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Neurodegenerative diseases, including Alzheimer’s, Parkinson’s, Huntington’s, and
amyotrophic lateral sclerosis, are characterized by a progressive loss of selective
neuron subtypes in the central nervous system (CNS). Although various factors
account for the initiation and development of these diseases, accumulating evidence
shows that impaired mitochondrial function is a prominent and common mechanism.
Mitochondria play a critical role in neurons and are involved in energy production,
cellular metabolism regulation, intracellular calcium homeostasis, immune responses,
and cell fate. Thus, cells in the CNS heavily rely on mitochondrial integrity. Many aspects
of mitochondrial dysfunction are manifested in neurodegenerative diseases, including
aberrant mitochondrial quality control (mitoQC), mitochondrial-driven inflammation,
and bioenergetic defects. Herein, we briefly summarize the molecular basis of
mitoQC, including mitochondrial proteostasis, biogenesis, dynamics, and organelle
degradation. We also focus on the research, to date, regarding aberrant mitoQC
and mitochondrial-driven inflammation in several common neurodegenerative diseases.
In addition, we outline novel therapeutic strategies that target aberrant mitoQC in
neurodegenerative diseases.

Keywords: neurodegenerative diseases, mitochondrial quality control, mitochondrial dynamics, mitophagy,
mitochondrial biogenesis, inflammation

INTRODUCTION

Mitochondria are highly dynamic double-membrane organelles that play a critical role in energy
generation, metabolite biosynthesis, intracellular calcium homeostasis, immune responses, and
apoptosis (Verdin et al., 2010). Mitochondria generate ATP via oxidative phosphorylation
(OXPHOS), where electrons are passed from the high-energy substrate to oxygen by means of the
electron transport chain (ETC). In addition to ATP production, reactive oxygen species (ROS) can
be formed (Sousa et al., 2013), which can damage proteins, membrane lipids, and nucleic acids.
The stability of mitochondrial quality and the integrity of mitochondrial morphology are necessary
for the normal number, distribution, and correct functions of the organelle.

While mitochondria play a significant role in sustaining cell survival and metabolic
homeostasis, mitochondrial dysfunction causes ATP deficiency, an overload of superoxide
anions, an increase in proapoptotic molecules, and, ultimately, cell death. Cells have therefore
developed a mitochondrial quality control (mitoQC) system to overcome mitochondrial
defects, which include mitochondrial proteostasis, mitochondrial biogenesis, mitochondrial
dynamics, and mitophagy (Anzell et al., 2018). Mitochondrial quality control thus represents
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the net balance between the biogenesis rate and degradation rate
(Dominy and Puigserver, 2013). Specifically, the homeostasis
of mitochondrial dynamics, fission, and fusion maintains
the morphology and volume of mitochondria. Mitochondrial
biogenetic failure, characterized by cytoplasmic calcium
elevation, oxidative stress, and depletion of mitochondrial DNA
(mtDNA), is a key stimulator of inflammatory response
pathways (Mills et al., 2017). Eliminating dysfunctional
mitochondria is achieved via various pathways, especially
the Parkin/PINK1 pathway (Whitworth and Pallanck, 2017).

In the central nervous system (CNS), mitoQC plays
a critical role in neurons as they are long-lasting cells,
consequently accumulating defects in themselves (Khalil and
Liévens, 2017). As a result of mitochondrial dysfunction,
neurons cannot meet the extremely high demand of energy
and metabolism, resulting in neuronal degeneration (Meng
et al., 2019). Indeed, nonreversible mitochondrial impairment
has been shown to trigger cellular damage in neurons, which,
in turn, initiates both apoptosis and necrosis (Galluzzi et al.,
2009). In addition, defective mitochondria can disrupt glia.
It has been reported that mitochondrial fission regulates
the activation of nuclear factor κ light-chain enhancer of
activated B cells (NF-κB) and mitogen-activated protein kinase
(MAPK) signaling and subsequently regulates the release of
proinflammatory mediators. Moreover, mitochondrial ROS
generation is regulated by mitochondrial fission in microglia
(Park et al., 2013, 2015). Chronic activation of microglia may
inhibit the expression of proinflammatory mediators, such as
cytokines and ROS, contributing to neuronal defection. In
addition, the accumulation of mitochondrial-derived ROS has
been shown to activate the NLRP3 inflammasome-dependent
inflammatory pathway in order to elicit chronic inflammation,
because the NLRP3 inflammasome complex triggers the
production of interleukin 1β (IL-1β; Zhou et al., 2011). In
astrocytes, IL-1β can induce mitochondrial fragmentation and
impair the respiration rate, disrupting cellular balance in the CNS
(Motori et al., 2013). Therefore, aberrant mitoQC seems to be
a central node that mediates the vicious cycle between neuronal
and glial injuries.

Herein, we first summarize the molecular basis of mitoQC
including mitochondrial biogenesis, proteostasis, dynamics, and
mitophagy. We then concentrate on the status of abnormal
mitoQC in the initiation and progression of a number of
common neurodegenerative diseases.

FUNDAMENTALS OF mitoQC

Mitochondrial Biogenesis
New mitochondria and the proteins involved in OXPHOS are
generated via mitochondrial biogenesis in order to replace
defective mitochondria (Li et al., 2017). Activated biogenesis
plays a critical role in preventing cell death, thereby maintaining
the energy production and integrity of mitochondria (Khalil and
Liévens, 2017).

The interaction between peroxisome proliferator-activated
receptor γ coactivator 1α (PGC-1α) and nuclear receptors (e.g.,
PPAR-γ, estrogen-related receptor α) or transcription factors

such as nuclear respiratory factors (NRFs) harmonizes the
generation of mitochondrial components between the nuclear
and mitochondrial genomes (Puigserver and Spiegelman, 2003).
Nuclear respiratory factors modulate the release of respiratory
complex subunits (Wu et al., 1999), the proteins involved in
mitochondrial import (Blesa et al., 2007) and heme biosynthesis
(Braidotti et al., 1993). Furthermore, NRFs modulate the
production of mitochondrial transcription factor A (TFAM),
which is involved in mtDNA transcriptional and replication
processes (Virbasius and Scarpulla, 1994). Hence, activation of
the PGC-1α–NRF–TFAM pathway leads to synthesis of both
mtDNA and proteins and the generation of new mitochondria.

In addition to PGC-1α, other factors are involved
in mitochondrial biogenesis, such as silent mating type
information regulation two-1 (SIRT1) and adenosine
monophosphate–activated protein kinase (AMPK). Silent
mating type information regulation two-1 can directly bind
to and activate PGC-1α in order to modulate transcription of
respiration-related genes in mitochondria (Lagouge et al., 2006).
In addition, during energy-demanding periods, AMPK kinase
inhibits ATP metabolism while triggering ATP production.
Subsequently, AMPK stimulates mitochondrial biogenesis and
activates PGC-1α by direct phosphorylation (Jager et al., 2007) or
by indirect stimulation of SIRT1 (Cantó et al., 2009). Therefore,
the AMPK–SIRT1–PGC-1α axis plays a pivotal role in stabilizing
energy metabolism in defective cells.

Mitochondrial Proteostasis
In order to deal with mitochondrial stress, there is constant
crosstalk between the mitochondria, the nucleus, and the cytosol,
triggering transcriptional, translational, and posttranslational
programs, aiming at restoring correct mitochondrial function.
One major adaptive pathway activated by this mitochondria-
nuclear communication is the mitochondrial unfolded protein
response (UPRmt), which ensures that mitochondrial-specific
proteins are correctly translated, folded, and degraded within
the organelles in response to stress (Jovaisaite and Auwerx,
2015). Maintaining mitochondrial proteostasis is achieved by
chaperones that fold and assemble proteins and proteases
that degrade excessively damaged proteins (Bragoszewski
et al., 2017). Heat shock proteins (Hsps) import newly
generated mitochondrial proteins from the cellular matrix
into mitochondria, while maintaining their initial structure
(Ostermann et al., 1989; Voos et al., 1996; Liu et al., 2001). Heat
shock proteins also retain damaged mitochondrial proteins in
order to prevent them from aggregation when they are exposed
to mitochondrial stress (Bender et al., 2011). If proteins become
irreparable, Hsp70 recognizes and degrades them (Wagner et al.,
1994). Mitochondrial proteases function to eliminate damaged
or misfolded proteins inside mitochondria. There are four
AAA+–ATP-dependent proteases responsible for mitochondrial
protein quality control, including the i-AAA protease, the
m-AAA protease, LON, and ClpXP (Lebeau et al., 2018), which
localize to the inner membrane or the mitochondrial matrix.
Irreparable proteins are unfolded through an ATP-dependent
process mediated by the AAA+ domains of these proteases
(Puchades et al., 2017) and are, subsequently, translocated
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to a protected proteolytic core for degradation. In addition,
the ubiquitin-protease system selectively tags the proteins of
the outer mitochondrial membrane (OMM) with a lysine
48-linked polyubiquitin chain, resulting in their elimination
(D’Amico et al., 2017).

Mitochondrial Dynamics: Fission and
Fusion
Mitochondrial fission and fusion construct a constant dynamic
network, which controls the morphology and population
of mitochondria and allows the upgrade of substrates. The
dynamic balance is critical for regulating mitochondrial
division in cell division and differentiation, as well as for
maintaining mitochondrial integrity and cell survival under
conditions of stress (Twig et al., 2008). Mitochondrial fission
facilitates the segregation of damaged mitochondria from
healthy mitochondria, whereas mitochondrial fusion allows two
mitochondria to exchange components, such as DNA, proteins,
and metabolites, in order to repair each other (Twig et al., 2008;
van der Bliek et al., 2013; Pickles et al., 2018). The equilibrium
of fission and fusion provides a balance between small defective
mitochondria and long interconnected mitochondrial networks,
which is crucial for normal mitochondrial function and,
accordingly, cell function (Calo et al., 2013).

Mitochondrial fission is mediated by dynamin-related protein
1 (Drp1), a GTPase (Smirnova et al., 2001). Upon activation,
Drp1 can relocate to the OMM, where it forms oligomers
that can wrap around mitochondria, and eventually divide a
mitochondrion into two separate organelles via GTP hydrolysis
(Smirnova et al., 2001). Drp1 has been shown to interact with
four mitochondrial receptor proteins on the OMM, including
fission 1 (Fis1), mitochondria fission factor (Mff), mitochondrial
dynamics protein of 49 kDa (MID49), and MID51 (Palmer et al.,
2011; Zhao et al., 2011). Recent studies have also demonstrated
that mitochondria-associated membranes (MAMs) and the
endoplasmic reticulum (ER) assist the recruitment of Drp1 to
the OMM, which recapitulates the status of mitochondrial
division sites (Friedman et al., 2011). While Drp1 governs the
process of mitochondrial fission, there is also a small amount
of Drp1-independent mitochondrial fission (Roy et al., 2016).
The cytoskeleton and its motor proteins can generate a traction
force, which is able to tear the mitochondria into two pieces.
In mammalian cells, dynein drags mitochondria to move along
microtubules, whereas kinesin motors move in the opposite
direction. If mitochondria are pulled by both dynein and kinesin,
they can be cut into two parts (Schwarz, 2013; Lin and Sheng,
2015). Furthermore, during cell division, the actin-mediated
contractile ring may generate the force whereby mitochondria
can be torn into two separate structures.

Fusion of the inner mitochondrial membrane (IMM) is
regulated by optic atrophy 1 (OPA1), and fusion of the OMM
is mediated by mitofusins (Mfns). Long isoforms of OPA1
(L-OPA1) are destined for proteolysis by intramitochondrial
proteases and converted into short isoforms called S-OPA1 (Song
et al., 2007). It has been reported that L-OPA1 is tagged on
the IMM, whereas S-OPA1 is tagged on the intermembrane
space (Satoh et al., 2003; Cipolat et al., 2006; Ishihara et al.,

2006). Long isoforms of OPA1 interact with S-OPA1 in order
to modulate IMM fusion (Song et al., 2007; Zick et al., 2009).
However, under stress, the decreased mitochondrial membrane
potential (∆ψm) induces massive conversion of L-OPA1 to
S-OPA1, thus changing the fusion progress (Head et al.,
2009). Outer mitochondrial membrane fusion is modulated by
Mfn1 and Mfn2, which have very similar sequences (Santel
and Fuller, 2001). Mitofusins can interact with each other and
form homodimers or heterodimers because Mfns have a GTPase
domain and two coiled-coil domains (Rojo et al., 2002; Chen
et al., 2003). Mitofusins are activated by GTP hydrolysis and
then modulate their structure, causing the fusion of the OMM
in surrounding mitochondria (Chen et al., 2003).

Mitophagy
Mitophagy plays a critical role in the degradation and recycling
of defective mitochondria (Soubannier et al., 2012; McLelland
et al., 2014) and functions by eliminating damaged mitochondria
and inhibiting the production of ROS and apoptotic-related
factors. During the process of mitophagy, mitochondria are
swallowed by phagophores and then form an autophagosome
that subsequently fuses with a lysosome. Mitophagy requires
adequate lysosomes, and therefore, mitophagy often takes place
in the perinuclear space of cells and axons (Soubannier et al.,
2012; McLelland et al., 2014).

Mitophagy has several mechanisms that are predominantly
regulated by the PINK1/Parkin pathway (Suen et al., 2010; Rub
et al., 2017), which is a pathway that is involved in Parkinson’s
disease (PD). Mitophagy involves initially removing fragmented
mitochondria with a lower mitochondrial membrane potential
(∆ψm), whereas those with a high ∆ψm undergo fusion
(Twig et al., 2008). In mitophagy, mitochondrial fragmentation
is dominantly induced by the ubiquitination and degradation
of mitofusions via the PINK1/Parkin pathway (Gegg et al.,
2010; Ziviani et al., 2010). Second, immobilized PINK1 and
Parkin proteins cause degradation of Miro, which connects
mitochondria to microtubule motors and subsequently leads to
mitochondrial dysfunction (Kane and Youle, 2011). Blocking
of the mitochondria—in this way—leads to their engulfment
via autophagic phagophores. Third, the aforesaid pathway
recruits autophagy initiators, such as Unc51-like kinase l
(Lazarou et al., 2015) and Beclin1 (Michiorri et al., 2010), in
order to activate the generation of phagophores surrounding
the defective mitochondria. The ubiquitinated mitochondria
are then recognized by cytoplasmic adaptor proteins of the
phagophores, such as optineurin (Wong and Holzbaur, 2014;
Heo et al., 2015) and p62/SQSTM1 (Geisler et al., 2010).
Adaptors recognize the OMM ubiquitin-binding domain in
order to bind ubiquitinated OMM proteins, while recognizing
the LC3-interacting region (LIR) domain in order to bind
to the autophagosome-associated protein LC3 (microtubule-
associated protein 1A/1B–light chain 3). This binding process
is activated by phosphorylation via the kinase TANK-binding
kinase 1 accompanied by its partner optineurin (Matsumoto
et al., 2015; Moore and Holzbaur, 2016). As the mitochondrial
autophagosomes become fused with lysosomes, their content will
be degraded via lysosomal hydrolases. Ultimately, mitophagy
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can also occur independently of the PINK1/Parkin pathway.
Recently, some new autophagy receptors of mitochondria have
been identified, which can directly interact with LC3, including
Bcl-2 and adenovirus E1B19 kDa-interacting protein 3 (BNIP3),
Nix/BNIP3L (BNIP3-Like; Novak et al., 2010; Rikka et al.,
2011), and FUNDC1 (FUN14 domain-containing protein 1; Liu
et al., 2012). In addition to mitophagy receptors, cardiolipin
redistribution in mitochondria has been identified as being a
novel mitophagy pathway. When the mitochondria are defective,
cardiolipin is translocated from the IMM to the OMM, where it
fuses with phagophores via LC3 (Chu et al., 2013).

ABNORMAL mitoQC IN
NEURODEGENERATIVE DISEASES

Neurodegenerative diseases are characterized with progressive
loss of selective neuron subtypes in the CNS; examples of these
diseases include Alzheimer’s disease (AD), PD, Huntington’s
disease (HD), and amyotrophic lateral sclerosis (ALS). Despite
great progress having been made to clarify the pathogenesis of
these neurological disorders, the underlying mechanisms are still
elusive, and effective therapeutic strategies for these diseases
have not yet emerged. Increasing evidence has demonstrated
the significant status of mitochondrial abnormality in the
pathological states of these neurodegenerative diseases (AD, PD,
HD, and ALS). These abnormalities include, but are not limited
to, defective mitochondrial morphology/structure, aberrant
mitophagy, and impairment of mitochondrial biogenesis, all
of which are governed by mitoQC (Figure 1). Furthermore,
recent studies have highlighted a central role of mitochondria
in innate and adaptive immune responses in CNS cells,
linking mitochondrial dysfunction and neuroinflammation.
Here, we will discuss previous findings on aberrant mitoQC
and mitochondrial-driven inflammation in neurodegenerative
diseases, focusing on AD, PD, HD, and ALS.

Alzheimer’s Disease
Alzheimer’s disease, including familial AD (FAD) and sporadic
AD, is an age-related neurodegenerative disease that is
characterized by progressive cognitive impairment, memory loss,
and mobility disorder. The pathogenesis of AD is complex,
involving abnormal metabolism of amyloid β (Aβ), which
leads to the deposition of Aβ plaques, hyperphosphorylation
of Tau protein, deposition of neurofibrillary tangles, changes
of reactive glial cells, and other pathological phenomena
(Wang et al., 2017a).

The disequilibrium between generating and clearance of
Aβ leads to its accumulation, which initiates the pathogenic
cascade that eventually leads to AD (Selkoe and Hardy, 2016).
Amyloid β is generated by continuous proteolysis of amyloid
precursor protein (APP), mediated by β-secretase and γ-
secretase. Presenilin genes 1 and 2 (PSEN1, PSEN2) are necessary
for forming γ-secretase complexes to cleave APP and drive Aβ

formation (Wang et al., 2017a). Microtubule-associated protein
Tau is another major molecule found in AD. As part of the
cytoskeleton, microtubules are carriers of various organelles
including mitochondria and lysosomes (Buée et al., 2000).

Systemic cerebral perfusion of rotenone (an inhibitor of ETC
complex I) leads to Tau hyperphosphorylation in neurons,
astrocytes, and oligodendrocytes of rats (Hoglinger et al.,
2005), suggesting that mitochondrial dysfunction contributes to
taupathy. As a major apolipoprotein in the CNS, apolipoprotein
E (ApoE) binds the extracellular region of triggering receptor
expressed on myeloid cells 2 (TREM2; Atagi et al., 2015), which
is expressed on cells of the myeloid lineage, such as microglia and
osteoclasts (Colonna andWang, 2016). Soluble TREM2 enhances
the proliferation and migration of microglia, gathering around
amyloid plaques, as well as the ingestion and disintegration
of Aβ (Zhong et al., 2019). In defective TREM2, there is an
increase in the deposition of amyloid plaques and a decrease in
the clustering of the microglia around newly formed amyloid
plaques, and levels of the plaque-associated ApoE are reduced
(Parhizkar et al., 2019).

Abnormal Mitochondrial Dynamics and AD
Fragmented mitochondria and abnormal mitochondrial
distribution and trafficking in neurons have been observed in
numerous AD models in cell culture and animals, as well as
in AD patient postmortem brains (Wang et al., 2017b, 2009;
Pérez and Quintanilla, 2017). The mitochondrial fission and
fusion proteins are differently altered in the AD hippocampus
with an upregulation of the mitochondrial fission protein
Fis1, accompanied by a decrease in fission protein Drp1, as
well as fusion proteins Mfn1, Mfn2, and OPA1 (Wang et al.,
2009). Moreover, phosphorylation of Drp1 at Ser616 and
S-nitrosylation of Drp1 were shown to be higher in AD
patient brains than in control subjects (Wang et al., 2009),
confirming the induction of excessive mitochondrial fission.
Dynamin-related protein 1 has been reported to interact with
Aβ and phosphorylated Tau in AD patient postmortem brains
(Manczak et al., 2011; Manczak and Reddy, 2012). Kim et al.
(2017) recently reported a significant relevance between specific
polymorphisms in the MFN2 gene and AD, suggesting a
relationship between genetic polymorphisms during fusion and
AD pathogenesis.

Treatment with mitochondrial division inhibitor (Mdivi-1),
a putative Drp1 inhibitor, restored Aβ-mediated mitochondrial
dysfunctions and neuron synaptic depression, as well as
reducing Aβ deposition and memory deficits in the brains
of APP/PS1 and CRND8 mice (Baek et al., 2017; Wang
et al., 2017b). Similarly, inhibition of Drp1 hyperactivation
by P110, a selective Drp1 peptide inhibitor (Qi et al., 2013),
reduced the number of fragmented mitochondria and attenuated
AD pathology and behavioral deficits in 5XFAD AD mice
(Joshi et al., 2018). Dysregulated mitochondrial permeability
transition pore (MtPTP) is associated with the metabolic
stress observed in AD (Pérez and Quintanilla, 2017). Altering
mitochondrial dynamics by downregulation of OPA1 resulted
in mitochondrial enlargement and decreased MtPTP function
(Piquereau et al., 2012). Similarly, upregulation of Mfn2 and
enhancement of mitochondrial fusion reduced the sensitivity
of MtPTP, eliminating ROS release (Neuspiel et al., 2005).
The mitochondrial protein, Miro, mediates mitochondrial
trafficking along the axon (Wang and Schwarz, 2009). The
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FIGURE 1 | Aberrant mitochondrial quality control leads to neurodegeneration. Mitochondria are highly sensitive to stress and diseases. Accumulation of misfolded
proteins within mitochondria induces the UPRmt, leading to toxicity in the mitochondria. Mitochondrial stress can cause alterations in mitochondrial dynamics. An
increase in Drp1-mediated fission of mitochondria leads to mitochondrial fragmentation and subsequent mitochondrial damage. Certain impaired mitochondria can
fuse with other healthy mitochondria in an attempt to salvage that mitochondrion; however, typically, dysfunctional mitochondria will undergo mitophagy. Fragmented
and damaged mitochondria can be eliminated by mitochondria-associated autophagy, termed mitophagy. Once the mitochondria are degraded, the cell will recycle
the amino acids and fatty acids to enable the remaining healthy mitochondrial network to grow and divide through biogenesis. Aberrant mitophagy results in either an
accumulation of damaged mitochondria or excessive degradation of healthy mitochondria. These processes are interconnected in response to stress and collectively
lead to neurodegeneration.

heterozygous Miro mutation [miro(Sd32)] has been previously
related to the disposition of Aβ42 in the Drosophila model
(Iijima-Ando et al., 2009). Inhibition of Miro activated the
PAR-1/MARK family kinases, subsequently promoting the
pathological phosphorylation of Tau. It should be noted
that late-onset neurodegeneration in Drosophila could be
suppressed by the single knockdown of PAR-1 or Tau (Iijima-
Ando et al., 2012). Thus, an imbalance between fusion
and fission contributes to AD pathogenesis, and targeting
abnormal mitochondrial dynamics could provide therapeutic
options for AD.

Abnormal Mitophagy and AD
Abnormal accumulation of autophagy vacuoles in neurons is
a prominent feature of AD and is likely to be the result
of lysosomal dysfunction (increased pH) or secondary to
neuronal Ca2+ homeostasis disorder (Nixon, 2013). During
mitophagy, mitochondria are swallowed by a structure called
a phagophore, forming an autophagosome that subsequently
fuses with a lysosome, indicating a significant role for
lysosomes in mitophagy (Soubannier et al., 2012; McLelland
et al., 2014). In FAD patients, mutation of PSEN1 leads
to abnormal acidification of lysosome and reduces lysosomal
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hydrolase activity (Coffey et al., 2014). In both mutant
hAPPTg neurons and AD patient brains, Parkin-mediated
mitophagy was induced (Ye et al., 2015). As the disease
progresses, the cytosolic Parkin levels significantly decreased in
the AD patient brain, and mitophagy became inefficient (Ye
et al., 2015; Cai and Tammineni, 2016). Furthermore, FAD
PSEN1 mutations aggravated lysosomal alkalization, thereby
reducing lysosomal hydrolytic activity. This suggests that
impaired lysosomal function is a stimulating factor in AD
(Coffey et al., 2014). Sirtuin 3 (Sirt3) mediates mitochondrial
biogenesis and oxidative challenge, and Sirt3 activates FOXO3 to
induce p62 (a major mitophagy protein), which accumulates
on ubiquitinated mitochondrial substrates and forms autophagy
lysosomes. Sirt3 levels decreased in neurons of APP/PS1 double-
mutant AD mice (Tseng et al., 2013), again supporting defective
mitophagy in AD. In mouse neuroblastoma cells, Cummins
et al. (2019) showed that Parkin translocation to the damaged
mitochondria can be reduced by human wild-type (WT; hTau)
expression, as well as mutant tau (hP301L). A reduction in
Parkin translocation resulted from an abnormal interaction of
the projection domain of Tau with Parkin, and thus Parkin
is sequestered in the cytosol (Cummins et al., 2019). An
experiment based on a rat pheochromocytoma cell line from
an AD cellular model showed that resveratrol can inhibit Aβ42-
inducedmitochondrial damage and enhancemitophagy, whereas
3-methyladenine can inhibit mitophagy mediated by resveratrol
and promote apoptosis (Wang et al., 2018a). Cordero et al.
(2018) indicated that oleuropein aglycone in extra virgin olive
oil can facilitate mitophagy, reducing aggregated proteins and
thereby delaying the course of AD. In addition, a study in
hippocampal neural stem cells (PS1 M146L NSCs) of AD mice
demonstrated that bexarotene, a mitophagy-stimulating drug
can alleviate the abnormity of mitochondria (Martín-Maestro
et al., 2019). Therefore, aberrant accumulation of dysfunctional
mitochondria in AD-affected neurons is likely attributable to an
inadequatemitophagy capacity in eliminating increased numbers
of damaged mitochondria, and the improvement of mitophagy
may be a new starting point for treating AD.

Defective OXPHOS, Oxidative Stress, and AD
As the main source of energy supply, mitochondria maintain
the integrity and reactivity of neurons (Sheng and Cai,
2012). The activities of complex I (NADH dehydrogenase)
and IV (cytochrome C oxidase) have been reported to be
significantly reduced in AD (Holper et al., 2019), resulting
in defective OXPHOS. The decrease of energy metabolism
due to defective OXPHOS causes excessive accumulation of
ROS and elevated oxidative stress, which creates a transient
feedback loop that further leads to mitochondrial damage
(Wang et al., 2005; Sheng et al., 2012). Evidence indicates
that CNS cells are more sensitive to Aβ-induced cytotoxicity
by promoting ETC activity, mitochondrial OXPHOS, and ROS
levels while repressing aerobic glycolysis (Lone et al., 2018).
However, in human SH-SY5Y neuroblastoma cells, a higher
level of endogenous Aβ was shown to cause no OXPHOS
disturbance (Lopez Sanchez et al., 2017), suggesting that APP
may downregulate mitochondrial OXPHOS independently. The

interaction between AD andmitochondrial OXPHOS remains to
be confirmed.

Mitochondrial-Driven Inflammation and AD
There are several reports that suggest that at least one type of
damage-associated molecular pattern molecule, which stem
from mitochondria, can lead to an inflammation response in
neuronal and microglial cell lines (Wilkins et al., 2015, 2017).
In a mouse microglial cell line, treatment with mitochondrial
lysates induced the expression of messenger RNA (mRNA)
encoding for tumor necrosis factor α (TNF-α) and IL-8, as
well as matrix metalloproteinase 8 (Wilkins et al., 2015).
Activated microglia act as innate immune cells in the CNS
(Kettenmann et al., 2011), having dual influence on AD
progression that depends on the period of activation. As
a self-defense mechanism, activated microglia reduces the
subtle accumulation of Aβ by stimulating phagocytosis,
clearance, and degradation so that it can initiate the process of
tissue repairing and wound healing to maintain brain health
(Graeber et al., 2011). However, chronic microglial activation
leads to the secretion of proinflammatory cytokines, such
as IL-1β, TNF-α, and interferon γ (IFN-γ), which induces
inflammation, and leads to further neuronal dysfunction
(Jiang et al., 2012). The activation of downstream signaling
pathways regulates the activities of transcription factors such
as NF-κB, leading to oxidative stress and Aβ-induced neuronal
cell death (Song et al., 2004; Chongthammakun et al., 2009).
Mitochondrial-derived H2O2 can upregulate or downregulate
NF-κB (Takada et al., 2003; Csiszar et al., 2008). Excessive levels
of H2O2 inactivate NF-κB via oxidation of its p50 subunit,
whereas moderate H2O2 levels result in IKK- or Syk-induced
phosphorylation of IκB, activating NF-κB (Takada et al., 2003;
Patten et al., 2010). Proinflammatory neurotoxins have been
shown to cause downregulation of TREM2 and vitiation of
the phagocytosis of extracellular debris by microglial cells,
which alter the microglia phenotype into a neurodegenerative
pattern (Deczkowska et al., 2018). Therefore, a vicious cycle
between mitochondrial dysfunction and activated microglia-
related neuroinflammation could promote the progression
of AD. Valproic acid has been shown to prevent cytotoxicity
stimulated by Aβ25-35 (a fragment of Aβ protein), which
subsequently inhibits the activation of NF-κB signaling,
decreases the expression of proinflammatory cytokines, and
reduces mitochondrial dysfunction in rat PC12 cells (Zhao
et al., 2018). In mouse neuroblastoma N2a cells, Zhang et al.
(2017) reported that PGC-1α inhibited neuroinflammation
and Aβ-induced cell death, which was regulated by the NF-κB
pathway. Thus, a therapeutic strategy for AD that targets
neuroinflammation, mitochondrial dysfunction, and NF-κB
pathway could be feasible.

Parkinson’s Disease
Parkinson’s disease is the second most common
neurodegenerative disease and is characterized by the loss
of dopaminergic (DA) neurons in the substantia nigra (SN) area
and the formation of cytoplasmic inclusion bodies containing
a-synuclein [Lewy body (LB)]. Patients with PD are subject
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to the degradation of certain behaviors, such as bradykinesia,
stiffness, tremors, and gait disorder (Gao et al., 2018). The
pathogenesis of PD is complicated and considerable, whereas
mitochondrial dysfunction has been increasingly appreciated
to be a risk factor of DA neuronal susceptibility (Dauer and
Przedborski, 2003; Dawson and Dawson, 2003; Ellis et al., 2005;
Yao and Wood, 2009). Neurotoxins, such as 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) and rotenone, can inhibit
complex I to impair respiratory chain function in in vitro and
in vivo models of PD (Langston et al., 1983; Betarbet et al.,
2000; Smeyne and Jackson-Lewis, 2005; Testa et al., 2005).
Parkinson’s disease susceptible genes, which encode for proteins
such as leucine-rich repeat kinase 2 (LRRK2), Parkin, PINK1,
and DJ-1, are localized on the mitochondria and interfere with
the function of mitochondria (Klein and Westenberger, 2012;
Karimi-Moghadam et al., 2018).

Abnormal Mitochondrial Dynamics and PD
The protein LRRK2 is encoded by the PARK8 locus, which
belongs to the Roc GTPase family, containing a conserved serine-
threonine kinase MAPK kinase kinase (MAPKKK) domain
(Paisán-Ruíz et al., 2004; Zimprich et al., 2004; West et al.,
2007). Mutation of G2019S (Gly2019 to Ser) that occurs in
the MAPKKK domain is the primary cause of familial PD
and approximately 2% of sporadic PD cases (Cookson, 2010).
The kinase activity of LRRK2 is augmented via the mutant
of G2019S, which has been shown to be correlated with the
toxicity of DA neurons (West et al., 2005). The LRRK2 G2019S
mutant increases the recruitment of Drp1 to mitochondria
(Wang et al., 2012) and phosphorylates Drp1 at Thr595,
leading to Drp1-dependent mitochondrial fragmentation and
subsequent excessive mitophagy (Su and Qi, 2013). Disruption
of mitochondrial fission leads to synaptic loss and DA neuronal
cell death (Berthet et al., 2014). Pharmacological and genetic
inhibition of Drp1 hyperactivation has been demonstrated to
protect DA neurons in an MPTP-induced PD mouse model,
and in induced pluripotent stem cells (iPS) cells derived from
patients carrying either the LRRK2 G2019S or the α-synuclein
(α-syn) mutant (Su and Qi, 2013; Rappold et al., 2014; Filichia
et al., 2016; Bido et al., 2017; Seshadri and Alladi, 2019; Geng
et al., 2019; Park et al., 2019), by improving both mitochondrial
morphology and autophagic flux. PINK1 and Parkin are also
crucial for maintaining mitochondrial fusion and fission by
mediating the ubiquitination of Mfns (Ziviani et al., 2010). α-
Synuclein is a major component of LBs, and its oligomeric
forms have been demonstrated to trigger neurotoxicity in PD
(Selkoe et al., 2014; Peelaerts et al., 2015). α-Synuclein is widely
distributed in the mitochondria and mitochondria-associated
ER membrane (MAM; Devi et al., 2008; Guardia-Laguarta
et al., 2014). While WT α-syn and its missense mutant, A53T
(Lee and Trojanowski, 2006), have been reported to induce
mitochondrial fragmentation in a Drp-1-dependent manner,
overexpression of the fusion protein OPA1 has been shown
to prevent both mitochondrial fragmentation and neuronal
cytotoxicity (Martinez et al., 2018). In rat brains overexpressing
human A53T–α-syn, the fragmentation of mitochondria and
aggregates of α-syn are reduced, and the motor function is

normalized by treatment with Mdivi-1 (Bido et al., 2017), further
supporting the notion that correcting aberrant mitochondrial
dynamics attenuates PD pathology.

Abnormal Mitophagy and PD
Depolarized mitochondria cause an accumulation of PINK1 on
the OMM. Parkin recruitment to the mitochondria depends on
the presence of catalytically active PINK1 (Geisler et al., 2010;
Matsuda et al., 2010; Narendra et al., 2010; Vives-Bauza et al.,
2010). The recessive mutation of Parkin/PINK1 observed in PD
patients blocks the process of mitophagy, which aggravates the
morphological destruction of mitochondria and accumulation
of the dysfunctional organelle (Ziviani et al., 2010). PINK1 and
Parkin have been shown to coordinate the selective clearance
of damaged mitochondria via mitophagy (Matsuda et al., 2010;
Vives-Bauza et al., 2010), and in recent years, there has been
a large of amount of literature highlighting the mechanistic
link between mitophagy deficiency and PD pathogenesis using
cell culture models (Narendra and Youle, 2011; Youle and
Narendra, 2011; Pickrell and Youle, 2015; Mouton-Liger et al.,
2017; Truban et al., 2017; Miller and Muqit, 2019). Because of
the lack of in vivo phenotypes in PINK1 and Parkin mutant
mice, it is hard to evaluate the impact of PINK1/Parkin-mediated
mitophagy deficiency on PD pathology in vivo (Goldberg
et al., 2003; Perez and Palmiter, 2005; Kitada et al., 2009).
Recently, Seibler et al. (2011) reported that neurons derived from
iPS cells of PD patients carrying PINK1 missense mutations
showed an impairment of Parkin recruitment to mitochondria
and increased mitochondrial copy number. In addition, DA
neurons derived from iPS cells of patients with Parkin mutation
exhibited shortening neurites and sensitivity to stressors (Ren
et al., 2015). These findings from the human neuronal model
may provide distinct phenotypes that could be amenable to
further mechanistic studies in the context of human PD.
Dynamin-related protein 1 was recruited from the cytoplasm
to the dysfunctional mitochondria together with Ca2+ and Zn2+

signals, thus causing mitochondrial fragmentation (Abuarab
et al., 2017). The fragmented mitochondria may facilitate their
engulfment by autophagosomes (Buhlman et al., 2014). It will
be interesting to determine the detailed molecular pathway by
which Drp1-mediated mitochondrial fragmentation orchestrates
the PINK1/Parkin-associated mitophagy.

Defective OXPHOS, Oxidative Stress, and PD
In terms of the mtDNA cluster JTWIX, mtDNA-encoded
complex I genes are immoderately altered, which has been shown
to be strongly related to an increased risk for PD (Autere et al.,
2004). These mutations probably alter the efficiency of OXPHOS
and result in mitochondrial dysfunction and oxidative stress in
PD. Dopaminergic neurons contain high levels of pro-oxidant
iron, and low levels of glutathione seem to be the crucial
antioxidant in the SN. Transition metals can reduce oxygen to
promote ROS production (Wei et al., 2019), so that neurons
are especially vulnerable to oxidative stress, which can induce
mtDNA mutations. In fact, SN neurons with defective OXPHOS
enzymes have high levels of mtDNA mutations in aged human
and PD patients (Kraytsberg et al., 2006). The reduction of
membrane potential, overloaded levels of Ca2+ (Gandhi et al.,
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2009), and increased production of ROS in mitochondria have
been observed in PINK1 knockout fibroblasts and neurons
(Heeman et al., 2011). The mutation of DJ-1 leads to misfolded
α-syn aggregates in DA neurons of PD patients (Zondler et al.,
2014); the lack of DJ-1 decreases the consumption of hydrogen
peroxide and the clearance of ROS in the brain mitochondria, as
well as increasing oxidative stress levels, leading to the death of
DA neurons (Lopert and Patel, 2014).

Mitochondrial-Driven Inflammation and PD
PINK1 and Parkin play a crucial role in adaptive immunity
by suppressing the presentation of mitochondrial antigens
(Matheoud et al., 2016), which suggests an involvement of
autoimmune mechanisms in PD etiology. Mitochondria isolated
from the brains of PINK1 knockout mice exhibit increased
vulnerability to oxidative stress caused by inflammation
(Akundi et al., 2011). Neurons derived from iPS cells of
patients with LRRK2 mutations have shown impaired NF-
κB signal transduction and a reduced inflammatory response
(López de Maturana et al., 2016). NLRP3-mediated release
of proinflammatory cytokines IL-1β and IL-18 is thought to
be important for neurodegeneration (Ramesh et al., 2013).
Extensive increases in microglial activation and the NLRP3-
related inflammasome have been observed in the SN of PD
patients (Gordon et al., 2018). Furthermore, Sliter et al.
(2018) reported a strong inflammatory phenotype in both
Parkin−/− and Pink1−/− mice following exhaustive exercise
and in Parkin−/−;mutator mice, which accumulate mutations
in mtDNA. The authors reported that loss of STING, a central
regulator of the type I IFN response to cytosolic DNA, rescued
the loss of DA neurons from the SN and the motor defect
observed in aged Parkin−/−; mutator mice (Sliter et al., 2018).
These results support a role for PINK1 and Parkin in inhibiting
innate immunity.

Glycogen synthase kinase 3β (GSK-3β) can phosphorylate
downstream substrates, and it regulates glucose metabolism
(MacAulay et al., 2007). One study has shown that the
GSK-3β inhibitor effectively protects against 6-OHDA–induced
neurotoxicity by blocking microglial activation in in vitro and
in vivo models of PD (Morales-García et al., 2013). Thus,
the production of proinflammatory factors such as TNF-
α and IL-12 is repressed, and anti-inflammatory cytokines
such as IL-10 are stimulated (Coant et al., 2011). Another
study has shown that the decreased expression and activity
of Na+-Ca2+ exchanger 3 (NCX3) in DA neurons may cause
mitochondrial dysfunction and neuronal death in the midbrain
of α-syn A53T mice, whereas NCX1 overexpression in microglia
may promote their proliferation in the striatum (Sirabella
et al., 2018). In addition, changes in metabolic signaling
resulting from targeting mitochondrial pyruvate carrier are a
key proprietor of cellular metabolism, which can regulate mTOR
(mammalian target of rapamycin) activation, resulting in a
neuroprotective and anti-inflammatory function in several PD
models (Ghosh et al., 2016).

Mitochondria Targeted Therapy for PD
The development of mitochondrial targeting antioxidant seems
to have made remarkable progress in the past decade. A

nitrogenous guanidine compound called creatine has antioxidant
properties and effectively regulates the opening status ofMtPTPs;
creatine is considered to be a neuroprotective agent (NINDS
NET-PD Investigators, 2008). Coenzyme Q10 (CoQ10) has been
identified to be another neuroprotective reagent in in vitro and
in vivo PD models. Under oxidative stress, pretreatment with
CoQ10 improves the mitochondrial membrane potential and
decreases the production of ROS in neuronal cells (Xi et al.,
2018). Coenzyme Q10 can also reduce oxidative damage and
the behavioral abnormality in a rat model of PD (Gupta et al.,
2018). Clinical trials show that a high dose of CoQ10 interferes
with the aggravation of PD (Shults et al., 2002). In the 6-OHDA-
induced PD model in vivo and in vitro, MitoQ, a mitochondria-
targeted antioxidant, was found to improve the morphology and
function of mitochondria by upregulating the level of Mfn2,
which is the primary factor for promoting mitochondrial fusion
(Xi et al., 2018). MitoQ treatment also reduces mitochondrial
fragmentation, the production of ROS, and apoptosis (Xi et al.,
2018). However, a double-blind clinical trial reported that there
was no significant difference between MitoQ- and placebo-
treated PD patients. This study also proposed thatMitoQwas not
appropriate for patients who have already lost parts of their DA
neurons (Snow et al., 2010).

Huntington’s Disease
Huntington’s disease is an autosomal dominant
neurodegenerative inherited disorder, characterized by
involuntary movements, cognitive decline, and neuropsychiatric
changes. Huntington’s disease is caused by trinucleotide
repeats of CAG (36 repeats or more) on the short arm of
chromosome 4p16.3 in the Huntingtin (Htt) gene (MacDonald
et al., 1993). With a PolyQ expansion at the N terminus, the
mutant Huntington protein (mtHtt) has a toxic function causing
neuronal death, particularly in the striatum and progressively
in other parts of the brain (Ferrante et al., 1991; Andrews et al.,
1999; Williams and Paulson, 2008). Mitochondrial dysfunction
has been demonstrated to be strongly correlated with HD, and
dysregulation of mitochondrial dynamics plays a key role in the
development of HD (Johri et al., 2013; Zhao et al., 2019).

Abnormal Mitochondrial Dynamics and HD
Dynamin-related protein 1 hyperactivation and related
mitochondrial fragmentation were observed in HD cell
culture, animal models, and patient brains (Song et al.,
2011; Reddy and Shirendeb, 2012; Guo et al., 2013).
Transcriptional factor p53 was reported to be involved
in mitochondria-mediated necrosis and fragmentation in
HD, directly interacting with mitochondrial fission protein
Drp1 (Guo et al., 2013, 2014). Research into HD knock-in
mouse striatum cells has shown that MAPK can lead to
Drp1 phosphorylation in vitro (Roe and Qi, 2018). Furthermore,
Zhao et al. (2019) reported that oligomerization of ATAD3A,
a mitochondrial protein interacting with Drp1, not only
contributes to Drp1-mediated mitochondrial fragmentation,
but also impairs mtDNA maintenance in HD. Notably,
blocking the interaction between Drp1 and ATAD3A by
the peptide—DA1—was able to correct mitochondrial
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fragmentation and mtDNA damage, as well as attenuating
HD-associated neuropathology (Zhao et al., 2019). There is a
possibility that altered mitochondrial trafficking contributes to
neurodegeneration in HD (Schon and Przedborski, 2011).
Huntingtin-associated protein 1 (HAP1) is one of the
Htt-binding partners and is transported along the axons, and
the p150Glued subunit of dynactin is an essential component
of molecular motors. There are two main mechanisms that
lead to dysfunction of neuronal transport in HD (Carmo
et al., 2018). The first mechanism suggests that the altered
Htt/HAP1/p150Glued complex is accompanied by a decrease
of motor proteins associated with microtubules (Gauthier et al.,
2004). Evidence reveals that mtHtt impairs mitochondrial
axonal transport in human neurons in vitro and in neurons
from transgenic mice (Trushina et al., 2004). Another
mechanism recapitulated occurrence of steric inhibition of
the microtubular flow as a result of the transfer of the motor
proteins from the soluble pool to protofibrillar complexes in
human HD-affected brains (Trushina et al., 2004). Disruption
of axonal transport could lead to protein aggregation, which
can result in the loss of neurotrophic support and evoke
neuronal death, ultimately causing neuronal dysfunction
(Gunawardena and Goldstein, 2005).

Abnormal Mitophagy and HD
PINK1 overexpression decreased the formation of
morphologically abnormal mitochondria in Drosophila models
of HD, demonstrating that abnormal mitophagy takes part
in HD pathogenesis (Khalil et al., 2015). The presence of
mtHtt results in neuronal damage by triggering defects in
mitochondria, increasing the accumulation of dysfunctional
mitochondria. Intihar et al. (2019) recapitulated that PGC-
1α provides neuroprotective effects by activating autophagy
and increasing the turnover of mtHtt aggregates (Intihar
et al., 2019). Notably, intracellular aggregates of elongated
Htt, a well-established autophagy substrate, were significantly
decreased by memantine. Memantine also accelerated the
clearance of damaged mitochondria (Hirano et al., 2019).
Recently, some studies have focused on the inhibition or
elimination of pathological mitophagy. Guo et al. (2016)
showed that valosin-containing protein (VCP), as an mtHtt-
binding protein, accumulated in mitochondria and caused
excessive mitophagy by recruiting LC3 to the mitochondria
via the LIR motif. Importantly, blocking VCP mitochondrial
accumulation by disruption of the interaction between VCP
and mtHtt reduced mitochondrial damage and attenuated
HD-associated neuropathology.

Defective OXPHOS, Oxidative Stress, and HD
Mutant Htt protein accumulation may evoke OXPHOS damage
by direct interaction with mitochondria, by transcriptional
alterations, or by both mechanisms. It has been demonstrated
that respiratory chain enzyme activities exhibit defects in
complexes II, III, and IV in the striatum of HD patients (Gu et al.,
1996). In addition, not only the expression of mtHtt but also
the loss of Htt was shown to strongly influence mitochondrial
transcription. PGC-1α is a transcriptional coactivator and is a
master gene responsible for cellular energy metabolism (Zhang

et al., 2019). There is a decrease in the level of PGC-1α in
various HD models (McGill and Beal, 2006; Weydt et al., 2006;
Chaturvedi et al., 2009; Johri et al., 2013), which results in
its low level of transcription. Moreover, Intihar et al. (2019)
speculated that there is a p53–HSF1–PGC-1α axis that integrates
transcriptional dysregulation and mitochondrial dysfunction
into one single pathway, although the underlying mechanism
remains elusive (Intihar et al., 2019).

Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis is a motor neuron (MN) disease
(MND) characterized by progressive MN degeneration in the
brain and spinal cord, leading to severe weakness and eventually
paralysis of limb and trunk muscles (Taylor et al., 2016). In
most cases, ALS arises in individuals without a family history
of the disease (sporadic ALS), whereas in other cases ALS is
inherited [familial ALS (fALS)]. There is a strong correlation
between fALS and themutant RNA processing protein, including
Cu/Zn superoxide dismutase 1 (SOD1), TAR DNA-binding
protein 43 (TDP-43), C9ORF72(C9), and fused in sarcoma (Ince
et al., 2011; Taylor et al., 2016; Starr and Sattler, 2018; Genevini
et al., 2019; Yamawaki et al., 2019). Pathological SOD1 and
TDP-43 perturb multiple mitochondrial pathways, including
mitochondrial dynamics, mitochondrial-related inflammation,
and bioenergetics.

Abnormal Mitochondrial Dynamics and ALS
Point mutations in the gene that encodes SOD1 are one
of the earliest discovered genetic causes related to fALS.
There is an increment of glucose catabolic activity upstream
of the mitochondrial aerobic respiration in SOD1G93A
mice, indicating that mitochondrial dynamics represent the
crucial site of the synaptic bioenergetic impairment in ALS
(Ravera et al., 2019). Superoxide dismutase 1 mutations
affect protein folding, which is a potential source of the
toxicity that leads to mitochondria degeneration (Wright
et al., 2019). Misfolded proteins aggregate within the
intermembrane space of mitochondria, ultimately leading
to membrane disruption (Salehi et al., 2015; Watanabe
et al., 2016). The combined effect of these changes leads to
defects in respiration, generation of free radicals, electron
transport, and ATP synthesis (Magrané et al., 2012; Cenini
et al., 2019). SOD1G93A is likely to promote mitochondrial
fission and inhibit fusion activity (Wang et al., 2018b).
Compared with WT SOD1 osteocytes, SOD1G93A osteocytes
showed elevated levels of Drp1, resulting in mitochondrial
fragmentation, and decreased levels of mitochondrial
fusion protein OPA1. Furthermore, Mdivi-1, the putative
mitochondrial fission inhibitor, reduced the amount of
mitochondrial fragmentation and improved mitochondrial
health in cells expressing SOD1G93A. Pickles et al. (2016)
observed that several antibodies, specifically recognizing
misfolded SOD1 protein in the SOD1G93A mice model,
are correlated with mitochondrial damage. They found that
SOD1 antibodies AMF7-63 and DSE2-3H1 detected fibrils in
the spinal cord and that AMF7-63-reactive misfolded SOD1 is
associated with swollen mitochondria (Pickles et al., 2016).

Frontiers in Cellular Neuroscience | www.frontiersin.org 9 June 2020 | Volume 14 | Article 138

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Yan et al. Mitochondrial Dysfunction in Neurodegenerative Diseases

In addition, Altman et al. (2019) showed that, compared with
sympathetic neurons, cultured MNs displayed higher axonal
and synaptic mitochondrial immobility. This finding suggests
that the accumulation of mitochondria in the neuromuscular
junction (NMJ) may play a significant role in MN function
(Altman et al., 2019).

TDP-43 proteinopathy, which is caused by dysregulation
or mutations in the TDP-43 gene, can cause a series of
neurodegenerative diseases such as ALS and frontotemporal
lobar degeneration. Mutant TDP-43 causes fALS, which
accounts for approximately 4% of fALS cases (Taylor et al.,
2016). Although the mechanisms of mitochondrial dynamics
regulated by TDP-43 remain unclear, TDP-43 appears to have a
significant impact on mitochondrial fission and fusion. Xu et al.
(2010) were the first to show that overexpression of WT TDP-43
induced abnormal juxtanuclear aggregates of mitochondria
and increased the levels of Fis1 and phosphorylated Drp1,
key components of the mitochondrial fission machinery,
as well as decreasing mitofusin 1 expression, an essential
component of mitochondrial fusion. Moreover, excessive
mitochondria fission, together with the loss of mitochondrial
inner membrane structure, occurs in neuron cells expressing
ALS-associated mutant TDP-43 (Wang et al., 2013; Magrané
et al., 2014; Gautam et al., 2019a). TDP-43 can interact with
Mfn2, and TDP-43 selectively expressed by the cortex and
hippocampus of humans can induce an age-dependent change
in Mfn2 expression (Wang et al., 2013). While knocking down
TDP-43 in HEK293T cells resulted in a notable reduction in
Mfn2, overexpression of TDP-43 increased the Mfn2 levels
(Davis et al., 2018).

TAR DNA-binding protein 43 plays a critical role in
mediating mitochondrial transport. Both overexpression of WT
TDP-43 and knockdown of TDP-43 can cause dysregulation of
mitochondrial anterograde and retrograde transport in cultured
primary MNs (Wang et al., 2013). These findings have also
been observed in fly and mice models, which further confirm
the function of TDP-43 in mitochondrial transport (Magrané
et al., 2014; Baldwin et al., 2016). Interestingly, the speed
of mitochondria transport appeared to be slower in human
induced pluripotent stem cells-derived MNs with TDP-43
mutation. Nevertheless, no detectable cytoplasmic inclusions
or phosphorylated TDP-43 aggregation was observed in these
neurons, which indicates that mutant TDP-43 can give rise to
mitochondrial toxicity and is not associated with proteinopathy
(Kreiter et al., 2018). Moreover, the cytoskeleton plays a vital role
in the intracellular transport and localization of mitochondria
(Chetta et al., 2015); cytoskeleton deficits that result from
pathological TDP-43 may enhance mitochondria dysregulation
(Oberstadt et al., 2018).

Aberrant Mitophagy and ALS
Utilizing a proteomics screen, Davis et al. (2018) identified
several mitochondrial proteins that interact with TDP43 in a
mousemodel ofMND, such as voltage-gated anion channel 1 and
prohibitin 2 (PHB2), a key mitophagy receptor. Overexpression
of TDP-43 induced elevated levels of PHB2, whereas TDP-43
knockdown decreased PHB2 expression in cells exposed to

carbonyl cyanide m-chlorophenylhydrazone, an inducer of
mitophagy (Davis et al., 2018). Recently, Gautam et al. (2019b)
discovered a novel pathway of mitochondrial clearance before
neuronal vulnerability, called mitoautophagy. They proposed
that mitochondria can clear themselves independently of
autophagosome-mediated degradation, which is different from
mitophagy. Furthermore, they highlighted that mitoautophagy
mainly presents in the upper MNs of PFN1G118V and prpTDP-
43A315T mice, similar to many characteristics of the disease
in patients with TDP-43 pathology. In addition to TDP43, the
mutant SOD1 suppresses the axonal transport of mitochondria
by promoting PINK1/Parkin-dependent Miro1 degradation
(Moller et al., 2017).

Defective OXPHOS, Oxidative Stress, and ALS
Metabolic changes and stress responses occur in the lumbar
spinal cord of SOD1G93A mutant mice prior to the onset
of motor symptoms (Pharaoh et al., 2019). In SOD1G93A
mice, there is only a decrease at the last step of the
respiratory chain (complex IV), which disrupts the association
of cytochrome c with the IMM, thereby eliciting the apoptotic
program (Kirkinezos et al., 2005). Maekawa et al. (2014)
reported that oxidative stress and autophagic alteration take
place not only in the brain and spinal cord of SOD1G93A
mice but also in the brainstem of these mice. Several
studies have shown that mitochondrial OXPHOS deficits occur
in experimental models associated with TDP-43. Full-length
TDP-43 within mitochondria impairs the assembly and function
of subunits (ND3/6) of the OXPHOS complex I, which
is encoded by mitochondria-transcribed mRNAs. However,
truncated TDP-43 had no effect on OXPHOS complex I
(Wang et al., 2016, 2019; Salvatori et al., 2018). In a similar
study, by electron microscopy analysis, mitochondrial damage
in both cellular and animal models of TDP-43 proteinopathy
including abnormal cristae, as well as loss of cristae, has been
observed. In these models, overexpression of TDP-43 triggered
mitochondrial dysfunction, including reduced mitochondrial
membrane potential and increased ROS production (Onesto
et al., 2016; Bartolome et al., 2017; Wang et al., 2019).
Exogenous-added TDP-43 was demonstrated to aggregate inside
neuronal cells, triggering ROS generation (Capitini et al.,
2014). Moreover, TDP-43 expression inhibited mitochondrial
complex I activity and subsequently suppressed mitochondrial
ATP synthesis (Wang et al., 2019). Similarly, mitochondrial
complexes II and IV are also shown to be dysregulated
in ALS (Tabassum and Jeong, 2019). Bioenergetic deficits
may bring a fatal effect on mitochondria themselves. Dang
et al. (2020) demonstrated that the binding of decoded
ATP improves thermodynamic stability of TDP-43 RRM
(RNA-recognition motif) domains, followed by inhibition of
ALS-associated fibrillation. This suggests that the decrease of
ATP would promote fibrillation in the neurons of ALS patients
(Dang et al., 2020).

Mitochondrial-Driven Inflammation and ALS
There is evidence of spinal cord infiltration by macrophages and
T cells, and it was demonstrated that some MNs were ingested
by IL-6- and TNF-α-positive macrophages in postmortem ALS
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spinal cords (Lam et al., 2016). Although the mechanism of
mitochondrial-driven inflammation in ALS is still elusive, there
is evidence that SOD-1 is critically correlated with inflammation.
For example, elevated levels of cytokine macrophage migration
inhibitory factor could enhance neuronal survival by blocking
the accumulation ofmisfolded SOD-1 inmitochondria (Israelson
et al., 2015). Moreover, misfolded SOD-1 can be detected by
several conformationally restricted antibodies, such as AMF7-
63. AMF7-63 recognizes the spinal cord mitochondria with
misfolded SOD1, in which volume homeostasis dysregulation
and superoxide generation are enhanced (Pickles et al.,
2016). In MNs, mutations in the TDP43 gene can initiate a
neuroinflammatory response causing further neuronal damage.
Joshi et al. (2019) reported that inflammation propagation
in ALS is greatly triggered by the release of dysfunctional
and fragmented microglial mitochondria into the neuronal
environment, and subsequent neuronal damage depends on
Fis1-mediated mitochondrial disruption in glial cells.

Mitochondria Targeted Therapy for ALS
Several lines of evidence show that the protection of
mitochondrial activity could be protective in ALS rodent
models. Dexpramipexole is a dopamine agonist that scavenges
ROS in order to improve metabolic efficiency. Treatment with
dexpramipexole has been shown to reduce motor deficits and
improve the survival of mutant SOD1G93A mice (Danzeisen
et al., 2006). In a phase II clinical trial, dexpramipexole was
shown to be effective in a dose-dependent manner for ALS
patients (Cudkowicz et al., 2011). However, there was no
significant difference between placebo and dexpramipexole in
the subsequent phase III clinical trial (Cudkowicz et al., 2013).
Trehalose, an autophagic inducer, can prolong the survival of
SOD1G93A mice by protecting mitochondria and decreasing
SOD1 and SQSTM1/p62 aggregation (Zhang et al., 2014).
Olesoxime directly binds to proteins of the OMM and acts on
the MPTP. Olesoxime can prevent MN death, activate microglia
and prolong survival of SOD1G93A mice (Sunyach et al., 2012;
Yang et al., 2013). However, in a phase II–III trial, the survival
time of patients did not appear to have an obvious difference
between placebo- and olesoxime-treated cohorts. Thus, whether
targeting mitochondria could provide a translational strategy for
treating ALS patients remains to be elucidated and should be
investigated further.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Neurodegenerative diseases, including AD, PD, HD, and ALS,
are all characterized by progressive neuronal degeneration
in specific brain regions. To date, therapeutic strategies are
ineffective for these neurodegenerative diseases. Mitochondria
regulate cellular metabolism, coordinate cell death, play a
role in viability pathways, and are essential for maintaining
neuronal integrity. In the past decade, accumulating evidence
has demonstrated that mitochondrial dynamics and mitophagy
serve as common and initial characteristics that account for
mitochondrial and neuronal dysfunction in these diseases.
Notably, manipulation of mitochondrial dynamics and
mitophagy have been shown to be protective in these diseases,
which provides new therapeutic options toward developing
effective treatments.

Furthermore, increasing evidence suggests that mitochondria
could be a hub for regulating innate and adaptive immune
responses. Neuroinflammation occurs in experimental animal
models and patient brains of several neurodegenerative diseases.
However, the role of neuroinflammation is still controversial
and could either be the dominant pathogenesis of neuronal
damage or only a result of metabolic dysfunction in the
neurodegenerative progress. Future investigations on the
cellular and molecular crosstalk between mitochondrial
dysregulation and immune responses, along with their
contribution to disease progression, may deepen our
understanding of the interaction between neuroinflammation
and neurodegeneration.
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