
Frontiers in Physiology | www.frontiersin.org 1 February 2021 | Volume 12 | Article 624698

REVIEW
published: 25 February 2021

doi: 10.3389/fphys.2021.624698

Edited by: 
Ravi Nistala,  

University of Missouri, United States

Reviewed by: 
Yanlin Wang,  

University of Connecticut School of 
Medicine, United States

Sophie De Seigneux,  
Geneva University Hospitals (HUG), 

Switzerland

*Correspondence: 
Magaiver Andrade Silva  

magaiver.andrade@unifesp.br

Specialty section: 
This article was submitted to  

Renal and Epithelial Physiology,  
a section of the journal  
Frontiers in Physiology

Received: 01 November 2020
Accepted: 27 January 2021

Published: 25 February 2021

Citation:
Andrade-Silva M, da Silva ARPA, 

do Amaral MA, Fragas MG and 
Câmara NOS (2021) Metabolic 

Alterations in SARS-CoV-2 Infection 
and Its Implication in  
Kidney Dysfunction.

Front. Physiol. 12:624698.
doi: 10.3389/fphys.2021.624698

Metabolic Alterations in SARS-CoV-2 
Infection and Its Implication in 
Kidney Dysfunction
Magaiver Andrade Silva 1,2*, Ana Ruth Paolinetti Alves da Silva 1, 
Mariana Abrantes do Amaral 2, Matheus Garcia Fragas 2 and Niels Olsen Saraiva Câmara 1,2

1 Laboratory of Experimental and Clinical Immunology, Department of Clinical Medicine, Faculty of Medicine,  
Federal University of São Paulo, São Paulo, Brazil, 2 Laboratory of Transplantation Immunobiology, Department of 
Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil

Clinical strategies focusing on pathogen elimination are expected in an infectious-disease 
outbreak, such as the severe coronavirus disease 2019 (COVID-19), to avoid organ 
dysfunction. However, understanding the host response to viral infection is crucial to 
develop an effective treatment to optimize the patient’s conditions. The pathogenic viruses 
can promote metabolic changes during viral infection, favoring its survival, altering cell 
phenotype and function, and causing sustained inflammation and tissue injury. Severe 
acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), the etiological agent of 
COVID-19, provokes systemic and cell metabolic changes and possibly altering lipid and 
glucose metabolism. Besides severe acute respiratory syndrome (SARS), SARS-CoV-2 
can cause acute kidney injury, which has been associated with the severity of the disease. 
Although it is not clear the mechanisms whereby SARS-CoV-2 induces kidney dysfunction, 
it is known that the virus presents kidney tropism, namely, podocytes and proximal tubular 
epithelial cells. Changes in renal cell metabolism and systemic metabolic disorders are 
important events in kidney injury progression. Here, we explored the metabolism and its 
interface with SARS-CoV-2 infection and raised the perspective on metabolism disturbances 
as a critical event to kidney dysfunction in COVID-19.
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INTRODUCTION

The role of metabolic pathways has been little explored in the pathogenesis of several diseases. 
More recently, a substantial number of studies have reported that abnormal systemic or cellular 
metabolism is a central point in several disorders (Hotamisligil, 2006; DeBerardinis and 
Thompson, 2012). The metabolic functions involve different pathways, such as glycolysis, the 
tricarboxylic acid cycle, the pentose phosphate pathway, oxidative phosphorylation, and fatty 
acid oxidation, among many others, which act in an integrated manner to maintain the balance 
and organism homeostasis. Thereof, perturbations in these pathways are associated with the 
development and progression of infection and non-infection disorders (Heaton and Randall, 2010; 
Vastag et  al., 2011; DeBerardinis and Thompson, 2012; Thai et  al., 2014; Ayres, 2020).
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In the last decade, an increasing number of studies aimed 
at investigating the crosstalk between cell metabolism and viral 
infection (Heaton and Randall, 2010; Vastag et  al., 2011; Thai 
et  al., 2014; Moreno-Altamirano et  al., 2019; Thaker et  al., 
2019). These studies demonstrated that several viruses cause 
cell metabolic reprogramming in immune cells, including 
alterations on the glycolic pathway, tricarboxylic acid cycle, 
amino acids, and lipid synthesis (Heaton and Randall, 2010; 
Vastag et al., 2011; Thai et al., 2014; Moreno-Altamirano et al., 
2019; Thaker et al., 2019). The fate of this metabolic perturbation 
is the development of viral strategies to escape from immune 
response and to induce severe tissue inflammation, as reported 
in patients infected with severe acute respiratory syndrome-
coronavirus 2 (SARS-CoV-2; Huang et  al., 2020; Lucas et  al., 
2020), the etiological agent of the coronavirus disease 2019 
(COVID-19). Initial studies reported that SARS-CoV-2 causes 
alterations in systemic and cellular homeostasis, affecting energy 
metabolism (Bruzzone et  al., 2020; Wu et  al., 2020), and it 
may influence the normal function of several organs, contributing 
to the severity of COVID-19.

The entry of SARS-CoV-2  in host cells depends on the 
interaction between the Spike protein and angiotensin-converting 
enzyme 2 (ACE2). The Spike protein needs to be  priming by 
specific proteases (Sungnak et  al., 2020), such as TMPRSS2 
(Hoffmann et  al., 2020) and furin protease (Vankadari, 2020). 
Initially, SARS-CoV-2 infects the epithelial cells in the lungs 
(Zou et  al., 2020). However, it can target other organs, which 
can considerably aggravate the clinical condition of hospitalized 
patients (Gupta et  al., 2020), becoming COVID-19 a multiorgan 
disease. Kidneys are one of the main organs affected in COVID-
19, resulting in elevated proteinuria, hematuria, and even acute 
kidney injury (AKI; Cummings et  al., 2020; Hirsch et  al., 2020), 
a severe complication in the intensive care unit associated with 
high mortality and morbidity (Braun et al., 2020). Studies performed 
in China, the United  States, and the United  Kingdom reported 
an AKI incidence of 17–43% in hospitalized patients with COVID-
19, but these numbers, which are higher in patients in critical 
condition, range from 61 to 76% (Vijayan and Humphreys, 2020).

Histological analysis of post-mortem tissue demonstrated 
that viral RNA in kidneys correlates with the renal tropism 
of SARS-CoV-2 with early death and AKI development (Braun 
et al., 2020). SARS-CoV-2 preferentially infects tubular epithelial 
cells (Puelles et  al., 2020), considered the epicenter of renal 
damage in the kidneys. A recent study has shown a frequency 
of symptoms related to kidney damage in confirmed COVID-19 
patients hospitalized in Wuhan (China), where 43.9% of patients 
had proteinuria, and 26.7% had hematuria, increased serum 
creatinine levels and blood urea nitrogen, and a glomerular 
filtration less than 60 ml/min/1.73 m2 was observed in around 
~13% of patients (Cheng et  al., 2020). Other studies have also 
suggested that kidney function is a marker for mortality in 
COVID-19 patients (Brienza et  al., 2020; Naicker et  al., 2020; 
Trabulus et  al., 2020).

Currently, the exact mechanisms involved in renal damage 
during COVID-19 have not been clear, and probably are 
multifactorial. Changes in systemic and cell metabolism in 
COVID-19 may exert an essential contribution to kidney 

dysfunction. In this review, we  first explore the interface of 
metabolism and SARS-CoV-2 infection (especially at the cellular 
level), then raising a perspective that systemic and cellular 
metabolism disorders should be  considered an important 
mechanism of renal dysfunction in COVID-19.

EMERGING PERSPECTIVES OF 
METABOLISM IN COVID-19 
PATHOGENESIS

Previous reports about virus infections demonstrated the 
importance of metabolism on the disease outcome. In 2003, 
the most critical cases of SARS happened in patients with 
metabolic disorders (Booth et  al., 2003; Ayres, 2020), which 
demonstrate the importance to understand how metabolic 
changes could affect the course of infectious diseases as a 
warning of what to expect on future viral infections. Obesity, 
type 2 diabetes (T2D), and hypertension are related to the 
worst prognosis of COVID-19 (Guan et  al., 2020).

It is well established that one of the critical phases of 
COVID-19 is the cytokine storm generated by the host 
response due to infection, causing an extreme inflammation 
process (Tay et  al., 2020). Patients with previous state of 
chronic inflammation, as observed in most metabolic disorders 
(Luft et  al., 2013), have more chances of presenting the 
cytokine storm, causing a physiological unbalance and 
increased health aggravation. In obesity cases, the poor 
condition could be due to the difficulty of ventilation associated 
with diaphragm excursion hampered (Burns et  al., 1994); 
or T2D that causes decreased respiratory function, pulmonary 
fibrosis, and chronic obstructive pulmonary disorder (Ehrlich 
et  al., 2010). However, the significant risk for patients with 
an impairment in metabolic health could be beyond respiration 
problems. It can also be  associated with the modification 
of metabolism in different organs. This section described 
the emerging studies focusing on SARS-CoV-2 infection and 
its interface with energy metabolism.

Lipid Metabolism and COVID-19
Recent studies have demonstrated the multifaceted roles of 
lipids in viral infection, involving lipid signaling, synthesis, 
and host cell metabolism modulation to subvert the protective 
immune response (Heaton and Randall, 2011; Murillo et  al., 
2015). Some studies have demonstrated that interruption in 
lipid synthesis impairs virus replication, suggesting that lipid 
pathways can represent a relevant target in the investigation 
of viral disorders (Merino-Ramos et al., 2016). Patients infected 
with SARS-CoV-2 presented altered levels of lipids. Diglycerides, 
free fatty acids, and triglycerides were identified in higher 
amounts in the fatality group (Wu et  al., 2020). Furthermore, 
ex vivo and in vitro studies reported increased viral replication 
in cells with excessive intracellular lipid accumulation (Dias 
et al., 2020). These initial findings suggest that in SARS-CoV-2 
infection, systemic and cell lipid metabolism disturbances can 
be  critical event in COVID-19 progression.
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In a recent study conducted by Thomas et  al. (2020), 
the authors investigated the metabolic effects of SARS-CoV-2 
infection by analyzing serum metabolites from patients with 
COVID-19 in comparison with COVID-19-negative controls 
(Thomas et  al., 2020). The results demonstrated an increase 
of free fatty acids in circulation, especially in patients with 
high inflammatory cytokine levels (Thomas et  al., 2020). 
Accordingly, another finding revealed alterations in a diversity 
of metabolites in serum of the COVID-19 patients, 
highlighting the expressive reduction of malic acid and 
glycerol 3-phosphate in fatality, severe and mild COVID-19 
groups (Wu et  al., 2020). Both metabolites, malic acid and 
glycerol 3-phosphate, are involved in energy metabolism, 
the first enters in tricarboxylic acid cycle in mitochondria, 
and the latter is a chemical intermediate in the glycolysis 
pathway, evidencing the alteration in metabolites that 
participate in human energy metabolism (Wu et  al., 2020). 
Similar altered lipid profile was observed in SARS-CoV 
infection, even 12  years after recovery from the disease, 
patients infected with SARS-CoV revealed dysregulated levels 
of free fatty acids in the serum (Wu et  al., 2017).

Also, SARS-CoV-2-infected human bronchial epithelial cells 
presented 59–65% of the differentially expressed genes related 
to metabolism, including 8–18% of the genes associated with 
lipid metabolic pathways (Ehrlich et  al., 2020). However, 
cellular and molecular mechanisms that orchestrate lipid 
metabolism during SARS-CoV-2 infection are poorly described 
so far. Recently, it was observed the lipid bodies formation 
in monocytes from infected patients and in vitro assay of 
SARS-CoV-2 infection (Dias et  al., 2020). The lipid bodies 
have been described as a source of inflammatory mediators 
and contribute to pathogen escape from immune system 
elimination (D’Avila et  al., 2006, 2008; Mattos et  al., 2011; 
Almeida et  al., 2014). Dias et  al. (2020) observed the 
colocalization of lipid bodies and SARS-CoV-2, suggesting 
them as a fuel for viral replication. The inhibition of lipid 
bodies formation reduced the viral load, cell death, and levels 
of inflammatory mediators. Mechanistically, the authors reported 
an increase in expression of transcription factor sterol regulatory 
element-binding protein 1 (SREBP-1) and the nuclear receptor 
peroxisome proliferator-activated receptor (PPARγ) after SARS-
CoV-2 infection, which could be  an indicative of cell 
reprogramming toward a lipogenic phenotype. The inhibition 
of the SREBP in isolated lung epithelial cells and mice infected 
with the Mers-CoV virus suppresses viral replication (Yuan 
et  al., 2019), since SREBP is considered a master regulator 
of lipogenesis (Eberlé et  al., 2004).

SARS-CoV-2 changes lipid profile in the lung epithelial cells 
by interfering in PPARα and PPARγ expression or activity 
(Ehrlich et al., 2020), culminating in lipotoxicity, which became 
these molecules an attractive potential therapeutic target in 
COVID-19 patients (Heffernan et  al., 2020). PPARγ acts as a 
transcription factor important to CD36 expression, involved 
in lipid uptake (Lim et  al., 2006). While PPARα is associated 
with control of nuclear genes encoding fatty acid oxidation 
enzymes (Song et  al., 2010). Clinical trials using fenofibrate, 
a PPARα agonist, are in course in the United  States as a 

metabolic intervention in COVID-19,1 which evidence the 
importance of lipid metabolism dysfunction in COVID-19 
pathogenesis and progression.

Glucose Metabolism and COVID-19
Besides lipid homeostasis disruption, several studies observed 
an increase of glycolysis activity in immune and epithelial cells 
from patients with COVID-19 (Codo et  al., 2020; Moolamalla 
et  al., 2020). An unmanageable blood glucose level is associated 
with poor diagnoses and risk of mortality, according to a study 
with 7,000 patients infected with coronavirus (Zhu et  al., 2020).

Codo et  al. (2020) demonstrated that monocytes infected 
with SARS-CoV-2 presented increase of ACE2 expression and 
viral load depending on glucose concentration. SARS-CoV-2-
infected human monocytes presented a greater glycolytic capacity 
and reserve. The same was not observed in human monocytes 
infected with influenza A virus and respiratory syncytial virus 
(RSV). Besides, the expression of inflammatory genes (such 
as TNF-α, IL-6, IL-1β, INF-α, and INF-β) was glucose dose-
dependent and viral replication and enhanced ACE2 expression 
and cytokines are decreased once the flux of glucose was 
blocked by 2-deoxy-D-glucose (2-DG). However, when the ATP 
synthase was blocked (by oligomycin), the viral load was even 
higher (Codo et  al., 2020). Therefore, glycolysis was essential 
for viral replication in monocytes, being a good source of 
carbon, similarly observed in epithelial cells (Caco-2 cells) 
infected with SARS-CoV-2 (Bojkova et  al., 2020; Codo et  al., 
2020). One factor that may explain glycolysis metabolic changes 
in the infected cells is the increased expression of HIF-1α, 
which has been implicated in the increase of glycolytic genes 
expression and IL-1β release (Tannahill et  al., 2013). HIF-1α 
can regulate the activity of genes related to glucose transport 
and processing (LDH-A, PFKFB3, GLUT-1, PKM2), which 
seems to be  overexpressed in monocytes from COVID-19 
patients, but not at the same intensity as influenza virus and 
RSV-infected monocytes (Codo et  al., 2020).

Monocytes and macrophages are the most common immune 
cell types found in the lungs of patients infected with COVID-19 
recruited in response to infection and injured lung cells (Bost 
et al., 2020). These cells respond to infection with the exacerbated 
release of several inflammatory cytokines and subsidy COVID-19 
outcome (Blanco-Melo et al., 2020; Tay et al., 2020). The previous 
study demonstrated that during SARS-CoV infection, a delay 
in type I interferon (IFN) expression (which is involved in the 
antiviral response) was associated with an inappropriate 
inflammatory response and lung pathology (Channappanavar 
et al., 2016), providing a favorable environment for viral replication 
and tissue injury. Similarly, in SARS-CoV-2 infection, Blanco-
Melo et  al. (2020) revealed that occurs a reduction of antiviral 
response, concomitantly with an exacerbated inflammatory 
response evidenced by chemokines and IL-6 production (Blanco-
Melo et  al., 2020). However, it was not clear whether type 
I  IFN response was delayed, which could drive COVID-19 
progression. Based on previous studies, it is plausible to suggest 

1 clinicaltrials.gov/ct2/show/NCT04517396
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that modulation of glycolysis in early type I IFN response could 
be  a strategy to increase the host defense against the virus at 
the beginning of infection (Zhang et  al., 2019; Ayres, 2020).

Recently, it was described how glycolysis can interfere with 
antiviral signaling. The hexokinase-2 is the initial enzyme of 
glycolysis, and its activity is suggested to be  dependent on 
physical interaction with mitochondrial antiviral-signaling protein 
(MAVS) and dampened IFN-I production (Zhang et al., 2019). 
The IFN-I production in viral infection is dependent on the 
virus RNA recognition in the cytosol by retinoic-acid-inducible 
gene I (RIG-I)-like receptor (RLR), which leads to the formation 
of the RIG-I-MAVS-type I  IFN axis (Zhang et  al., 2019). The 
disruption of the MAVS interaction with hexokinase-2 increases 
type I IFN production. Corroborating this, cells incubated with 
a hexokinase inhibitor increased type I  IFN production, 
supporting the idea that the glycolysis activity interferes with 
the protective response in viral infection. The excessive glycolysis 
affects interferon production due to lactate production (one 
of the metabolites produced in glycolysis), which is internalized 
and binds to MAVS, impairing its interaction with RIG-I (Zhang 
et  al., 2019). In SARS-CoV-2, the role of the nucleic acid 
sensor in the inflammation and metabolism of the different 
organs target by SARS-CoV-2, such as kidneys, still needs to 
be  investigated to better understand the mechanisms in 
COVID-19 progression.

The kidneys are one of main organs in the regulation of 
systemic glucose metabolism. Because renal cells express ACE2, 
the kidneys become one of the main targets for SARS-CoV-2, 
and changes in renal metabolism may underlie the mechanisms 
by which SARS-CoV-2 induces AKI and aggravates clinical 
conditions of COVID-19 patients. Changes in systemic 
metabolism (as occurs in metabolic diseases) and in renal cell 
metabolism are reported as crucial events on decline of 
renal function.

KIDNEY DYSFUNCTION AND 
METABOLISM

Kidney dysfunction has long been known as an important 
consequence of metabolic disorders (Cohen, 1962; Joven et  al., 
1993). In metabolic syndrome, a clinical condition characterized 
by cardiovascular problems, disturbances in the metabolism 
of lipid and glucose have high impact on renal function (Locatelli 
et  al., 2006; Ikee et  al., 2008). Conversely, the progressive 
decline of the kidney function, dependent or independent of 
metabolic etiology, causes changes in the systemic metabolism 
(de Boer and Utzschneider, 2017). In physiological conditions, 
kidneys are responsible for up to 40% of the glucose production 
by gluconeogenesis, and perturbation in the metabolism of 
the renal cells, such as proximal tubular epithelial cells (PTECS), 
profoundly impacts on glucose metabolism, affecting glycolytic 
and gluconeogenic pathways (Legouis et  al., 2020). Besides, 
other metabolic routes can be  affected in renal injury, such 
as lipid and mitochondrial metabolism, starting in renal cortex, 
followed by medulla and plasma (Wei et al., 2014), demonstrating 
that altered renal energy metabolism, specifically in renal cell, is 

correlated with kidney injury development and it can affect 
systemic metabolism.

The metabolic changes occur at the cellular level and 
perturbations in cell energy hemostasis can lead to acute and 
chronic disorders. The source of energy for each renal cell 
type is specific, for instance, glucose is the primary energy 
source of podocytes, mesangial, and endothelial cells (Forbes, 
2016). While PTECS supply their energy demand from fatty 
acid oxidation (Kang et  al., 2015; Han et  al., 2017). PTECS 
are the ones that need the most significant production of ATP 
because of the intense transport and reabsorption of solutes 
in the kidney (Bhargava and Schnellmann, 2017), and are 
among the renal cell types the most sensitive to renal damage.

Fatty acids act as mitochondrial substrates for oxidative 
metabolism in proximal tubules, and transportation of fatty 
acids into mitochondria is controlled by carnitine 
palmitoyltransferase (CPT) 1 and 2. To produce ATP from 
β-oxidation, fatty acids receive a coenzyme A (CoA) group 
through enzyme fatty acyl action synthase, resulting in a 
fatty acyl CoA. The fatty acyl CoA is converted to acylcarnitine 
by the action of CPT1 and transported to the mitochondrial 
inner space. In the mitochondria, acylcarnitine returns to a 
fatty acid acyl CoA form by the CPT2, located in mitochondrial 
inner membrane (O’Neill et  al., 2016). In a recent study, 
CPT1a overexpression in renal tubule decreases renal injury 
by restoring mitochondrial homeostasis (Miguel et  al., 2020), 
evidencing that mitochondria dysfunction is crucial in kidney 
disease development, and enzymes involved in fatty acids 
oxidation have a fundamental role in maintaining the 
mitochondria homeostasis. Kang et  al. (2015) demonstrated 
that CPT1 inhibition reduced ATP production, causing cell 
death, dedifferentiation, and intracellular lipid accumulation 
in PTECS, which are common renal injury features. These 
enzymes expression is regulated by transcription factors named 
PPAR-α. Reduction in PPARα leads to a decreased expression 
of CPT1 and the peroxisomal acyl-coenzyme A oxidase 1, 
reflecting in the fatty acid oxidation (Kang et  al., 2015). 
PTECS are susceptible to lipid accumulation, and a large 
number of studies demonstrated that excess of renal lipids 
causes tissue damage (Bobulescu et al., 2008; Bobulescu, 2010; 
Falkevall et  al., 2017; Yan et  al., 2018).

Mitochondrial damage and inflammatory response are classical 
events in AKI. The increase of mitochondria number is a 
protective event during experimental AKI (Tran et  al., 2016). 
In another context, in vitro experiments using human PTECS 
stimulated with cisplatin (anticancer drug that causes 
nephrotoxicity and AKI development), it was observed a reduction 
in the mitochondrial fatty acid oxidation (Maekawa et al., 2019), 
leading to lipid accumulation. The lipid excess induces reactive 
oxygen species production, apoptosis, inflammation, profibrotic 
factors release, and organelle damage (Weinberg, 2006; Bobulescu, 
2010). In addition, lipotoxicity can occur due to the impact 
of hypoxia on them (Ruidera et  al., 1988; Bobulescu et  al., 
2008), which is one of the mechanisms that potentially causes 
tubular damage. Based on these findings, renal lipotoxicity may 
be  contribute to kidney damage in COVID-19 patients, since 
individuals with COVID-19 present respiratory insufficiency 
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that leads them to hypoxemia, worsening peripheral tissue 
ischemia (Del Vecchio and Locatelli, 2020).

Besides the alterations in lipid metabolism observed in 
renal dysfunction, the metabolism of glucose can also 
be  altered leading to deleterious events. During AKI, the 
PTECs present an increased glycolytic profile, and this 
change is exceptionally critical in their physiology during 
recovery after AKI. In ischemia-reperfusion injury, the 
metabolic switch occurs early during regeneration after insult 
and tubules become atrophic. However, even regenerating 
tubules present increased glycolytic enzyme expression, and 
this irreversibility of metabolic profile led the cell to hypoxia 
and induced the profibrotic signaling (Lan et  al., 2016), 
which can contribute to the progression from AKI to chronic 
pathology. In line with this, it was observed an increase 
in glycolytic profile in experimental and clinical AKI, in 
contrast with the reduction of gluconeogenesis (Legouis 
et al., 2020). It was observed that rate-limiting gluconeogenesis 
enzymes were decreased during the early phase following 
ischemia-reperfusion injury, but the expression of glycolytic 
enzymes was increased. The reduction of renal gluconeogenesis 
can contribute to hypoglycemia in stress conditions, 
compromising the systemic metabolism and contributing to 
worsening patient condition. Metabolic reprogramming of 
glucose metabolism during AKI was associated with mortality, 
as reported by Legouis et  al. (2020). COVID-19 patients 
with metabolic disorders have a worsening of the clinical 
condition associated with acute kidney disease, which suggests 
that dysfunction in systemic metabolism may contribute to 
renal injury in COVID-19.

METABOLISM AND SARS-CoV-2: 
POSSIBLE IMPLICATIONS ON RENAL 
INJURY DEVELOPMENT

Currently, it is already known that SARS-CoV-2 can change 
host metabolism. The consequences of the metabolic alteration 
in COVID-19 for organ functions, especially the kidneys, are 
poorly described. An investigation with 33 diagnosed patients 
with COVID-19  in comparison with COVID-19-negative 
individuals demonstrated that altered metabolite levels of the 
fatty acid and tryptophan metabolism in infected patients were 
correlated with clinical markers of inflammation (IL-6 and 
C-reactive protein) and renal function (BUN and creatinine; 
Thomas et  al., 2020). Besides, in vitro studies demonstrated 
the SARS-CoV-2 potential of modulating the lipid metabolism 
in monocytes and lung epithelial cells (Dias et  al., 2020). The 
abnormal metabolism functioning is critical for renal injury 
development, which makes systemic and cellular metabolism 
in COVID-19 an exciting issue of investigation for further 
studies in the context of renal injury.

A retrospective analysis found that patients with COVID-19 
presented altered blood glucose levels (hypoglycemia and 
hyperglycemia) in the course of disease accompanied by 
poor outcomes, including AKI. In the patient’s group that 
achieves a mean glycemia of 140  mg/ml, 24% of them 

experienced at least one episode of hypoglycemia (blood 
glucose levels below 70  mg/dl) and presented an increased 
risk of AKI and mortality. However, the exact cause of 
hypoglycemia in these patients is unknown (Klonoff et  al., 
2020). Legouis et  al. (2020) observed that gluconeogenesis 
is impaired in renal PTECs in clinical and experimental 
AKI. In this study, the author verified the increase of 
glycolytic enzymes and reduction of gluconeogenesis, 
demonstrating that the glucose metabolism reprogramming 
in renal PTECs had an effect on systemic levels of glucose 
and was correlated with patient mortality. The high death 
rates in COVID-19 associated to AKI may be due to alterations 
in the metabolism of PTECs caused by systemic or direct 
infection of renal cells by SARS-CoV-2.

The molecular mechanisms involved in metabolic 
dysfunction in COVID-19 are still sparsely described. An 
in silico study demonstrated the interaction of the spike 
protein (S protein) from SARS-CoV-2 with human innate 
immune receptor, named Toll-like receptors (TLRs), which 
are a type of pattern recognition receptors. Molecular docking 
revealed the potential binding of the S protein of SARS-CoV-2 
to TLR-1, -4, and -6, presenting binding energy value of 
−57.3, −120.2, and −68.4, indicating that TLR4 has a high 
affinity to S protein following TLR6 and TLR1 (Choudhury 
and Mukherjee, 2020). TLR4 has been associated with 
inflammatory conditions and its activation induces metabolic 
changes in macrophages and dendritic cells, altering 
mitochondrial, lipid, and glycolytic homeostasis (Everts et al., 
2014; Perrin-Cocon et  al., 2018; Lauterbach et  al., 2019). 
In renal context, TLR4 activation induces severe inflammation 
and AKI (Cenedeze et  al., 2007; Andrade-Silva et  al., 2018). 
However, whether the metabolic dysfunction of SARS-CoV-2-
infected patients can be  associated with TLRs signaling in 
the kidneys remains unclear.

Therefore, further studies aiming at cellular and molecular 
mechanisms in SARS-CoV-2 infection and kidney pathology 
are urgent topics of investigation.

A proposal mechanism for the acute renal dysfunction 
development in COVID-19 and its interface with metabolism 
is shown in Figure  1.

FINAL REMARKS AND PERSPECTIVES

The interface between cell metabolism and inflammation is 
an emerging topic in immune and non-immune disorders. 
Disturbances in metabolism are associated with inflammation 
and targeting host cellular metabolism in severe disease is 
undoubted point to be  considered in clinical management 
of the affected patients. Urgently, the world hopes for solutions 
for COVID-19 complications. Undoubtedly, the kidney 
represents a critical organ that, when affected, can 
be  determinative in morbidity and mortality of COVID-19 
patients. The focus on COVID-19 should be  directed not 
only on pathogen elimination but also on the physiological 
alterations during infectious processes, such as systemic and 
cellular metabolism changes and more studies to clear how 
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metabolism can be determinative in tissue injury progression. 
Currently, little is known about the long-term effects of SARS-
CoV-2, but another species of coronavirus already demonstrated 
the potential to cause metabolic disorders even many years 
after the patient recovery of infection. Understanding the 
systemic and intracellular metabolic alterations and its 
consequences in COVID-19 will help to design better 
pharmacological therapy, repurposing drugs used in metabolic 
disorders aiming at improvement of hospitalized patient clinical 
conditions, and reduction of death rates or sequelae.
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