g002
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Results

Change of home range length

Fig 3 shows the box-plot diagrams of weekly changes in HR-length (Farthest Distance) and

HR-length (Total Travel Distance) from April 2020 to July 2021; Fig 4 shows the bar-graphs of

monthly changes in HR-length (Farthest Distance) and HR-length (Total Travel Distance)

from April 2020 to July 2021. In both figures, weekly and monthly data followed similar trends.

In particular, the home range showed a significant decrease every week from April to May

2020, when the first state of emergency was declared. This result was verified by previous

research [11–13]. However, since June 2020, the home range has gradually increased. It was

found that the HR-length decreased significantly only from April to May 2020, when the first

emergency declaration was issued, but thereafter, travel to Ibaraki City and Osaka City did not

change significantly.

Figs 3 and 4 depict that there are no significant changes except on December 31, 2020, and

May 5, 2021, which were national holidays, and July 21, 2021, right before the Tokyo Olympics

2020 were held. The home range was found to have decreased during those periods when pri-

ority preventive measures were in effect, while the home range tended to increase during

emergency periods. The results also suggest that citizens had changed their mobility behavior

before the government declared a state of emergency.

Fig 3. Weekly change of HR-length. The upper graph shows the weekly changes in HR-length (Farthest Distance). The lower graph shows the weekly

changes in HR-length (Total Travel Distance). Green periods are during the state of emergency, and yellow-green periods are during the priority

prevention measures. The box-plot diagrams do not depict the outliers.

https://doi.org/10.1371/journal.pone.0267335.g003
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Change in the number of infected people

Fig 5 illustrates a bar graph of weekly changes in the number of people infected with SARS--

CoV-2 in Ibaraki City between March 29, 2020, and July 31, 2021. Fig 5 shows that Ibaraki

City has experienced four increases and decreases in the number of infected people. The first

wave lasted from April to May 2020, the second from July to September 2020, the third from

December 2020 to February 2021, and the fourth from March to June 2021. The fifth wave

began in July 2021. Each wave lasted progressively longer than the preceding one.

States of emergency were declared for the first, third, and fourth waves. Following each dec-

laration of emergency, the number of infected people decreased significantly. In particular, the

number of infected people decreased to zero from May 17–23, 2020, at which time the first

emergency declaration was lifted; to five people from February 21–27, 2021, when the second

emergency declaration was lifted; and to 13 people from June 13–19, 2021, when the third

emergency declaration was lifted. This suggests that the declaration of a state of emergency

effectively led to a decrease in the number of infected people.

Cross-correlation of home range length and infected people

Fig 6 presents the time series cross-correlation of home range length and number of infected

people. It was found that the number of infected people was slightly more correlated with HR-

Fig 4. Monthly Change of HR-length. The upper graph shows the monthly changes in HR-length (Farthest Distance). The lower graph shows the HR-

length (Total Travel Distance). The figures shows the average and 95% intervals of the HR-length in a time series. Besides, the Wilcoxon rank-sum test

indicates significant differences in the average values for each month. Green periods are during the state of emergency, and yellow-green periods are

during the priority prevention measures.

https://doi.org/10.1371/journal.pone.0267335.g004
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Fig 5. Weekly change of the number of infected people between March 29, 2020, and July 31, 2021. Osaka Prefecture experienced four waves during

this time. Green periods are during the state of emergency, and yellow-green periods are during the priority prevention measures.

https://doi.org/10.1371/journal.pone.0267335.g005

Fig 6. Cross-correlation of home range lengths and the number of infected people. CCC Total Travel Distance is HR-length (Total Travel Distance). CCC

Farthest Distance is HR-length (Farthest Distance). In cross-correlation, the lag was set to eight weeks.

https://doi.org/10.1371/journal.pone.0267335.g006
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length (Total Travel Distance) than HR-length (Farthest Distance). In addition, over the lag

level of zero weeks, HR-length and the number of infected people are positively correlated.

The results indicate that a decrease in HR-length leads to a decline in the number of infected

people. However, there was only a slightly positive cross-correlation between HR-length and

the number of infected people. Specifically, the cross-correlation coefficient (CCC) of HR-

length (Total Travel Distance) (CCC Total Travel Distance) is 0.1546 at the lag level of zero weeks.

As the lag increases, CCC Total Travel Distance also increases, and CCC Total Travel Distance exceeds

0.2 after a lag level of one week. However, even at the lag level of six weeks, the largest CCC,

the CCC Total Travel Distance is 0.4030. Similarly, the cross-correlation coefficient of HR-length

(Farthest Distance) (CCC Farthest Distance) is 0.1345 at the lag level of zero weeks, and 0.3950 at

the lag level of six weeks, which has the largest CCC.

To summarize these results, home range was found to be slightly positively correlated with

the number of infected people after six weeks, with the highest correlation coefficient being

0.40. This means that changing the home range correlates with a decrease in the number of

infected people, but it is not a strong correlation.

Discussion and conclusion

In conclusion, this study clarifies a slight positive correlation between home range and the

number of infected people after one week during the COVID-19 pandemic in Ibaraki City.

The positive correlations validated the results of previous studies [24,28]. In addition, prior

research that analyzed the early-stage period clarified a strong correlation [23,29]. The result

of this study was significant because it clarifies the slight positive correlation between home

range and the number of infected people in the COVID-19 pandemic.

It was found that the number of infected people was slightly more correlated with HR-

length (Total Travel Distance) than HR-length (Farthest Distance). Controlling travel distance

is more effective than controlling the tendency to go out farther. With regard to HR-length

(Total Travel Distance), the CCC was found to be 0.4030 even at a lag level of six weeks, which

had the most significant coefficient. The result differed from previous studies that clarified the

strong coefficient during the early stage of the pandemic [25–27]. Besides, it was inexplicable

at a lag level of six weeks. The reason for this is the length of the incubation period of SARS--

CoV-2; it takes approximately one–two weeks from the date of infection for the first symptoms

to appear [36]. Specifically, after the emergency declaration was issued, the number of infected

people decreased significantly in approximately one–two weeks. However, the home range

had decreased even before the emergency declaration was issued, and the decrease was not sig-

nificant. This might be the reason for the low correlation coefficient. That result was also

found that the COVID-19 cases were slightly compensated for positive indirect effects through

human mobility [41]. The novelty of the present study is that decrease in the home range is a

weak factor correlated with a reduction in the number of infected people.

The conclusions suggest that we need to take some measures other than restricting the

home range for decreasing in the number of infected people; for instance, restrictions imposed

under the state of emergency in the Osaka Prefecture, which applied to the residents of Ibaraki

City during this period. Citizens were required to refrain from not only non-urgent outings

but also from drinking alcohol in a group on the street or in a park; the operation of restau-

rants after 8:00 p.m. was also suspended, and large-scale events were prohibited [42]. Restric-

tions with regard to wearing face masks might also have had an impact on the rate of infection.

For example, as the home range expands, one factor influencing the spread of infection might

be an increase in the number of situations in which people remove their masks, such as while

eating lunch and smoking [43]. In addition, during the third emergency declaration,
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household infections had become a significant problem, which was associated with sharing a

bedroom and speaking with an index case individual for 30 min or longer [44].

Based on these results, it is possible to improve current measures for an emergency declara-

tion. For instance, instead of controlling human mobility, the number of infected people could

be effectively reduced by the imposition of mask mandates, reducing the opening hours of res-

taurants, and increasing the use of hotel facilities for medical treatment. These measures

would also make it possible for people to fulfill their work and study commitments while tak-

ing steps to protect themselves from infection.

The limitation of this study is that we analyzed only the indicator of home range in Ibaraki

City. It is necessary to analyze not only the distance traveled using LH data, but also the place

of stay using area-based data. The analysis might provide a higher correlation coefficient. Fur-

ther, due to privacy issues, the discrepancies between samples of the number of infected people

and human mobility pose a research challenge. Therefore, it is also necessary to analyze the

actual number of infected people and the distance they travel. Moreover, we analyzed data

from Ibaraki City, a suburban city, but human mobility in central cities should also be consid-

ered in determining the significant factors influencing infection spread. In the future, it is nec-

essary to study different types of cities to examine the correlation between home range and the

number of infected people in a Japanese context, such as Osaka City, the more metropolitan

capital of the Osaka Prefecture. In addition, for urban sustainability, it is essential to study the

other factors that correlate with the number of infected cases, such as air pollution, using exist-

ing and upcoming biomass measurement missions.
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