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The A-subclass of ATP-binding cassette (ABC) transporters comprises 12 structurally related
members of the evolutionarily highly conserved superfamily of ABC transporters. ABCA
transporters represent a subgroup of “full-size” multispan transporters of which several
members have been shown to mediate the transport of a variety of physiologic lipid com-
pounds across membrane barriers.The importance of ABCA transporters in human disease
is documented by the observations that so far four members of this protein family (ABCA1,
ABCA3, ABCA4, ABCA12) have been causatively linked to monogenetic disorders includ-
ing familial high-density lipoprotein deficiency, neonatal surfactant deficiency, degenerative
retinopathies, and congenital keratinization disorders. Recent research also point to a signif-
icant contribution of several A-subfamily ABC transporters to neurodegenerative diseases,
in particular Alzheimer’s disease (AD).This review will give a summary of our current knowl-
edge of the A-subclass of ABC transporters with a special focus on brain lipid homeostasis
and their involvement in AD.
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ABC TRANSPORTERS
The superfamily of ATP-binding cassette (ABC) transporters con-
stitutes a large group of highly conserved, multispan transmem-
brane transport proteins which can be found in all organisms
from bacteria to man (Higgins, 1992; Holland et al., 2002). In
most species, ABC transporters are abundantly represented (Lin-
ton and Higgins, 1998). In the human genome, 48 functional,
protein-coding ABC transporter genes (Dean, 2005), and several
ABC pseudogenes (Piehler et al., 2006, 2008) have been identi-
fied. All ABC proteins share a common global configuration and
are composed of four specific core domains; two highly conserved
ABCs and two transmembrane domains (TMDs; Figure 1; Hig-
gins et al., 1986; Linton and Higgins, 1998). These four domains
can be encoded in a single polypeptide chain, which is then called
a “full-size” transporter (Figure 1). Alternatively, two homo- or
heterodimers (“half-size” transporters), each containing one ABC
and one TMD, attach to form the functional transporter (Dean,
2005). Based on phylogenetic analyses of the ABCs, human ABC
transporters are divided into seven subfamilies, denoted ABC
A–G (Dean, 2002). ABC transporters are primary active trans-
porters using the energy from ATP-binding and -hydrolysis to
translocate a wide variety of substrates including lipids, ions,
sugars, peptides, amino acids, carbohydrates, vitamins, steroid
hormones (Higgins, 1992; Holland et al., 2002), and xenobiotics,
such as anticancer drugs (Gottesman et al., 2002). On a subcellu-
lar level, ABC transporters are located in eukaryotes in the plasma
membrane and in the lipid membranes of the Golgi apparatus,
endosomes, multivesicular bodies, endoplasmic reticulum, perox-
isomes, and mitochondria (Kaminski et al., 2006). The function of

ABC transporters in a broad range of physiological systems is also
reflected by the fact that mutations in several ABC proteins result
in monogenetic disorders affecting diverse physiological systems
(Wenzel et al., 2007).

Outstanding experts in the field have recently contributed with
reviews of single members or subsets of ABC transporters covering
diverse aspects of ABC transporters and their role in health and
disease, including brain lipid metabolism and Alzheimer’s disease
(AD; Kim et al., 2008; Mack et al., 2008; Hirsch-Reinshagen et al.,
2009; Koldamova et al., 2010). In the present review, we focus on
the A-subfamily of ABC transporters and their role in brain lipid
transport and neurodegeneration.

THE A-SUBCLASS OF ABC TRANSPORTERS
In 1994, in an effort to clone members of the ABC transporter
superfamily, Luciani et al. (1994) identified two novel ABC trans-
porter genes, named ABC1 (ABCA1) and ABC2 (ABCA2), in close
proximity to each other on chromosome 9. Due to their structural
features that clearly set them apart from other ABC transporters,
Luciani et al. suggested that these transporters define a novel sub-
group of ABC transporters, the A-subfamily of ABC transporters.
Altogether, the human ABCA subfamily comprises 12 protein-
coding genes, ABCA1–ABCA13, with “ABCA11” representing a
transcribed pseudogene (Kaminski et al., 2006; Piehler et al., 2008).
All ABCA proteins are full-size transporters (Tusnady et al., 2006).

At least three characteristics define the members of the A-
subfamily of ABC transporters: (i) the A-subfamily contains the
largest members of the ABC transporter superfamily. Accord-
ing to their predicted primary structure, ABCA transporters
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FIGURE 1 | Schematic view of an A-subclass ABC transporter.

A-subclass ABC transporters are full-size transporters and consist of two
transmembrane domains (TMD), which anchor the transporter into a lipid
membrane (L), and two ATP-binding cassettes (ABC), at which two
molecules ATP are bound and hydrolyzed to support the energy for
substrate translocation between the inside (i) and outside (o) of a cell or
compartment. A special feature of the A-subfamily members is the
unusually large, first extracellular domain (ECD) of each TMD.

are polypeptides ranging from 1543 aa (ABCA10) to 5058 aa
(ABCA13) in size with a calculated molecular weight between 176
and 576 kDa (Kaminski et al., 2006). (ii) The extracellular domain
between the first and second membrane spanning helix of each
predicted TMD is particularly large in this subfamily (Kaminski
et al., 2006). (iii) A highly hydrophobic domain in ABCA trans-
porters interrupts the cytosolic linker that connects the two halves
of an ABC transporter (Bungert et al., 2001; Vulevic et al., 2001;
Peelman et al., 2003; Albrecht and Viturro, 2007). Most ABCA
transporters show a broad tissue-specificity, including expression
in brain (Kaminski et al., 2006), beside ABCA4, which is mainly
expressed in the eye (Allikmets et al., 1997), and ABCA13 with
detectable expression in only a small variety of tissues (Prades
et al., 2002; Table 1).

Table 1 lists some of the biological properties of the members
of the ABCA subfamily.

Phylogenetic analyses suggest that all ABCA subfamily trans-
porters have evolved from a common ancestor gene (Kaminski
et al., 2006) and can be further divided into two subgroups. The
so-called “ABCA6-like” transporters comprise ABCA5, ABCA6,
ABCA8, ABCA9, and ABCA10 and represent subgroup I (Piehler
et al., 2002). These transporters form a compact gene cluster on
chromosome 17q24 and are characterized by a strikingly high,
mutual amino acid sequence identity and a significantly smaller
size (between 1543 aa and 1642 aa) compared to the other ABCA
proteins (Arnould et al., 2001; Piehler et al., 2002; Kaminski et al.,
2006). The remaining seven ABCA transporters (ABCA1, ABCA2,
ABCA3, ABCA4, ABCA7, ABCA12, and ABCA13) are included in
subgroup II of the ABCA transporter subfamily and dispersed on
six chromosomes (Dean, 2002).

The A-subfamily of ABC transporters has gained special focus
over the last years as mutations in four members were identi-
fied as the underlying causes of monogenetic diseases in humans,

including mutations in ABCA1 [high-density lipoprotein (HDL)-
deficiency/Tangier disease (TD)], ABCA3 (neonatal surfactant
deficiency), ABCA4 (several forms of autosomal recessive mac-
ular dystrophies), and ABCA12 (two forms of hereditary kera-
tinization disorders; Kaminski et al., 2006). The phenotypes of
these loss-of-function mutations have resulted in valuable infor-
mation about the physiological function of ABCA transporters
and identified them as lipid transporters. Over the last years, evi-
dence has accumulated that members of the A-subfamily of ABC
transporters are also involved in more complex diseases like ather-
osclerosis (ABCA1), pediatric interstitial lung diseases (ABCA3),
age-related macular degeneration (ABCA4), and AD (ABCA1,
ABCA2, ABCA7; Kaminski et al., 2006).

A-SUBFAMILY ABC TRANSPORTERS IN BRAIN LIPID
HOMEOSTASIS AND NEURODEGENERATION
ABCA1
Molecular properties of ABCA1
ABCA1 is the prototypic member of the A-subfamily of ABC
transporters. It has been extensively studied since its identifica-
tion in 1994. In particular, the discovery in 1999 that mutations in
this ABCA subfamily transporter compromise cellular cholesterol
export has attracted a lot of interest from researchers worldwide.
The role of ABCA1 in cholesterol transport, HDL particle forma-
tion and atherosclerosis has been reviewed previously (Kaminski
et al., 2006; Wenzel et al., 2007; Kang et al., 2010; Nagao et al.,
2011b), and detailed reports on the implication of ABCA1 in AD
and neurodegeneration have been published recently (Kim et al.,
2008; Hirsch-Reinshagen et al., 2009; Koldamova et al., 2010).

The gene encoding ABCA1 is located on chromosome 9q31.1
and comprises 50 exons which span 147 kb DNA. The 254 kDa pro-
tein of ABCA1 consists of 2261 amino acids and displays the typical
structure of a full-size ABC transporter with two ATP-bindings
cassettes and two TMDs. ABCA1 shows a broad expression pat-
tern with highest expression levels in smooth muscle, whole blood,
placenta, liver, lung, adrenal glands, fetal organs, and brain (Lang-
mann et al., 1999; Su et al., 2004; Kim et al., 2008). On the
subcellular level, ABCA1 is present in the plasma membrane, the
Golgi compartment, and in lysosomes (Neufeld et al., 2001; Tanaka
et al., 2003a).

ABCA1 and HDL metabolism
First clues for the involvement of ABCA1 in HDL metabolism
came from our own studies demonstrating that ABCA1 expres-
sion is up-regulated by cholesterol uptake and down-regulated
during HDL-mediated cholesterol efflux in human macrophages
(Langmann et al., 1999). The identification of mutations in ABCA1
causing HDL-deficiency syndromes, including TD, confirmed the
role of ABCA1 as a key regulator in cellular HDL metabolism
(Bodzioch et al., 1999; Brooks-Wilson et al., 1999; Lawn et al.,
1999; Rust et al., 1999). To date, more than 80 mutations within
the ABCA1 gene have been described (for an overview see The
Human Gene Mutation Database at http://www.hgmd.org). In TD
patients, cholesterol accumulates in peripheral tissues like tonsils,
spleen, liver, and the artery wall leading to premature atheroscle-
rosis and hepatosplenomegaly. This accumulation is due to an
impaired efflux of cellular cholesterol to its extracellular acceptor
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Table 1 | Biological characteristics of A-subfamily ABC transporters.

Gene symbol

(Acc. number)

Genomic

localization

(Gene size)#

Protein size

and weight

Major site of expression* Expression

in

brain tissue*

Functionally

involved in

Association

with AD

ABCA1

(NM_005502)

9q31.1 (147 kb) 2261 aa

254 kDa

Diverse (smooth muscle, blood

cells, placenta, liver, lung, adrenal

glands, fetal organs and brain;

Langmann et al., 2003)

+ Phospholipid and

cholesterol transport

Inhibition of Aβ

production and

amyloid forma-

tion

ABCA2

(NM_001606)

9q34.3 (21 kb) 2436 aa

270 kDa

Brain (Zhao et al., 2000; Kim et al.,

2008)

+++ Cellular cholesterol and

myelin lipid transport

Induction of Aβ

production

ABCA3

(NM_001089)

16p13.3 (65 kb) 1704 aa

191 kDa

Lung (Yamano et al., 2001) ++ Phosphatidylcholine and

-glycerol trafficking,

surfactant production

Unknown

ABCA4

(NM_000350)

1p22.1 (128 kb) 2273 aa

256 kDa

Retina (Allikmets et al., 1997) (+) N-retinylidene-

phosphatidy-

ethanolamine transport

in rod cells

Unknown

ABCA5

(NM_018672)

17q24.3 (83 kb) 1642 aa

187 kDa

Diverse (Skeletal muscle, kidney,

liver, placenta); (Petry et al., 2003)

+ Unknown Unknown

ABCA6

(NM_080284)

17q24.2–3 (63 kb) 1617 aa

184 kDa

Diverse (Liver, lung, heart, and

brain; Kaminski et al., 2001b)

++ Unknown Unknown

ABCA7

(NM_019112)

19p13.3 (25 kb) 2146 aa

235 kDa

Blood (precursor) cells (Kaminski

et al., 2000; Tanaka et al., 2011b)

+ Phospholipid transport,

phagocytosis

Inhibition of

Aβ-production

ABCA8

(NM_007168)

17q24.2 (88 kb) 1581 aa

179 kDa

Diverse (Heart, skeletal muscle,

liver; Tsuruoka et al., 2002)

++ Unknown Unknown

ABCA9

(NM_080283)

17q24.2 (86 kb) 1624 aa

184 kDa

Diverse (Heart, brain, and fetal

tissues; Piehler et al., 2002)

++ Unknown Unknown

ABCA10

(NM_080282)

17q24.3 (97 kb) 1543 aa

176 kDa

Diverse (Heart, brain, and

gastrointestinal tract; Wenzel et al.,

2003)

++ Unknown Unknown

ABCA12

(NM_173076)

2q35 (207 kb) 2595 aa

293 kDa

Diverse (Keratinocytes, stomach;

Annilo et al., 2002)

+ Unknown

ABCA13

(NM_152701)

7p12.3 (476 kb) 5058 aa

576 kDa

Diverse (Trachea, testis, bone

marrow, submaxillary gland,

epididymus, ovary, and thymus;

Prades et al., 2002; Barros et al.,

2003)

(+) Unknown Unknown

#According to the Genome Reference Consortium built 37 (hg19, February 2009).

*Expression information retrieved from GNF Expression Atlas 2 Data (http://biogps.org/) and the cited studies.

aa, amino acids; AD, Alzheimer’s disease.

apolipoprotein A-I (apoA-I), the main apolipoprotein in HDL par-
ticles, by ABCA1 leading to a lack of HDL in the patient’s plasma
(Bodzioch et al., 1999; Brooks-Wilson et al., 1999; Lawn et al., 1999;
Rust et al., 1999). Further studies documented that both hepatic
and intestinal ABCA1 contributes to HDL metabolism and that
the liver is the predominant source of plasma HDL (Orso et al.,
2000; Basso et al., 2003; Wellington et al., 2003; Timmins et al.,
2005; Brunham et al., 2006).

Despite extensive efforts, the molecular mechanisms by which
ABCA1 modulates the cellular cholesterol efflux and HDL biogen-
esis are still unclear. A current model suggests that the initial step is
binding of small amounts of apoA-I, the main protein component
of HDL particles, to the large, first extracellular domain of ABCA1

that leads to stabilization and activation of the transporter. Activa-
tion of ABCA1 triggers increased translocation of phospholipids
from the cytosolic to the exofacial leaflet of the plasma membrane
which subsequently bends and reveals high affinity binding sites
for apoA-I in so-called exovesiculated lipid domains. Membrane
bound apoA-I then passively accepts membrane phospholipids
and cholesterol to form discoidal HDL particles (Vedhachalam
et al., 2007a,b, 2010; Kang et al., 2010; Nagao et al., 2011a,b).
An alternative model postulates that apoA-I is internalized after
binding to ABCA1 and the resulting apoA-I/ABCA1 complex is
then targeted to late endosomes where apoA-I binds lipids. These
apolipoprotein–lipid complexes are subsequently released to the
extracellular space by exocytosis (Oram, 2008; Yvan-Charvet et al.,
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2010). Evidence has accumulated to suggest that both mech-
anisms of ABCA1-dependent apoA-I loading with lipids exist.
However, there is still an ongoing controversy as to which one
is the dominant mechanism in HDL biogenesis.

ABCA1 in the CNS and Alzheimer’s disease
The expression of ABCA1 in the brain was already noted by Luciani
et al. (1994) describing the identification and cloning of ABCA1
from embryonic mouse brain RNA. Subsequent studies reported
highest expression of ABCA1 in the brain regions of the olfac-
tory bulb, hippocampus, cerebellar cortex, choroid plexus, and in
germinal regions of embryonic and early postnatal brains (Fuku-
moto et al., 2002; Tachikawa et al., 2005). Experiments on isolated
brain cells showed expression of ABCA1 in neurons, astrocytes,
microglia, and oligodendrocytes, with highest expression levels in
neurons and microglia (Koldamova et al., 2003; Kim et al., 2006).
ABCA1 expression in brain capillary endothelial cells has also been
reported (Panzenboeck et al., 2002; Ohtsuki et al., 2004).

Several observations led to the investigation of a potential link
between ABCA1 and apoE: (i) ABCA1 is a major regulator of HDL
biogenesis outside the CNS by facilitating cholesterol and phos-
pholipid loading onto apoA-I (Kaminski et al., 2006).(ii) ApoE
is the most abundant apolipoprotein in the CNS and present
in HDL-like particles in the cerebrospinal fluid (Hayashi, 2011).
(iii) The major apoE isoforms (apoE2, apoE3, and apoE4) are
highly associated with disposition to and onset of AD (Hirsch-
Reinshagen et al., 2009). (iv) Membrane cholesterol is known to
regulate processing of amyloid precursor protein (APP) and gen-
eration of beta-amyloid (Aβ)-fibrils (Simons et al., 1998; Puglielli
et al., 2003). Initial clues for an interdependency between apoE
and ABCA1 came from experiments showing that Abca1 expres-
sion induced by liver X receptor (LXR) and retinoid X receptor
(RXR) agonists increases efflux of cholesterol to lipid-free apoA-I
and apoE3 in isolated mouse neurons, astrocytes, and microglia
(Koldamova et al., 2003). Despite the fact that apoE is mainly
secreted from astrocytes (Hayashi, 2011), further studies iden-
tified ABCA1-dependent loading of apoE with cholesterol as a
mechanism by which cholesterol is targeted to neurons (Kim
et al., 2007). Importantly, ABCA1 also appears to enhance the
reverse process, the removal of cholesterol from neurons. Stud-
ies in ABCA1−/− mice finally documented the central role of
ABCA1 in apoE lipidation and that intact ABCA1 is required for
normal CNS apoE concentrations (Hirsch-Reinshagen et al., 2004;
Wahrle et al., 2004). These studies demonstrated that ABCA1−/−
mice had significantly reduced (about 80% reduction) apoE levels
in the brain, CSF, and plasma. In addition, they revealed that the
observed apoE reduction is specific as levels of apoJ, another major
apolipoprotein in the brain, were unchanged (Hirsch-Reinshagen
et al., 2004; Wahrle et al., 2004). Moreover, endogenous apoE par-
ticles that are secreted from ABCA1-deficient glia showed poor
lipidation (Hirsch-Reinshagen et al., 2004; Wahrle et al., 2004).
Interestingly, several independent groups were able to demonstrate
that these poorly lipidated apoE particles enhance Aβ deposition
in offsprings from Abca1−/− mice crossbred with four different
murine models of AD (Hirsch-Reinshagen et al., 2005; Koldamova
et al., 2005; Wahrle et al., 2005). Unexpectedly, the Abca1 null
mutant offsprings exhibited increased Aβ immunoreactivity and

amyloid load demonstrating that the poorly lipidated apoE parti-
cles from ABCA1-deficient glia enhance beta-amyloid deposition.
None of these studies, however, found evidence for a signifi-
cant contribution of Abca1 deficiency to APP processing or Aβ

production in vivo strongly suggesting that Abca1 enhances amy-
loid formation indirectly via facilitation of apoE lipidation. Con-
versely, ABCA1 overexpression studies revealed that robust (>6-
fold over endogenous expression) but not weak overexpression
(about 50%) of ABCA1 results in decreased amyloid deposition
(Hirsch-Reinshagen et al., 2007; Wahrle et al., 2008). Based on
the findings that ABCA1 depletion results in increased amyloid
deposition and ABCA1 induction shows a reciprocal effect and
the fact that APP processing or Aβ production is not influenced
by Abca1 depletion in vivo, the concept of the ABCA1–apoE path-
way of Aβ clearance has been put forward. In this model, nascent
apoE particles are secreted from astrocytes and microglia and are
subsequently lipidated by ABCA1 forming discoidal lipid–apoE
complexes. In a second step, these are further loaded with lipids
by ABCG1 (and likely other ABC transporters) to form spheri-
cal, mature apoE-containing lipid particles present in the CNS.
Finally, mature apoE–lipid particles bind Aβ and facilitate the cel-
lular uptake and clearance of Aβ via a functional apoE-receptor
(Figure 2; Hirsch-Reinshagen et al., 2009).

Of note, a most recent study reports that transient expression
of ABCA1 TD mutants in CHO cells stably expressing APP reduces
Aβ production to a similar degree as wild-type ABCA1 but inde-
pendently of cholesterol efflux (Kim et al., 2011). These findings,

FIGURE 2 | ABC transporters in apoE lipidation and Aβ metabolism. The
ABCA1-apoE pathway of Aβ clearance hypothesis postulates that nascent
apoE particles secreted from glial cells are initially lipidated by ABCA1 to
form discoidal apoE-lipid particles. Further maturation and lipidation of these
complexes by ABCG1 and presumably other ABC transporters finally
results in mature, spherical apoE-containing lipoproteins. Both ABCA
transporters and apoE have been implicated in the production, deposition,
and clearance of Aβ. Knock-down and overexpression studies indicate that
ABCA2 promotes Aβ production which is inhibited by ABCA1 and ABCA7.
Amyloid formation is inhibited by ABCA1, and ApoE is required for Aβ

deposition. ApoE also facilitates the cellular uptake of Aβ via apoE receptors
and has a negative effect on Aβ clearance across the blood–brain barrier
(Figure modified after Hirsch-Reinshagen et al., 2009; Hayashi, 2011).
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which challenge the proposed model of Aβ clearance via ABCA1-
lipidated apoE, rather suggest a direct effect of the ABCA1 protein
on Aβ production and amyloid formation.

Although the molecular mechanisms by which ABCA1 impacts
Aβ production and amyloid deposition is not fully understood,
a substantial body of evidence has accumulated during the past
years to suggest critical roles of ABCA1 in the development of AD.
In light of this, ABCA1 may be a promising candidate for ther-
apeutical interventions aiming at the prevention and treatment
of AD.

Association studies of ABCA1 and Alzheimer’s disease
Beside these efforts to explore the functional implication of
ABCA1 in amyloid deposition and development of AD, 11 studies
have thus far investigated associations between single nucleotide
polymorphisms (SNP) in the ABCA1 gene and the development
of AD in various populations. Among the allelic variants identi-
fied in the ABCA1 gene, the SNPs rs2230806 (R219K), rs4149313
(I883M), and rs2230808 (R1587K) have been most extensively
studied. At this point, however, the data from available association
studies are inconclusive. This sobering resume is likely the result
of major variations in the genetic and ethnic background of the
cohorts investigated and varying experimental power of the stud-
ies. The 219K allele of the coding SNP rs2230806, for example,
has been associated with both predisposition to AD (Rodriguez-
Rodriguez et al., 2007; Sundar et al., 2007) and the opposite, a
protective effect for the development of AD (Wollmer et al., 2003;
Katzov et al., 2004; Wang and Jia, 2007; Wavrant-De et al., 2007;
Reynolds et al., 2009). Other studies were unable to identify an
association between common ABCA1 sequence variants and AD
or delayed onset of AD (Li et al., 2004; Kolsch et al., 2006; Shi-
bata et al., 2006; Wahrle et al., 2007). Although an anti-Alzheimer
effect of the ABCA1 219K variant cannot be excluded at this point,
further studies that rely on stringent design and strictly defined
cohorts are necessary to explore the potential association between
ABCA1 allelic variants and AD.

ABCA2
Molecular properties of ABCA2
Originally, ABCA2 was co-identified with ABCA1 in mice and
is the second member of the A-subfamily of ABC transporters
(Luciani et al., 1994). The human gene comprises 48 exons, is
located on chromosome 9q34 and shows an extreme compact
structure within a genomic region of only 21 kb (Kaminski et al.,
2001a; Vulevic et al., 2001; Ile et al., 2004). The ABCA2 full-length
cDNA is 7.3 kb in size and codes for a 270 kDa protein consisting
of 2436 aa (Kaminski et al., 2001a; Vulevic et al., 2001). ABCA2
is mainly expressed in brain and nervous tissues with particu-
larly high expression in cells facilitating myelin production in the
brain (oligodendrocytes) and peripheral nerves (Schwann cells),
respectively (Luciani et al., 1994; Zhao et al., 2000; Vulevic et al.,
2001; Zhou et al., 2001, 2002; Langmann et al., 2003; Tanaka et al.,
2003b; Su et al., 2004; Wang et al., 2005; Kim et al., 2006; Saito
et al., 2007; Wahrle et al., 2008). Based on comparison of ABCA2
expression in astrocytic tumors and oligodendrogliomas, and in
schwannomas and healthy Schwann cells, respectively, ABCA2 has
also been proposed as a molecular marker for oligodendrogliomas

and vestibular schwannomas (Wang et al., 2005; Soichi et al., 2007).
However, ABCA2 has also been detected in a variety of other brain
cells including neurons and brain endothelial cells (Ohtsuki et al.,
2004; Broccardo et al., 2006; Kim et al., 2006; Warren et al., 2009;
Shawahna et al., 2011), and other tissues outside the CNS includ-
ing monocytes, macrophages, T-cells, thyroid gland, kidney, liver,
thymus, heart, ovary, lung, and various tumor cells, respectively
(Zhao et al., 2000; Kaminski et al., 2001a; Vulevic et al., 2001;
Zhou et al., 2001, 2002; Ile et al., 2004; Broccardo et al., 2006). On
a subcellular level, both electron microscopy and immunocolo-
calization experiments indicate a localization of ABCA2 around
lysosomes and in the Golgi apparatus (Vulevic et al., 2001; Zhou
et al., 2001, 2002). Ile et al. (2004) identified a novel 5′-localized
exon of ABCA2 encoding an alternative N-terminus. Using Laser
scanning confocal microscopy, the authors found that this novel
isoform also co-localizes with lysosome-associated proteins-1 and
-2 (LAMP1 and 2) and shows highest expression in peripheral
blood leukocytes. In addition to this alternative exon 1-transcript,
ABCA2 is transcribed at least into five alternative transcripts which
are differentially expressed in different brain regions (Piehler et al.,
unpublished data).

ABCA2 and lipid transport in the CNS
Although the intracellular localization of ABCA2 is in agreement
with the finding that ABCA2 overexpressing HEK293 cells do
not stimulate cholesterol efflux to apoA-I, apoE, or apoE disks
(Kim et al., 2007), several observations suggest a role of ABCA2 in
brain cholesterol metabolism: (i) the putative promoter sequence
of ABCA2 contains multiple potential transcription factor bind-
ing sites for neural cell differentiation (Kaminski et al., 2001a).
(ii) ABCA2 transcription displays cholesterol–responsive regu-
lation (Kaminski et al., 2001a; Davis, Jr. et al., 2004; Davis, Jr.,
2011) and (iii) ABCA2 is coordinately expressed with other sterol-
dependent genes (Davis, Jr. et al., 2004). (iv) ABCA2 overexpres-
sion in CHO cells leads to an increase in LDL receptor expression
and other genes involved in cholesterol metabolism (Davis, Jr.
et al., 2004). (v) This results in a reduction of LDL-derived free
cholesterol esterification and an accumulation of un-esterified
LDL-cholesterol in the endosomal/lysosomal pathway (Davis, Jr.
et al., 2004), which is part of the processing of APP to Aβ. A recent
study by Davis using N2a neuroblastoma cells, however, reported
a decrease of the LDL receptor in response to ABCA2 overex-
pression and thus a decrease in the uptake of a fluorescent LDL
analog (Davis, Jr., 2011). In this work, the author also shows that
ABCA2 overexpression leads to a reduction in total, free- and ester-
ified cholesterol levels in the neuronal cells overexpressing ABCA2
(Davis, Jr., 2011). In addition, a decrease in plasma membrane
cholesterol was noted, but not in other organelles or lipid raft
compartments. Moreover, de novo cholesterol synthesis or traf-
ficking of cholesterol to the plasma membrane or the endoplasmic
reticulum were unaffected (Davis, Jr., 2011). Together, these results
clearly indicate a regulatory role of ABCA2 cholesterol metabolism
within the cell.

Next to the studies documenting highest expression of ABCA2
in oligodendrocytes and Schwann cells, which facilitate myelina-
tion of neurons in the CNS and the peripheral nervous system, sev-
eral experiments point to a role of ABCA2 in myelin lipid transport
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in addition to cholesterol homeostasis. Analysis of maturing cen-
tral and peripheral nervous tissues revealed that temporal and
spatial expression of ABCA2 was closely correlated with that of
myelin sheath-associated proteins (Zhou et al., 2002; Tanaka et al.,
2003b). To date, two independent groups have reported the gen-
eration of Abca2 deficient mice. In both studies, Abca2-null mice
phenotypically displayed reduced body weight and an obvious
distinct tremor of their limbs and were reported to be easily star-
tled (Mack et al., 2007; Sakai et al., 2007a). In the study by Mack
and colleagues, Abca2−/− mice exhibited ultrastructurally abnor-
mal myelin sheathes with increased myelin sheath thickness in the
spinal cord and a reduced periodicity of the myelin membrane
both in the spinal cord and cerebrum. In contrast, no apparent
change in total, esterified or free plasma cholesterol, or in total CNS
tissue lipid composition (ceramide, sphingosine, or sphingomyelin
species) were observed in the Abca2 deficient mice. Because female
Abca2-null mice had a lower body weight compared to their
male littermates, the authors suggest a hormone-dependent role
of Abca2 in neurological development (Mack et al., 2007). Sakai
et al. (2007a) observed no abnormalities in the cytoarchitectonic
or compact myelin structure in their Abca2 knock-out mice, but
significant differences in lipid concentrations of both total brain
tissue and myelin fractions compared to wild-type animals. From
4 to 64 weeks of age, Abca2-null mice brains exhibited an accu-
mulation of gangliosides along with reduced sphingomyelin, and
an accumulation of cerebrosides and sulfatides at 64 weeks of age.
Analysis of the brain of Abca2 knock-out mice revealed reduced
sphingomyelin and a significant increase of the major ganglioside
GM1. The latter finding is of particular interest as it has been
shown that raised levels of gangliosides in brain tissue induce
beta-amyloid fibril formation (Yanagisawa, 2007). In conclusion,
functional studies from the past years corroborate an involvement
of ABCA2 in brain lipid metabolism. However, further work is
required to define in detail the molecular involvement of ABCA2
in neuronal cholesterol homeostasis and myelin lipid metabolism.

ABCA2 in Alzheimer’s disease
Most recently, functional studies indicate a link between ABCA2
and the central molecular process in AD: beta-amyloid produc-
tion. Using amplified differential gene expression, Chen et al.
(2004) showed that overexpression of ABCA2 results in upregula-
tion of genes commonly associated with oxidative stress and the
pathogenesis of AD, including seladin-1, amyloid b (A4) precur-
sor protein, vimentin, LDL receptor-related protein 3, Slc23a1, and
calsarcin-1. Using confocal microscopy, the authors showed that
increased ABCA2 levels impact the expression of Aβ and APP, and
that ABCA2 co-localizes with both Aβ and APP in discrete intra-
cellular vesicles that also stained positively for the endolysosome
markers LAMP1 and LAMP2 (Chen et al., 2004). Further evidence
for ABCA2 as a key regulator of APP metabolism has recently been
provided by Davis showing that overexpression of ABCA2 in neu-
ronal N2a cells increased both the transcription of APP and the
amount of APP holoprotein, and promoted amyloidogenic pro-
cessing of APP (Davis, Jr., 2010). These findings are in line with
a most recent report demonstrating that knock-down/knock-out
of ABCA2 in mammalian cells in vitro, in Drosophila melanogaster
and in mice results in reduced production of Aβ (Michaki et al.,

2011). In this study, ABCA2 depletion led to a relative shift from
β- to α-secretase dependent cleavage of APP resulting in increased
levels of APPsα and a relative decrease in APPsβ production. This
observation computes well with the results by Davis reporting
enhanced β-secretase cleavage of APP at the alternative cleavage
site Glu11 (β′-site; Davis, Jr., 2010) which is increasingly used
alternatively to the canonical Asp1 amino acid site (β-site) under
conditions of β-secretase excess (Fluhrer et al., 2002; Liu et al.,
2002). As ABCA2 is a likely regulator of cellular homeostasis and
β-secretase acts within the detergent resistant domains (DRMs)
of membranes (Wahrle et al., 2002; Ehehalt et al., 2003; Abad-
Rodriguez et al., 2004; Vetrivel et al., 2004), depletion of ABCA2
may change DRM stabilization and thus the relative amount of
APP processed by α- and β-secretase. Of note, Mickaki et al. also
found in their study that ABCA2 depletion leads to a reduction
of APP processing by γ-secretase. This was due altered γ-secretase
complex formation which in turn was caused by aberrant glycosy-
lation of Nicastrin, one of the components of γ-secretase (Michaki
et al., 2011). Interestingly, the reduction of γ-secretase cleavage of
APP by ABCA2 depletion occurred in a substrate-selective man-
ner since processing of Notch, another important substrate of
γ-secretase, was unaffected (Michaki et al., 2011).

Association studies of ABCA2 and Alzheimer’s disease
In an effort to explore a potential association between genetic
variation within ABCA2 and AD, two groups reported a strong cor-
relation between a synonymous SNP (rs908832) and early-onset
and sporadic AD in a Caucasian and a Western European popula-
tion, respectively (Mace et al., 2005; Wollmer et al., 2006). In one
study, however, the association was ethnicity-dependent and not
present in a Southern European and an Asian population (Wollmer
et al., 2006). In the same study, the authors reported an associa-
tion of this SNP with cholesterol levels in the cerebrospinal fluid,
a known determinant of AD (Wollmer et al., 2006). In contrast,
Minster et al. (2008) could not to confirm the observed association
of rs908832 with early onset AD (EOAD) or sporadic AD. Despite
the rather limited cohort size of the EOAD cohort (137 EOAD
patients, 1006 controls), the study had a power of >90% to detect
the odd-ratios reported by Mace et al. and Wollmer et al. respec-
tively. At this point, more work is required to establish whether a
clinically relevant association does exist between AD and genetic
ABCA2 variants.

Taken together, evidence has accumulated through the past
years to suggest important roles of ABCA2 in intracellular brain
cholesterol homeostasis and APP processing. Although the molec-
ular basis of the interdependency of ABCA2 and cholesterol traffic
and Alzheimer disease are currently not fully understood, the
knowledge of altered secretase activity due to changes in ABCA2
activity and cholesterol homeostasis may represent a starting point
for developing therapeutical approaches to AD.

ABCA7
Molecular properties of ABCA7
ABCA7 is a 220 kDa A-subfamily ABC transporter that exhibits
highest sequence similarity to ABCA1 (54%) and ABCA4 (49%;
Kaminski et al., 2000, 2006; Broccardo et al., 2001). Initially,
ABCA7 was cloned from human macrophages (Kaminski et al.,
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2000), and shows highest expression in cells from the myelo-
lymphatic lineage comprising both mature and blood cell pre-
cursors (Kaminski et al., 2000; Sasaki et al., 2003; Tanaka et al.,
2011b). However, expression of ABCA7 in other tissues has also
been reported, including keratinocytes and brain (Kaminski et al.,
2000; Kielar et al., 2003; Kim et al., 2006; Sakai et al., 2007a). Specif-
ically, in situ hybridization experiments revealed the presence of
Abca7 mRNA throughout the brain of adult mice with highest
expression in the densely packed neurons of the hippocampus
(Kim et al., 2005), and RT-qPCR analysis of the different brain cell
types and several cell lines derived from the CNS showed highest
ABCA7 transcription levels in microglia (Kim et al., 2006). On the
subcellular level, the localization of ABCA7 remains still unclear.
Whereas initial experiments in HEK293 cells indicated the pres-
ence of ABCA7 in the plasma membrane (Wang et al., 2003), a
subsequent study could not confirm this localization by immuno-
fluorescence microscopy but suggested an intracellular presence in
peritoneal mouse macrophages (Linsel-Nitschke et al., 2005). Sev-
eral studies have thus far reported both intracellular detection of
ABCA7 and its localization in the plasma membrane (Ikeda et al.,
2003; Sasaki et al., 2003; Abe-Dohmae et al., 2004; Iwamoto et al.,
2006). The putative presence of ABCA7 both in the cell and on
the cell surface may be explained by the observation that ABCA7
is transcribed into several alternative variants (Ikeda et al., 2003;
Kaminski et al., 2006).

The elusive function of ABCA7
Despite its identification more than 10 years ago, the definite mol-
ecular function of ABCA7 still needs to be elucidated. Several
lines of evidence point to a role in cellular lipid transport: (i)
ABCA7 shares highest sequence identity with ABCA1, the main
molecule for cholesterol export to apoA-I to produce HDL par-
ticles (Kaminski et al., 2006), (ii) ABCA7 is up-regulated upon
cholesterol load of macrophages and down-regulated upon cho-
lesterol efflux from these cells (Kaminski et al., 2000), (iii) the
ABCA7 promoter contains sterol responsive elements and is regu-
lated by SREPBs (Iwamoto et al., 2006) and (iv) other A-subfamily
members, of which the substrate has been identified, serve as trans-
porters of lipids (ABCA1, ABCA3, ABCA4, ABCA12; Kaminski
et al., 2006). Results from studies investigating apoA-I mediated
release of phospholipids and cholesterol by ABCA7 under different
conditions, however, are conflicting. Whereas some reports suggest
that cells overexpressing ABCA7 exhibit increased apolipoprotein-
mediated efflux of both phospholipids and cholesterol (Ikeda et al.,
2003; Abe-Dohmae et al., 2004; Hayashi et al., 2005), data from
other experiments could not confirm that ABCA7 facilitates the
release of cholesterol from cells (Wang et al., 2003; Abe-Dohmae
et al., 2004; Linsel-Nitschke et al., 2005). The situation is compli-
cated by the observations that peritoneal macrophages treated with
ABCA7 siRNA and from heterozygous ABCA7+/− mice showed
unaffected apoA-I mediated cellular cholesterol and phospholipid
release (Linsel-Nitschke et al., 2005). Moreover, Abca7 null mice,
which have been reported to be lethal by one group (Jehle et al.,
2006), showed unchanged cholesterol and phospholipid efflux lev-
els in bone marrow-derived macrophages investigated by another
group (Kim et al., 2005). Abca7 knock-out mice showed no obvi-
ous phenotypic abnormalities, but surprisingly exhibited a gender

dependent reduction in serum total cholesterol, HDL concentra-
tion and visceral fat (Kim et al., 2005). At this point, further work is
required to establish how and to which degree ABCA7 contributes
to human lipid trafficking.

ABCA7 in CNS lipid transport and Alzheimer’s disease
Based on the notion that ABCA7 is expressed in the brain and
potentially functions as a lipid transporter, Chan et al. (2008)
investigated whether ABCA7 regulates cholesterol efflux to apoE,
the major apolipoprotein in the brain, and whether it influ-
ences beta-amyloid production. They found that overexpression of
ABCA7 stimulated cholesterol efflux to discoidal apoE-lipid com-
plexes independent of the apoE isoform. Lipid-free apoE did not
accept cholesterol suggesting that apoE disks present in the CNS
may function as acceptors for ABCA7-mediated cholesterol efflux.
Moreover, the authors noted that ABCA7 significantly inhibited
beta-amyloid secretion from human amyloid precursor protein
expressing cells. Using fluorogenic substrates and GFP-tagged APP
they demonstrated that the observed inhibition was due to an
apparent retention of APP in a perinuclear location rather than
an inhibitory effect on α-, β-, or γ-secretase activity (Chan et al.,
2008).

Along with the sustained efforts to elucidate the role of ABCA7
in cellular lipid transport, evidence has accumulated during the
past years that links another potential function of this transporter
to neurodegenerative disease. Recent reports indicate a central
role of ABCA7 in phagocytosis and the engulfment of apoptotic
cells (Iwamoto et al., 2006; Jehle et al., 2006; Tanaka et al., 2010,
2011a,b). In addition to the finding that ABCA7 mRNA and pro-
tein is up-regulated during phagocytosis via the SREBP2 pathway
(Iwamoto et al., 2006), these studies showed that knock-down
of ABCA7 results in a decreased phagocytic activity (Iwamoto
et al., 2006) and that heterozygous ABCA7+/− mice exhibit a
defective clearance of apoptotic cells (Jehle et al., 2006). Both the
phagocytic rate and the expression of ABCA7 are increased in
ABCA1-deficient fibroblasts (Bared et al., 2004; Iwamoto et al.,
2006). In contrast, the phagocytic activity is reduced in the peri-
toneal cavity of ABCA7−/− mice compared to wild-type animals
(Tanaka et al., 2010). These studies also indicate that apoA-
I and apoA-II both stabilize and increase surface ABCA7 and
thus increases the phagocytic rate rather than contribute to lipid
efflux from the cell. This stimulation of phagocytosis was sus-
tained in ABCA1 siRNA treated J774 macrophages and in the
peritoneal macrophages from ABCA1−/− mice (Tanaka et al.,
2010). Another study by the same group also demonstrated that
statin treatment of J774 cells induces ABCA7 expression by its
cholesterol-lowering effect and simultaneously enhances phago-
cytosis. This increase in phagocytic activity was abolished by
ABCA7 siRNA treatment of the statin stimulated cells (Tanaka
et al., 2011a).

The finding that ABCA7 promotes Fc receptor-independent
phagocytosis is of particular interest taking into account that
human microglia cells contribute to the phagocytic removal of
apoptotic debris from the brain (Stolzing and Grune, 2004; Napoli
and Neumann, 2009) and given that among brain cells microglia
displays highest ABCA7 expression. Based on this, it is tempt-
ing to speculate that microglial ABCA7 has an active role in the
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Fc receptor-independent phagocytic uptake of debris and plaques
generated in the process of neurodegenerative disorders.

Moreover, the recent demonstration of a T cell receptor (TCR)-
based machinery for specific immune recognition in macrophages
that functions as a modulator of phagocytic capacity (Beham et al.,
2011) raises the intriguing possibility of a functional link between
ABCA7 and the novel variable macrophages immune system. It
will be most challenging to investigate whether and to which degree
an interdependencies exists between ABCA7 and the macrophage
TCR-like immunoreceptors in the pathogenesis of macrophage-
dependent neurodegenerative diseases such as multiple sclerosis
and HIV dementia.

Association studies of ABCA7 and Alzheimer’s disease
Next to functional studies, independent evidence for roles of
ABCA7 in brain lipid homeostasis and neurodegeneration comes
from a recent genome-wide association study (GWAS) and re-
analysis of combined GWAS datasets which identified a candidate
locus for AD in the ABCA7 gene (Jones et al., 2010; Hollingworth
et al., 2011). The hot spot, which is defined by a common genetic
variant in the ABCA7 gene (rs3764650) located in intron 13, exhib-
ited a strong association with this disease. Also a non-synonymous
SNP in ABCA7 exon 32 (rs3752246) which showed the highest
linkage disequilibrium with rs3764650 was found to be signifi-
cantly associated with LOAD (Hollingworth et al., 2011). However,
as rs3752246 encodes a glycine to alanine substitution at position
1527 of the protein, which is regarded as a benign change, this
SNP is unlikely to be the relevant functional variant. The authors
also excluded an association between rs3764650 and the expres-
sion of ABCA7 analyzing data from two expression quantitative
trait loci (eQTL) datasets. Although these studies present com-
pelling evidence for an association of ABCA7 with AD, the genetic
mechanisms that define a causative interrelationship still await
elucidation.

OTHER A-SUBFAMILY ABC TRANSPORTERS
Beside the above ABC transporters, other A-subfamily members
are expressed only to a limited degree in brain and nervous tis-
sues. Anecdotic reports on potential functions of these are rare,
but mainly point to an involvement in cellular lipid metabo-
lism. Future detailed studies will help to determine whether these
A-subfamily transporters are implicated in brain lipid homeosta-
sis and the pathophysiology of neurodegenerative processes. The
following subchapter provides a brief synopsis of our current
knowledge on additional members of the A-subfamily of ABC
transporters.

ABCA3
ABCA3 is mainly expressed in the human lung alveolar type II cells
on the limiting membrane of lamellar bodies, which represent the
storage form of lung surfactant. Mutations in ABCA3 have been
shown to cause fatal surfactant deficiency in full-term newborns
(Shulenin et al., 2004) and are associated with milder forms of
interstitial lung disease as well (Bullard et al., 2005; Kunig et al.,
2007; Karjalainen et al., 2008; Yokota et al., 2008). The pheno-
type of surfactant deficiency caused by mutations in ABCA3 has
been confirmed in ABCA3 knock-out mice by several groups (Ban

et al., 2007; Cheong et al., 2007; Fitzgerald et al., 2007; Hammel
et al., 2007). Although the exact molecular contribution of ABCA3
to surfactant production is still unknown, an essential role of this
transporter in lipid transport, in particular in phosphatidylcholine
and phosphatidylglycerol trafficking, during lamellar body for-
mation has been established. Expression of ABCA3 has also been
detected in total brain tissue (Fitzgerald et al., 2007; Stahlman et al.,
2007), oligodendrocytes, neurons, astrocytes, and microglia (Kim
et al., 2006), a tissue expression pattern that is similar to that of
ABCA2 in the developing mouse brain (Tachikawa et al., 2005).
Given the expression of ABCA3 in the brain and the fact that phos-
phatidylcholine and phophatidylglycerol are the lipid compounds
mainly affected in the ABCA3-defective lung, it appears realistic to
assume roles of ABCA3 in the transport of these lipids in the brain.
However, studies investigating this function are currently unavail-
able. In detail examination of ABCA3 deficient mouse brains will
help to gain further insight into a possible role of ABCA3 in brain
lipid homeostasis.

ABCA4
ABCA4 is one of the best characterized A-subclass ABC trans-
porters. Already in 1997 it was shown that mutations in this
retina-specific transporter, also termed ABCR, cause Stargadt dis-
ease. This degenerative eye-disease is characterized by progressive
impairment of central vision early in life, presence of lipofus-
cin deposits in the central retina, and bilateral photoreceptor
atrophy in the macula (Allikmets et al., 1997; Molday, 2007).
Also the rare, but more severe cone-rod dystrophy type 3 and
retinitis pigmentosa type 19 have been shown to be caused by
mutations in ABCA4 (Cremers et al., 1998; Martinez-Mir et al.,
1998; Maugeri et al., 2000). Extensive studies of this transporter
strongly suggest that ABCA4 facilitates the export of the phos-
pholipid N -retinylidenephosphatidylethanolamine, a byproduct
of the visual cycle, from the lumen to the cytoplasm of disk
membranes in rod cells (Sun et al., 1999; Weng et al., 1999; Ahn
et al., 2000; Mata et al., 2000; Beharry et al., 2004; Molday, 2007).
Depletion of ABCA4 activity results in accumulation of retinoids
in disk membranes and subsequent retinal pigment epithelial
cell death and neurodegeneration of photoreceptors, a process
that ultimately leads to severe vision loss in affected individuals
(Weng et al., 1999; Mata et al., 2000; Molday, 2007). ABCA4 is
also expressed outside the retina in rat choroid plexus epithelial
cells and human brain capillary endothelial cells (Ohtsuki et al.,
2004; Bhongsatiern et al., 2005; Tachikawa et al., 2005) suggest-
ing a role of this ABC protein in blood-cerebrospinal fluid barrier
function. Because ABCA4 dysfunction leads to accumulation of
retinoids in the retinal pigment epithelium, it may be worth-
while investigating whether ABCA4 present in the choroid plexus
is involved in the regulation of retinoid concentrations in the CNS
which are associated with motor neuron disease and AD (Maden,
2007).

ABCA6-like transporters
Only little is known about the function of the subgroup of ABCA6-
like transporters which form a compact gene cluster located on
chr 17q24.2-3. This cluster comprises the transporters ABCA5,
ABCA6, ABCA8, ABCA9, and ABCA10, respectively. Although
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all ABCA6-like transporters are expressed at detectable levels in
the brain (Nagase et al., 1998; Arnould et al., 2001; Kaminski
et al., 2001b, 2006; Piehler et al., 2002; Tsuruoka et al., 2002;
Langmann et al., 2003; Wenzel et al., 2003, 2007; Kim et al.,
2006) and it is likely that they are involved in lipid transport
processes, their potential implication in human brain lipid home-
ostasis and neurodegeneration remains purely speculative at this
point.

Reports on ABCA5 expression and function are anecdotic and
the sites of expression appear to be highly diverse. Interestingly,
ABCA5 expression has been documented mainly in the context of
epithelial malignancies including prostate cancer (Hu et al., 2007),
adenocarcinoma (Ohtsuki et al., 2007), melanomas (Heimerl et al.,
2007), esophageal carcinoma (Huang et al., 2009), mesothelioma
(Shukla et al., 2010), and oral squamosa cell carcinoma (Cha
et al., 2011), respectively. Other studies report high ABCA5 expres-
sion in the brain, lung, heart, thyroid gland, and testis (Kubo
et al., 2005; Petry et al., 2006). Upregulation of ABCA5 in human
brain microvascular endothelial cells derived from the blood–
brain barrier endothelium in response to tacrolimus treatment
has also been reported (Quezada et al., 2008). On the subcel-
lular level, ABCA5 localizes to lysosomes and late endosomes,
and Abca5−/− mice exhibit exophthalmos and a collapse of the
thyroid gland (Kubo et al., 2005). In adulthood, these animals
develop a dilated cardiomyopathy-like heart and die due to car-
diac insufficiency (Kubo et al., 2005). Despite its expression in the
brain and its potential involvement in cholesterol metabolism (Ye
et al., 2008, 2010), it appears unlikely that ABCA5 plays a cru-
cial role in brain lipid homeostasis since overt abnormalities are
not observed in the brain of ABCA5 deficient mice (Kubo et al.,
2005).

ABCA6, ABCA9, and ABCA10 are also expressed at detectable
levels in the brain and regulated during monocyte differentiation
and cholesterol transport in human macrophages (Kaminski et al.,
2001b, 2006; Piehler et al., 2002; Wenzel et al., 2003; Albrecht and
Viturro, 2007) suggesting roles of these transporters in lipid trans-
port. However, definitive evidence supporting an implication of
these highly homologous transporters in brain lipid transport is
still outstanding.

Initial studies have indicated a role of ABCA8 in drug trans-
port with a substrate specificity close to that of ABCC2 which
is located at the blood–brain barrier (Tsuruoka et al., 2002).
Moreover, Abca8a transcription is induced in the mouse liver
upon acute digoxin intoxication (Wakaumi et al., 2005). A recent
study by Reppe et al. (2010) also suggests an association between
ABCA8 and bone mineral density in postmenopausal Caucasian
women.

ABCA12
ABCA12 was co-identified with ABCA13 in 2002 and mapped
to the locus linked to lamellar ichthyosis on chromosome 2q34
(Parmentier et al., 1999; Annilo et al., 2002). Subsequent stud-
ies revealed that mutations in this transporter cause three related
hereditary skin diseases: lamellar ichthyosis type 2 (Lefevre et al.,
2003), non-bullous congenital ichthyosiform erythroderma (Nat-
suga et al., 2007; Akiyama et al., 2008) and harlequin ichthyosis
(HI; Akiyama et al., 2005; Kelsell et al., 2005; Akiyama, 2006). All

three entities represent hereditary dyskeratinization disorders, but
present with different clinical severity. Whereas lamellar ichthyosis
type 2 is a relatively mild form of dyskeratinization with skin
desquamation over the whole body and large, pigmented scales
(Lefevre et al., 2003), HI presents with a distorting phenotype
in which the patient’s body is covered with an enormous horny
shell with deep fissures leading to water loss, electrolyte abnor-
malities, severe infections, and mostly death within the first days
after birth (Unamuno et al., 1987; Akiyama et al., 2005; Akiyama,
2006). Analysis of the mutations identified in the different dysker-
atinization entities suggests that the severity of the phenotype
correlates with the remaining activity of the mutated ABCA12
protein product. The molecular correlate of these dyskeratiniza-
tion disorders is the absence or malformation of so-called lamellar
granules (LG; Akiyama et al., 2005; Kelsell et al., 2005) which phys-
iologically contribute to assemble the skin barrier by extruding
their lipid content into the extracellular space during the ker-
atinization process (Wertz, 2000). Since mutations in ABCA12
result in an abnormal distribution pattern of glucosylceramide, a
major lipid component of LG (Kelsell et al., 2005; Akiyama et al.,
2008), and ABCA12 ultrastructurally co-localizes with glucosyl-
ceramide to LG on their way from the Golgi apparatus to the
cell periphery (Sakai et al., 2007b), it is realistic to assume an
essential role of ABCA12 in intracellular sphingolipid transport
processes (Akiyama, 2011). Of note, expression of ABCA12 has
also been reported in fetal brain (Annilo et al., 2002). It remains
to be established, however, whether ABCA12 exerts functions in
the regulation of the sphingolipid metabolism in the developing
brain.

ABCA13
ABCA13 is the largest known ABC transporter with a gene
size of 450 kb comprising 62 exons which code for a 576-kDa
polypeptide of 5058 aa and with an exceptionally large extra-
cellular domain of more than 3500 aa (Prades et al., 2002; Bar-
ros et al., 2003). In normal tissues, highest mRNA expression
was found in human trachea, testis, bone marrow, submaxil-
lary gland, epididymis, ovary, and thymus (Prades et al., 2002;
Barros et al., 2003). High expression in the brain tumor cell
line SNB-19 has also been reported (Prades et al., 2002). The
molecular function of ABCA13 is currently unknown. Intrigu-
ingly, a recent report points to an association between genetic
variants of ABCA13 and schizophrenia, bipolar disorder, and
depression (Knight et al., 2009). In this study, the popula-
tion attributable risk of the identified mutations was 2.2% for
schizophrenia and 4.0% for bipolar disorder. However, a more
recent report failed to confirm this observation (Dwyer et al.,
2011).

NON A-SUBFAMILY ABC TRANSPORTERS
Next to the A-subfamily ABC transporters reviewed above, several
studies point to roles of ABC transporters outside this subfam-
ily in brain lipid homeostasis and neurodegeneration (Kim et al.,
2008). ABCB1, also known as MDR1 and P-glycoprotein, is one of
the best characterized ABC transporters. It functions mainly as an
exporter of amphipathic molecules such as anticancer drugs that
confer multidrug resistance to tumor cells (Sarkadi et al., 2006).
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Transport of lipids (phosphatidylcholine and ethanolamine,glyco-
sylceramide, and sphingomyelin) by ABCB1 has also been reported
(van Helvoort et al., 1996). Despite its overall low expression in
human brain (Langmann et al., 2003), its presence and functional
implication in the blood–brain barrier have been well documented
(Cordon-Cardo et al., 1989; Tatsuta et al., 1992; Tishler et al., 1995;
Seetharaman et al., 1998; ElAli and Hermann, 2011; Vogelgesang
et al., 2011). Importantly, recent studies indicate a central role
of ABCB1 in the efflux of Aβ from the brain (Lam et al., 2001;
Vogelgesang et al., 2004, 2011; Cirrito et al., 2005; Kuhnke et al.,
2007; Hartz et al., 2010) which is reduced by approximately 30% in
AD patients compared to healthy individuals (Mawuenyega et al.,
2010). In addition to ABCB1, additional studies strongly suggest
the involvement of the ABC proteins ABCA1,ABCC1, and ABCG2,
respectively, in the export of Aβ (Xiong et al., 2009; Koldamova
et al., 2010; Krohn et al., 2011). Finally, another G-subfamily ABC
transporter, designated ABCG1, has been implicated in the pro-
cessing of APP to generate Aβ peptides (Sarkadi et al., 2006; Kim
et al., 2007). Each of these transporters may represent a poten-
tial pharmaceutical target for therapeutic interventions aiming
at the reduction of Aβ accumulation and the prevention of AD
progression.

CONCLUSION
ATP-binding cassette transporters constitute an evolutionary
ancient group of large proteins which mediate the transmembrane
transport of a diverse spectrum of substrates. Specifically, the
members of the recently identified A-subfamily of ABC trans-
porters serve as key regulators of cellular lipid transport processes.
Given that the central nervous system, next to adipose tissue, rep-
resents the second major lipid rich area in higher organisms, it is
reasonable to assume that A-subfamily ABC transporters are of
critical importance for the integrity of the CNS. In fact, recent
evidence links A-subfamily transporters and also other members
of the ABC protein family to the maintenance of brain lipid
homeostasis and neurodegenerative diseases. In particular, the
transporters ABCA1, ABCA2, and ABCA7 are promising research
targets that bear significant therapeutic potential for the treat-
ment of neurodegenerative disease. Whereas ABCA7 appears to
inhibit Aβ production, a positive effect on Aβ production has
been reported for ABCA2. Moreover, available evidence suggests
that ABCA1 acts as a suppressor of Aβ production and deposition.
Recent experiments involving ABCA1 inducing LXR agonists have
shown promising, antiamyloidogenic effects and thus highlight the
importance of ACBA1 as a promising drug target in combating AD.
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