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Members of the genus Endozoicomonas associate with a wide range of marine organisms. Here, we report on the whole-
genome sequencing, assembly, and annotation of three Endozoicomonas type strains. These data will assist in exploring
interactions between Endozoicomonas organisms and their hosts, and it will aid in the assembly of genomes from unculti-
vated Endozoicomonas spp.
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Endozoicomonas spp. (Gammaproteobacteria; Oceanospirillales)
are dominant members of the bacterial community associated

with diverse marine invertebrates, including corals (1–6), sponges
(7), gorgonians (8, 9), molluscs (10–13), and tubeworms (14), as
well as a basal chordate (15). In some hosts, these bacteria have
been observed intracellularly (2, 11, 13). However, despite the
apparent importance of Endozoicomonas spp., it is not clear how
they interact with their host. For example, they are the dominant
bacteria in seemingly healthy animals (3, 8, 15, 16), although they
have been implicated as the causal agent of disease in fish (17).
Clarifying the functional capabilities of Endozoicomonas has been
challenging because they reside in or on a host organism and can
be difficult to culture (6). Only a handful of isolates are available in
culture collections (7, 10, 12, 18, 19). Thus, metagenomic or
single-cell analyses may be useful techniques for assessing the
genomic capabilities of these bacteria; however, a lack of genetic
resources hampers these approaches. To address this issue, we
sequenced the genomes of three publically available Endozoicomo-
nas type strains.

Endozoicomonas elysicola DSM 22380 (12) and Endozoicomo-
nas numazuensis DSM 25634 (7) were obtained from the German
Collection of Microorganisms and Cell Cultures (DSMZ) (Braun-
schweig, Germany), and Endozoicomonas montiporae LMG 24815
(19) was obtained from the Belgian Coordinated Collections of
Microorganisms (BCCM) (Ghent, Belgium). We prepared small-

insert libraries by shearing isolated DNA into 180-bp fragments
and processing with the NEBNext library preparation kit (New
England BioLabs). Long libraries averaging approximately 2 kb
were prepared according to the Nextera mate-pair sample prepa-
ration kit (Illumina). The small-insert libraries were sequenced
using the Illumina HiSeq platform (100-bp paired-end reads),
and the long mate-pair libraries were sequenced using the Illu-
mina MiSeq platform (150-bp paired-end reads). Approximately
10 million paired-end reads were obtained for each library and
each Endozoicomonas strain.

The small-insert reads were trimmed for quality, and the Illu-
mina adapters were removed using Trimmomatic (20). Frag-
ments with both surviving read pairs were then digitally normal-
ized using the recommended protocol in khmer (21–23). The long
mate-pair reads were trimmed using NextClip (24), and frag-
ments with the junction adapter in at least one of the paired reads
were used in the assembly. The small- and long-insert libraries
were error corrected and assembled using the AllPaths-LG assem-
bler (25), and the gaps in the resulting scaffolds were closed using
GapFiller (26). A small number of scaffolds were further joined
after a manual examination of mate-pair mappings using Circos
(27). The genomes assembled into �31 scaffolds, with a scaffold
N50 of �0.92 Mbp (Table 1). The whole-genome sequences were
annotated using the NCBI Prokaryotic Genome Annotation Pipe-
line (http://www.ncbi.nlm.nih.gov/genome/annotation_prok/).

TABLE 1 Sequencing and assembly results for the Endozoicomonas type strains

Strain Species Host organism
GenBank
accession no.

Genome
size (Mbp)

No. of
scaffolds

Scaffold
N50 (Mbp)

No. of
contigs

No. of
ORFsa

No. of 5S
rRNAs

No. of
16S
rRNAs

No. of
23S
rRNAs

G�C
content
(%)

DSM 22380 E. elysicola Sea slug, Elysia ornata JOJP00000000 5.61 2 5.57 21 4,270 8 6 6 46.8
LMG 24815 E. montiporae Coral, Montipora

aequituberculata
JOKG00000000 5.60 20 1.02 83 4,362 8 4 4 48.5

DSM 25634 E. numazuensis Sponge, cf. Haliclona
spp.

JOKH00000000 6.34 31 0.92 131 4,650 3 5 2 47.1

a ORF, open reading frame.
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The Endozoicomonas genomes were large (�5 Mbp; Table 1)
and contained versatile metabolic strategies, including the com-
plete Embden-Meyerhof-Parnas glycolytic pathway, the complete
tricarboxylic acid cycle, and genes for the conversion and assimi-
lation of nitrate. Although a genome sequence of E. elysicola was
already available (28), we provide ordered contigs in an almost-
closed scaffold for gene synteny studies, which was not available
previously.

Nucleotide sequence accession numbers. These whole-
genome shotgun projects have been deposited at DDBJ/EMBL/
GenBank under the accession numbers given in Table 1. The ver-
sions described in this paper are the first versions.
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