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Abstract5

Remembering what just happened is a crucial prerequisite to form6

long-term memories but also for establishing and maintaining working7

memory. So far there is no general agreement about cortical mecha-8

nisms that support short-term memory. Using a classifier-based decod-9

ing approach, we report that hippocampal activity during few sparsely10

distributed brief time intervals contains information about the previous11

sensory motor experience of rodents. These intervals are characterized12

by only a small increase of firing rate of only a few neurons. These13

low-rate predictive patterns are present in both working memory and14

non-working memory tasks, in two rodent species, rats and Mongolian15

gerbils, are strongly reduced for rats with medial entorhinal cortex16

lesions, and depend on the familiarity of the sensory-motor context.17
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Introduction18

The behavioral relevance of a recently experienced event is not necessar-19

ily apparent during or shortly after it occurs. Nevertheless, it has to be20

maintained in memory for some time to potentially associate it with a sub-21

sequent reward or punishment – a requirement known as temporal credit22

assignment problem (Sutton, 1984; Sutton and Barto, 2018). Reinforce-23

ment learning (RL) solves this problem by both integrating a reward pre-24

diction value over time (Schultz et al., 1997) and propagating it through25

state space via an eligibility trace (Sutton and Barto, 1981), which might26

be implemented on the synaptic level (Päpper et al., 2011; He et al., 2015).27

While the neural mechanisms underlying reward prediction in the ventral28

tegmental area are exceptionally well investigated, the cortical activity that29

provides the experience-specific drive for tegmental RL processes largely re-30

mained unresolved. Potential cortical mechanisms to maintain short-term31

memory are persistent cortical activity (Egorov et al., 2002) and short-32

term synaptic plasticity (Mongillo et al., 2008; Leibold et al., 2008). A33

further potential mechanism are hippocampal time cells (MacDonald et al.,34

2011), however, they require the animal to be engaged in an active working35

memory task (Pastalkova et al., 2008) and are not necessarily content spe-36

cific (Sabariego et al., 2019). Moreover, animals with bilateral lesions of the37

medial entorhinal cortex (mEC) show a behavioral deficit in spatial working38

memory but time cell activity in the delay period did not seem to be im-39

paired (Sabariego et al., 2019). Since short-term memory is a prerequisite40

for working memory, we reckoned that mEC lesions might already affect the41

former and searched for potential impairments of the delay activity in the42

animals with mEC lesions, which may not be reflected in time cell activity.43

We, indeed, were able to identify activity correlates of behavioral perfor-44

mance differences between control rats and mEC-lesioned rats (Sabariego et45

al., 2019): activity from CA3 in control animals was more predictive of the46

previous behavioral trial than activity from CA3 in mEC-lesioned animals.47

The informative components of the activity were carried by only few cells48

that fired few additional spikes. In addition to the rat data, we also assessed49

CA1 activity of Mongolian gerbils (Fetterhoff et al., 2021) during a reward50

consumption period that did not require to maintain working memory and51

found identical results than for control rats, suggesting that the informa-52

tive low-rate activity patterns are not working-memory dependent, but may53

constitute a hippocampal trace of cortical short-term memory processing.54
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Results55

To explore the information content of hippocampal activity during waiting56

periods, we examined two data sets in which animals performed different57

behavioral tasks. In a first data set, two groups of rats (with and with-58

out bilateral mEC lesions) were trained on a spatial alternation task with a59

variable waiting period between trials, in which they needed to maintain a60

working memory of their previous behavioral choice (Supplementary Figure61

S1A). Here, we only focused on sessions with 60 s long delay periods. Pre-62

viously, it was shown that in animals with mEC lesions task performance63

is degraded (Sabariego et al., 2019) but it remained unclear whether this64

behavioral finding is reflected in hippocampal activity during the delay pe-65

riod. In a second data set Mongolian gerbils were trained to run on two66

mazes in virtual reality (distinguished by left and rightward turns and a67

turn-direction specific set of visual cues; Supplementary Figure S1B), that68

were selected in random order (such that no information about the future69

can be represented in inter trial intervals and animals had no requirement of70

working memory), and had a 20 second pause between trials during which71

animals received a reward (Fetterhoff et al., 2021). We compared two types72

of virtual mazes, a familiar configuration of visual cues in which the ani-73

mals have been trained on the task, and a “swapped” maze in which visual74

cues are presented in association with the other turn direction introducing75

sensory conflicts, while the animals kept performing the same task.76

Decoding Performance77

In the original analysis for the delay activity in the rat data sets (Sabariego78

et al., 2019), a linear (support vector) classifier was unable to distinguish79

whether preceding trials had left and right turns when population vectors80

were constructed with L = 1 s binning. Here, we repeated the analysis with a81

shorter time interval L = 100ms matching the typical duration of population82

bursts and a linear neural network to predict the left/right label of the83

trial preceding the delay period in all six groups of experiments. Correct84

classification rates (CCR) were slightly but significantly above chance (see85

example in Figure 1A) in a fraction of rat recording sessions that exceeded86

randomness (according to binomal tests, see Figure caption) except for CA187

recordings from rats with mEC lesions (Figure 1B). Original virtual reality88

mazes could also significantly be decoded from delay activity (Figure 1B,89

LR maze), but swapped mazes with sensory conflicts could not (Figure 1B,90

L*R* maze). Since we observe predictions of previous trial labels, even in the91

3

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2023. ; https://doi.org/10.1101/2023.01.09.523199doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.09.523199
http://creativecommons.org/licenses/by-nc/4.0/


gerbil data set without a working memory task, we reason that the activity92

does not specifically reflect working memory. Nevertheless the activity may93

underlie the establishment of working-memory although differences between94

mEC-lesioned and control rats do not yet reach significance at this level of95

analysis.96

The fraction of significant sessions was generally highest for L = 100 ms97

intervals (except in CA1 recordings from MEC-lesioned animals, where the98

fraction of significant sessions was maximal for 50 ms binning) and decreased99

with larger bin sizes (Figure 1C; except for CA3 in control rats) indicating100

that, at least in CA1, the information about the previous turning direction101

is mostly carried by short-term correlations The finding that CA3 activ-102

ity even for L = 1 s is significantly predictive contradicts previous reports103

in (Sabariego et al., 2019) and may arise due to a linear neural network104

classifier instead of a linear support vector machine and/or different prepro-105

cessing (scaling). Further insight into the predictive activity patterns (see106

Section “Low Rate Relevant Time Bins”), will further explain differences107

between CA1 and CA3 results.108

To better understand what activity features the classifiers use to distin-109

guish past experiences, we first computed a prediction score (PS) for every110

time bin. The PS measures the fraction of repetitions in which a population111

vector from a particular time bin yielded a correct prediction during test-112

ing (see Methods). One representative example session (Figure 1D) reflects113

a general directional bias (here “left”) of the classifier, i.e., the prediction114

outcomes tend to favour the label “left” independent of the real trial la-115

bel if no information seems available in the spiking pattern. The above116

chance performance of the classifier on average (Figure 1E) is reflected in117

PS distributions with a peak at 1 only slightly exceeding the peak at 0.118

One possible explanation for the low average CCR values and the small119

bias in PS that is in accordance with the general increase in prediction120

for lower bin sizes L is to assume that the informative neural signatures121

occur only in few brief time intervals. A natural guess would therefore122

be to investigate the association between intervals of high PS and awake123

sharp-wave ripple (SWR) events, since they are of about 100 ms length, are124

generally thought to support planning (Jadhav et al., 2012; Shin et al., 2019),125

and the incidence rates are affected by functional mEC inputs (Chenani et126

al., 2019).127

We tested this conjecture for the control data sets from rats (CA1 and128

CA3) performing a spatial working memory task, by correlating the local129

field potential (LFP) power in different frequency bands with the predic-130

tion scores of the classifier in 100ms bins. We, however, did not find any131
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A EB

C D

Figure 1: Decoding performance of linear ANN. (A) Correct classification
rate (CCR; pink) for an example CA1 recording from a control rat (rat
3903/day 1/session 2) and distribution of CCRs for label shuffles (black).
Despite being small, the CCR is significant (p value as indicated; 1000 shuf-
fles; 100 cross validation iterations). (B) Fraction of sessions for which the
permutation test from A was significant for each of the six groups of ex-
periments (p values from binomial tests; CA1 control: 4/18; CA3 control:
6/28; RL maze: 6/18). mEC lesions in rats and unfamiliar arrangement
of visual landmarks in gerbil data lead to decreased decoding (p values as
indicated; CA1 mEC lesion: 1/16; CA3 mEC lesion: 4/26; L∗R∗ maze: 2/18
Chi squared test for homogeneity, rat CA1: χ2 = 1.723, n1 = 4, n2 = 1; rat
CA3: χ2 = 0.326, n1 = 6, n2 = 4; gerbil CA1: χ2 = 2.571, n1 = 6, n2 = 2;
See Table 1). (C) The fraction of significantly decodable sessions decreases
for larger time intervals L in CA1 data sets but remains at a constant level
in CA3 data sets. (D) Prediction score (PS) for an example session from
CA1 of a rat with mEC lesion (Rat 3928/day 2/session 1) using L = 100ms
time intervals (top) and spike raster plot (bottom) from a 60 s delay period
succeeding left- and right-ward trials (red and blue, respectively). (E) Dis-
tributions of the PS for all groups of experiments only exhibit a small bias
towards 1.

5

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2023. ; https://doi.org/10.1101/2023.01.09.523199doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.09.523199
http://creativecommons.org/licenses/by-nc/4.0/


consistent correlation between spectral bands and prediction (Figure 2A) by132

standard multilinear regression. Only 1 of 4 significant CA1 session and 1 of133

5 significant CA3 session showed overall significant linear relation (ANOVA)134

with 3 of 9 (=4 CA1+ 5 CA3) individual tests showing significance in the135

theta band and 2 of 9 in the ripple band. Wilcoxon signed-rank tests for136

non-zero regression weights across sessions (black circles in Figure 2B) did137

show no significant results, suggesting that overall dependencies of predic-138

tion scores on LFP must be weak. This conclusion was further corroborated139

by inconsistent significance of correlations between LFP power and predic-140

tion scores when data were pooled over all sessions. Pooled CA1 prediction141

scores, were significantly modulated with ripple power, but not the pooled142

CA3 prediction scores (red circles in Figure 2B). We visualized the best143

candidate correlations (CA1 theta and ripple) as scatter plots, which re-144

vealed that the significant linear regression of the pooled prediction scores145

may only explain a negligibly small part of the variance (Figure 2C). With146

this observed lack of clear correlation we rule out that successful decoding147

mostly relies on SWR or any other LFP-related activity pattern.148

Most Informative Directions149

To directly identify the neuronal basis of the prediction scores of the clas-150

sifier we intended to visualize its decision boundary, i.e., to identify the151

neural ensembles that are specific to the previous experience of the animal.152

To do so, we applied adversarial attack techniques from machine learning153

(see Methods) (Rauber et al., 2017; Goodfellow et al., 2014) that move the154

population vector constructed from a specific time point to a position close155

to the classification boundary (Figure 3A,B). From this set of boundary posi-156

tions we then constructed most informative directions (MIDs, orange vector157

in Figure 3B) as clusters of orthogonal vectors to the boundary. The method158

outperforms estimating the weight vector by bootstrapping the training pro-159

cess on multiple subsamplings for low signal strength (Supplementary Figure160

S2A-C).161

Examples for MIDs from all 6 data sets are shown in Figure 3C, indicat-162

ing only few active neurons (saturated colors) to contribute to the decision163

of the classifier. Varying the weight threshold to obtain heuristic sparseness164

estimate reveals that only about 20% of the neurons (that were active in the165

delay period) may contribute to the classification performance (Figure 3D).166

To test whether the obtained MIDs indeed identify functionally relevant167

dimensions, we assigned overlap values q
(c)
t with all the MIDs (identified168

by c) to the population vectors (identified by time index t). If the sign169
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Figure 2: Lack of clear correlation between z-scored prediction score (PS)
and LFP power (in dB) for the 9 significant control sessions. (A) Significance
(p-value < 0.05: yellow; p-value > 0.05: blue) of general linear model fits
of the z-scored PS using the regressors theta power (T, 6–11 Hz), slow- (S,
30–50 Hz), mid- (M, 55–90 Hz), fast-(F, 95–140 Hz) gamma, and ripple
(R, 150–250 Hz) power, speed (v), and label (R/L) for CA1 (Left) and
CA3 (right) recordings for control rats. Significance for the whole model
fit (sig) is obtained from F-statistics, significance for the β values from T-
statistics. Numerical values for test statistics and p values are provided in
the Supplementary Table 1. (B) P values for fits to pooled data (T-statistics,
red) and Wilcoxon tests on regression coefficients (β-values) of the individual
sessions being different from zero (black). (C) Scatter (density) plots for z-
scored PS vs. regressors theta power (bottom) and ripple power (top) with
regression line (red).
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Figure 3: Most informative directions (MIDs). (A) Schematic of the de-
coding process using a linear neural network and population vectors with
binary labels from behavior. (B) Illustration of the MID identification pro-
cess (Methods). A linear classifier is trained using a 2-fold cross validation
scheme. Adversarial attack methods are employed to move data points close
to the decision boundary. MIDs are then identified by clustering (DBSCAN)
locally orthogonal vectors (gold). Results are grouped, sorted and evaluated
over all cross validation iterations (100 bootstraps). (C) MIDs from example
sessions for all groups of experiments (CA1 control rat 3906/day 1/session
2;CA1 mEC-lesioned rat 3928/day 2/session 1; CA3 control rat 3958/day
3/session 2; CA3 mEC-lesioned rat 3903/day 1/session 2;RL maze gerbil
2783/day 1; R∗L∗ maze gerbil 2784/day 3). Saturated colors indicate neu-
rons which contribute more strongly to the decision boundary. (D) Fraction
of MID weights (sparseness) exceeding a certain threshold. (E) Mean over-
laps of population vectors with MIDs for “left” and “right” labelled trials.
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of q correlates with the decision performance, we would consider the MID170

informative. However, we only find such a sign change to occur in the control171

gerbil data set (Figure 3E), suggesting that averaging over all time bins172

probably blurs the signal and thus proceeded with restricting our analysis173

to only those “relevant” time bins which we suspect to be most informative.174

Low Rate Relevant Time Bins175

To identify relevant time bins, we compared the overlap values q with the176

shuffle distribution (see Methods; Supplementary Figure S3) to find above-177

chance overlap with the MID. Time bins for which qt was below the 2.5178

percentile of the shuffle distribution (significantly negative overlap) were179

considered to be predictive for “left” labels, time bins for which qt was above180

the 97.5 percentile (significantly positive overlap) of the shuffle distribution181

were considered to be predictive for “right” labels. Figure 4A depicts two182

examples of spike patterns from the relevant time bins. These examples183

are typical (see further examples in Supplementary Figure S4), in that the184

firing rate in relevant bins of mostly only one neuron considerably exceeds185

its firing rate in the non-relevant bins, and this neuron gets the largest186

load of the MID in positive (right) and negative (left) direction. We also187

observe general modulations of firing rates across trials with some trials188

having increased activity in all neurons.189

These two examples are also typical, in that only a small fraction of time190

bins turned out to be relevant in general (Figure 4B) with most relevant bins191

(2.4%) in CA1 data from control rats. Rats with mEC lesions showed par-192

ticularly low fractions of relevant bins with the difference between control193

and lesioned animals reaching significance only for CA3 recordings (Mann-194

Whitney U rank test). This finding suggests the mEC supports the expres-195

sion of brief periods of informative delay period activity that, at least in196

CA3, may reflect working memory performance. The sparsely interspersed197

relevant time bins thereby occur at similar rates across the delay period in198

all analysis groups (Figure 4C).199

Despite PS over all time bins only had a tiny bias towards 1, prediction200

scores in the relevant bins are very clearly and significantly above chance201

(Wilcoxon test; see Table 6) for all data sets except CA1 recordings from202

lesioned rats. Also PS in relevant bins were significantly larger (Mann-203

Whitney U rank test; see Table 7) than in non-relevant bins except for the204

data sets from mEC-lesioned animals (Figure 4D). These findings indicate205

that MIDs provide a handle for identifying predictive neural activity except206

in the two data sets from lesioned animals, possibly because there are just207
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A

D E F

B

C

CA1 control rat 3931/day 2/session 1

R*L* maze gerbil 2784/day 3

Figure 4: Relevant time bins. (A) MIDs (left) and spike raster plots (right)
only for relevant time bins of two (rows) example sessions (top: rat 3931/day
2/session 1; bottom: gerbil 2784/day 3). Spikes are colored (red/blue) ac-
cording to trial labels. The background colors indicate the differences in
firing rate between relevant and non-relevant bins of the individual neurons.
Percentages on top reflect fractions of bins identified as relevant. (B) Mean
percentage of relevant time bins for each condition with respect to ”left”-
(red) and ”right”-ward (blue) turns. mEC-lesioned rats showed significantly
fewer relevant time bins (Mann-Whitney U test; rat CA1: U = 23.5, rat
CA3: U = 487.5, gerbil CA1: U = 8.5; See Table 5). (C) Distribution of
relevant time bins across the delay periods for all sets of experiments. (D)
The prediction scores for relevant time bins are significantly above chance
for all sets of experiments except for the CA1 in mEC-lesioned animals
(Wilcoxon test; See Table 6). Prediction scores of relevant time bins are sig-
nificantly larger than the non-relevant ones in all sets of experiments apart
from the mEC-lesioned animals (Mann-Whitney U test; see Table 7) (E)
Significantly higher firing rates are observed in relevant vs. non-relevant
time bins for all sets of experiments apart from the CA1 of lesioned rats and
the unfamiliar L∗R∗ mazes in gerbil CA1 (Mann-Whitney U test, see Table
8). (F) Significantly higher fraction of active cells are observed in relevant
vs. non-relevant time bins for all sets of experiments apart from the CA1
from lesioned rats and the unfamiliar L∗R∗ mazes in gerbils (Mann-Whitney
U test, see Table 9).
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too little relevant time bins (Figure 4B).208

The number of spikes contributing to the above chance prediction is very209

small as indicated by firing rate (Figure 4E) and sparseness (Figure 4F),210

but most data sets exhibit significantly increased firing rate and fractions211

of active cells in relevant bins as compared to non-relevant bins (Mann-212

Whitney U rank test; see Tables 8, 9), indicating that indeed few brief213

intervals of slightly enhanced activity carry the behavioral information. In214

this context, we also revisited the unexpectedly large predictability of CA3215

activity in long time bins of L = 1 s (Figure S5), and found a lower firing rate216

in the relevant bins and a relatively lower difference (as compared to CA1)217

in sparseness between relevant and non-relevant time bins. This indicates218

that predictive activity in CA3 seem to be dispersed over longer time periods219

than in CA1.220

Discussion221

We examined the short-term memory content of hippocampal CA1 and CA3222

activity for rats during a delayed spatial alternation task and CA1 activity223

for Mongolian gerbils, after navigating virtual reality mazes, during reward224

consumption in inter-trial intervals. The recorded activity of past experience225

was decoded applying a linear neural network to population vectors from226

time bins of length of 100 ms. To directly identify the neuronal basis of the227

prediction accuracies we visualized the decision boundary using adversarial228

attacks, and subsequently identified most informative neuronal ensembles229

in terms of vector clusters orthogonal to the decision boundary. Applying230

these neuronal ensembles to the recorded activity we were able to extract231

the activity patters most related to previous behavior. Few neurons (about232

20% of those that were active in the delay periods) and few time bins ( 2%)233

seem to be contributing to the classification task with relatively low firing234

rates (about 2.5 Hz) across all experimental conditions. We reasoned that235

this may indicate that the recent past is encoded with sparsely dispersed236

spikes. Since the amount of informative activity patterns was reduced at237

least in CA3 of lesioned rats, our results suggest that this low-rate activity238

may support working memory processes.239

The medial entorhinal cortex (mEC) provides the hippocampus with spa-240

tial information during foraging and navigation tasks (Hafting et al., 2005;241

Gil et al., 2018). Previous analysis observed that mEC is necessary for242

control level working memory performance (Sabariego et al., 2019), de-243

spite only limited effects on hippocampal place fields (Hales et al., 2014;244
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Schlesiger et al., 2015) and sequence replay (Chenani et al., 2019). Our245

results suggest an additional mEC-dependent mode of activity that appears246

to hold information related to previous experience, which entails a relatively247

low number of active cells and spikes. A further decline of predictivity was248

observed in gerbils navigating through virtual environments with conflicting249

sensory-motor context, suggesting that particularly sensory information via250

the mEC may be a main driver for the informative low rate activity patterns.251

Because the observed brief periods of informative activity are sparse252

and random in time, potential mechanisms that may give rise to them are253

unlikely to consist of local persistent neural firing generated by positive self-254

feedback (Fransén et al., 2006). Synfire chains (Abeles, 1991) that propa-255

gate through multiple brain areas, however, cannot be excluded, but would256

require that similar temporally correlated activity signatures would be vis-257

ible in other limbic brain areas. Particularly the medial prefrontal cortex258

with its direct hippocampal innervation, however, may lack such informa-259

tive activity (Böhm and Lee, 2020). An alternative mechanism to store260

short-term memory is synaptic short-term dynamics (Mongillo et al., 2008;261

Leibold et al., 2008). The synapse-specific depression and facilitation states262

may maintain specific behavioral information for time scales up to few sec-263

onds, however, these states would need to be refreshed every few seconds264

to bridge intervals of several tens of seconds as in the currently investigated265

behavioral tasks. The low rate activity patterns described in this paper may266

implement such a refreshing mechanism.267

Classifier-based decoding is a robust method to link specific features268

of neuronal activity to cognitive function and behavior. The existence of269

several well-tested classifier implementations that are straight-forward to270

analyze within the theoretical framework of hypothesis testing and cross val-271

idation is particularly convenient (Bishop, 2006) and makes them good can-272

didates for decoding typically low signal to noise neuronal activity (Haynes273

and Rees, 2006; Norman et al., 2006; Lemm et al., 2011). The downside of274

classifier-based decoders is that they usually come as a black box, meaning275

that the neuronal activity features which are the most influential regarding276

a specific behavioral outcome are not readily observable. However, knowing277

these features, is pivotal for correlating neuronal ensembles to behavioral278

states. Here, we employ explainable artificial intelligence methods (Karimi279

et al., 2019), known as adversarial attacks, in order to sample the deci-280

sion boundary of classifiers in an attempt to overcome their black-box na-281

ture (Doran et al., 2017). In doing so, we identify the most informative282

neuronal ensembles in terms of consistently appearing clusters of normal283

vectors relative to the decision boundary.284
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Classification of high-dimensional (multi-neuron) data with low signal285

to noise ratio and limited numbers of trials is usually best done with linear286

models, since more complex non-linear classifiers are prone to overfitting,287

exhibiting test performances that are drastically inferior to training per-288

formances (Bishop, 2006). Although linear classifiers may thus turn out289

superior in many of the real-world applications from an empirical risk min-290

imization perspective, the true underlying generative processes may nev-291

ertheless be non-linear. Our attack-based approach provides a handle to292

uncover at least parts of the underlying non-linearities with a linear net-293

work, by multiple subsamplings for each of which we estimate the normal294

vector. Clustering of normal vectors from the many subsamplings and ap-295

plying consistency measures allows to detect multiple considerably distinct296

clusters of normal vectors, and thus allows to effectively describe some of297

the non-linear structure in the data.298

How to maintain information over time intervals of tens of seconds to299

minutes, and how to achieve this at low energetic costs, are key open prob-300

lems in understanding the cortical basis of working memory. Particularly the301

energy constraint will restrict the neuronal activity correlates to be sparse302

and low-rate, properties that make them hard to find. Further new analysis303

approaches will be needed to identify such neural signatures, particularly304

also in correlation with behavioral measures (Schneider et al., 2022).305

Methods306

Electrophysiological Data Sets307

Both of data sets included in our analysis have been previously published (Sabariego308

et al., 2019; Fetterhoff et al., 2021). Detailed descriptions of the experimen-309

tal methods can be found in the original papers.310

In brief, 15 male Long Evans rats were trained on the spatial alternation311

task (Sabariego et al., 2019) and randomly assigned to one of two groups, a312

group with nearly complete NMDA lesions of the medial entorhinal cortex313

(n = 7) and a control group (n = 8). After about 9 weeks of recovery, both314

groups of animals were implanted with tetrodes that were lowered until the315

CA1 or CA3 region. The behavioral task was performed using an 8-shaped316

maze (Figure S1A). Rats were trained until the performance reached 90%317

correct trials on two of three consecutive days. After that 30 trials with 60s318

delay were performed daily for each rat, for 14 days.319

From the virtual reality task (Fetterhoff et al., 2021), we obtained data320

from six male Mongolian gerbils (Meriones unguiculatus) with tetrodes im-321
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planted to dorsal hippocampal CA1. Gerbils were trained to the task of322

running on a 620 cm long linear track consisting of three linear hallways323

separated by two 45o corners. The animals were initially introduced on the324

two original maze types: R and L, each containing two right or two left turns325

and, each containing different images (Figure S2B). After learning original326

image-turning direction combinations, images were swapped in the middle327

and the last hallways (L* and R* mazes). During recording sessions, 20328

randomly-ordered original mazes were presented before 20 randomly ordered329

swapped mazes. The VR system is described in greater detail in (Thurley330

et al., 2014).331

Population Vectors332

Spikes of all N neurons recorded during the delay phases of a session are333

time-binned in t = 1, . . . , T intervals with bin size L. The number T of334

time bins is also called the size of the data set. Neurons without any spike335

are excluded from the data set (Table 10) resulting in population vectors336

x⃗t = (x
(1)
t , . . . , x

(N)
t )T. Each of the neurons is converted to the standardized337

space, by subtracting the mean neuron activity in a session and then dividing338

the difference by the standard deviation of the neuron activity,339

x⃗t,n =
x⃗t,n − x⃗∗,n

σx⃗∗,n

(1)

Each of the patterns x⃗t is assigned a label lt = ±1 according to the binary340

behavioral experience in the trial this pattern is obtained from. In our data341

sets, these binary labels distinguish rightward from leftward turns.342

Artificial data343

Linear separation task344

We generate a linearly separable data set of t = 1, ..., T vectors345

x⃗
(±)
t = (±)

d

2
w⃗ + ξ⃗

(±)
t (2)

with labels lt = ±1. Here, d ≥ 0 denotes the signal along the ground truth346

direction x⃗
(±)
t that is added (subtracted) to normal i.i.d random vectors ξ⃗

(±)
t .347

The dimension n of the vectors ranges between 2 and 100. The sparseness348

s = 1/n of the weight vector indicates only one active dimension, and the349

signal strength d varies between 0 and 10.350
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Artificial spiking model351

To mimic random spiking activity we simulate n homogeneous Poisson pro-352

cesses with density λ (varying between 0.05 and 0.2) and construct t =353

1, ..., T population vectors from time bins of size 1 with balanced random354

labels lt = ±1.355

A ground truth weight vector w⃗ is then applied to a small subset T ′ =356

(1− pfail)T of the available vectors from the positive subset (l = +1):357

x⃗(+)
m = x⃗(+)

m + w⃗ . (3)

The sparseness s of the binary weight vector varies between 10− 30%. The358

dimensions are varied between 10 and 50.359

Decoding360

We train a binary classifier to distinguish the binary behavioral choices.361

Our specific choice of the classifier is a linear neural network, implemented362

in PyTorch (Paszke et al., 2019). The network consists of an input layer x⃗,363

with one node for each of the active neurons we attempt to decode, and an364

output layer O⃗ with two nodes, each dedicated to one of the binary labels.365

The output is computed using the softmax function366

O⃗ = σ⃗(W x⃗) , with σ(⃗h)(k) =
ehk

eh1 + eh2
, k = 1, 2 (4)

The training of the classifier minimizes the cross entropy loss function367

in the space of the 2×N weight matrices W . Typically, supervised training368

occurs for 1000 consecutive epochs, with a learning rate 0.001 (see (Paszke369

et al., 2019)).370

In order to ensure a less biased estimate of the model performance and to371

avoid overfitting, we employ a 2-fold crossvalidation process during which372

we generate 100 random separations into training and a testing subset of373

equal size T/2, in which the ratio between the two labels is kept as in the374

full data set. Applying the classifier on the test data in each of the 100375

random separations yields a fraction of correct classifications. As correct376

classification rate (CCR) we define the mean of these 100 fractions.377

We repeat the decoding for 1000 random shuffles of labels and thereby378

obtain 1000 CCRs (each averaged on 100 random separations into test and379

training sets) from which we construct the Null distribution that is used to380

assign a p value to the decoding performance as the percentile of the real381

CCR.382
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Adversarial Attacks383

To identify the separating hypersurface we ran two repetitions of the fast384

gradient sign method (FGSM) attack on each data point. The FGSM attack385

takes advantage of the gradient descent optimization of a neural network,386

and is executed via the Python-based package Foolbox (Rauber et al., 2017),387

which provides reference implementations of a variety of published state-of-388

the-art adversarial attacks (Goodfellow et al., 2014).389

The attack maps each population vector x⃗t onto a different vector A(x⃗t)390

which is moved to the hemispace opposite to the separating hypersurface.391

We apply the attack process twice since then the resulting vectors a⃗t =392

A(A(x⃗t)) faithfully sample the classification boundary. After the two attacks393

a population vector x⃗t is thus associated with a vector a⃗t that is supposed394

to be proxy for the closest position on the separating hypersurface.395

In order to avoid overfitting of the decision boundary, we repeat the396

computation of attack vectors a⃗t 100 times using random subsamplings of397

the data set of size T/2 keeping the ratio of labels as in the full data set.398

Most Informative Directions399

As most informative direction (MID) we define the direction in the space400

of population vectors x⃗t that is orthogonal to the decision boundary of the401

classifier. Since in general the decision boundary can be non-linear, MIDs are402

local and thus we expect that multiple MIDs can occur for any given dataset.403

It also needs to be noted that MIDs are a property of the data set and not404

the classifier. Thus even if we use a linear classifier to approximate parts405

of the (potentially non-linear) decision boundary, we may obtain multiple406

MIDs, depending on which part of the boundary is best matched by the407

current subsampling of the data set.408

To obtain the orthogonal direction at one attack vector location a⃗t, we409

compute a set of difference vectors d⃗t,k = a⃗t− v⃗t,k (Figure 3B, green arrows)410

with v⃗t,k = {a⃗t′ |rt < D(⃗at, a⃗
′
t) < Rt} denoting subset of attack vectors in a411

ring-shaped vicinity of a⃗t. As a distance function D we use the Euclidean412

distance, with rt = 0.02maxt′D(⃗at, a⃗
′
t) and Rt = 0.35maxt′D(⃗at, a⃗

′
t).413

The MIDs are then obtained by searching the directions n⃗t that minimize414

the squared scalar product to the distance vectors, i.e.,415

n⃗t = argminn⃗t
(n⃗t ·

∑
k

d⃗t,k)
2 with |n⃗t| = 1 . (5)

The minimization is equivalent to finding the Eigenvector n⃗t of the matrix416 ∑
k d⃗t,k · d⃗Tt,k with the smallest Eigenvalue. Since the minimization problem417
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in Eq. (5) is symmetric regarding multiplication with −1, we always choose418

n⃗t pointing into the +1 hemispace.419

Finally, we apply the density-based spatial clustering algorithm (DB-420

SCAN from the Python package scikit learn (Pedregosa et al., 2011)), to all421

vectors n⃗t and to obtain C cluster representatives n⃗(c), c = 1, ..., C, which422

we call MIDs. To generate robust estimates of the MIDs, we repeat the423

procedure 100 times on subsampled data sets of size T/2 (keeping the ratio424

of labels) and derive the two quality measures amount α(c) and consistency425

χ(c): As amount we use the fraction of attack vectors a⃗t whose normals n⃗t are426

assigned to the cluster c (averaging over all subsamplings). As consistency427

χ(c) we denote the fraction of all subsamplings which end up in finding the428

same cluster c. To identify whether MIDs from two susamplings are in the429

same cluster, we apply the clustering algorithm DBSCAN to all identified430

MIDs. The performance of DBSCAN can be adjusted by two main param-431

eters. The first parameter is the maximum distance between two vectors in432

the same cluster, and is set to 0.25 unless mentioned otherwise. The second433

parameter is the minimum number of samples within a cluster to not be434

considered as noise, and is set to 3% of the dataset (Ester et al., 1996).435

Bias Correction436

MIDs are vectors orthogonal to the decision boundary and thus in order437

to compute the overlap q
(c)
t between MID c and a specific pattern x⃗t, we438

first subtract the bias y⃗t = x⃗t − b⃗t and then compute the scalar products439

q
(c)
t = n⃗(c) · y⃗t. The bias vectors b⃗t are obtained in every time bin as the440

center of gravity of the a⃗t vectors the MID is composed of.441

Relevant Time Bins442

To identify whether an activity pattern x⃗t reflects a certain MID, we generate443

a Null distribution for the overlaps q
(c)
t by 1000 random shuffles of the neuron444

indices. Relevant time bins for MID c are those in which q
(c)
t exceeds the445

upper 97.5%-tile or falls below the lower 2.5%-tile.446

Local field potential analysis447

In all recordings from control rats, we selected for the LFP analysis the448

channels with highest theta power among the tetrodes which were located449

in the same brain region (CA1 or CA3). Different oscillation bands were450

extracted by applying a FIR bandpass filter (theta: 6 -11 Hz, slow gamma:451
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30 - 50 Hz, mid gamma: 55 – 90 Hz, fast gamma: 95 - 140 Hz, ripples:452

150 – 250 Hz) based on a Hamming window. Bandpass filtered signals were453

Hilbert-transformed and the mean square Hilbert-amplitude in a time bin454

of length L was used as an estimate for short-term power analysis.455
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Tables559

Table 1: Figure 1B,Chi squared test for homogeneity, Test statistics, p val-
ues, degrees of freedom (df)

Condition Test statistics p values degrees of freedom(df)

CA1 control 1.723 0.189 n1 = 4, n2 = 1
CA1 mEC lesion

CA3 control 0.326 0.568 n1 = 6, n2 = 4
CA3 mEC lesion

CA1 LR maze 2.571 0.109 n1 = 6, n2 = 2
CA1 L∗R∗ maze

Table 2: Figure 2A, CA1, Test statistics, p values, degrees of freedom (df)

rat/day/sess. 3906/1/1 3906/1/2 3931/2/1 3931/3/2

ANOVA (F) 1.08, 0.38 1.75, 0.093 1.93,0.061 7.16, 1.6e-8
T 0.48, 0.64 2.05, 0.041 2.1, 0.032 1.50, 0.13
S -1.11, 0.27 -1.38, 0.17 1.35, 0.18 -0.50, 0.62
M -0.15, 0.89 0.34, 0.74 0.68, 0.50 -0.90, 0.37
F -1.13, 0.26 -1.42, 0.16 0.44, 0.66 -1.78, 0.075
R 1.91, 0.056 1.18, 0.24 -1.36, 0.17 6.53, 7.7e-11
v 0.98, 0.33 0.88, 0.39 1.68, 0.093 -1.61, 0.11
R/L -0.10, 0.92 0.19, 0.86 -0.08, 0.94 0.24, 0.82

df 4774 5381 4779 3584
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Table 3: Figure 2A, CA3, Test statistics, p values, degrees of freedom (df)

rat/day/sess. 3839/3/2 3931/2/2 3931/3/2 3958/1/2 3958/3/1

ANOVA (F) 0.51, 0.83 1.40, 0.21 1.50, 0.17 4.88, 1.7e-5 1.57, 0.14
T -0.66, 0.52 1.27, 0.21 -2.44, 0.015 -1.90, 0.059 0.39, 0.70
S -0.64, 0.53 -0.62, 0.54 -1.31, 0.20 0.00 , 1.00 -1.97, 0.050
M 0.59, 0.56 2.33, 0.020 -1.00, 0.32 -1.45 , 0.15 -0.07, 0.95
F 1.03, 0.31 0.25, 0.81 1.37, 0.18 0.58 , 0.57 -0.88, 0.39
R -0.04, 0.97 -1.25, 0.22 0.65, 0.52 -3.92, 9.0e-5 -1.70, 0.089
v 0.88, 0.39 1.19, 0.24 -0.98, 0.33 1.90, 0.058 -0.58, 0.57
R/L -0.16, 0.88 0.11, 0.92 -0.02, 0.99 0.06, 0.96 -0.22, 0.83

df 4784 5383 3584 4782 3572

Table 4: Figure 2B, Test statistics, (N,df)

Regressor 1 T S M F R v R/L

CA1 (black) Rank 1 10 4 5 1 8 6 7
CA1 (black) N 4

CA1 (red) T -2.06 3.59 -0.76 0.27 -2.09 3.37 1.46 0.01
CA1 (red) df 18542

CA3 (black) Rank 12 4 1 7 12 2 10 5
CA3 (black) N 5

CA3 (red) T 1.96 -1.50 -1.64 0.22 1.44 -1.76 1.00 -0.03
CA3 (red) df 22137

Table 5: Figure 4B,Mann-Whitney U test, Test statistics, p values, degrees
of freedom (df)

Condition Test statistics p values degrees of freedom(df)

CA1 control 23.5 0.528 n1=18, n2=2
CA1 mEC lesion

CA3 control 487.5 3.30e-05 n1=30, n2=19
CA3 mEC lesion

CA1 LR maze 8.5 0.23 n1=19, n2=2
CA1 L∗R∗ maze
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Table 6: Figure 4C, Wilcoxon test, Test statistics, p values, degrees of free-
dom (df)

Condition Test statistics p values degrees of freedom(df)

CA1 control 32.394 3.28e-230 2127

CA1 mEC lesion -1.697 8.95e-4 25

CA3 control 24.968 1.37e-137 3215

CA3 mEC lesion 9.7334 2.164e-22 161

CA1 LR maze 23.615 2.714e-123 939

CA1 L∗R∗ maze 8.033 9.50e-16 120

Table 7: Figure 4C, Mann-Whitney U test, Test statistics, p values, degrees
of freedom (df)

Condition Test statistics p values degrees of freedom(df)

CA1 control 11.276e7 1.316e-84 n1=2127, n2=86685

CA1 mEC lesion 10.304e4 0.2 n1=25, n2=9575

CA3 control 26.615e7 1.705e-16 n1=3215, n2=153987

CA3 mEC lesion 72e5 5.762e-05 n1=161, n2=103639

CA1 LR maze 46.367e6 2.340e-67 n1=939, n2=74943

CA1 L∗R∗ maze 62.289e4 4.24e-10 n1=120, n2=7837

Table 8: Figure 4D, Mann-Whitney U test, Test statistics, p values, degrees
of freedom (df)

Condition Test statistics p values degrees of freedom(df)

CA1 control 290.0 5.473e-05 18

CA1 mEC lesion 4.0 0.333 2

CA3 control 766.0 3.092e-06 30

CA3 mEC lesion 356.0 3.213e-07 19

CA1 LR maze 272.0 0.008 19

CA1 L∗R∗ maze 3.0 0.667 2
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Table 9: Figure 4F, Mann-Whitney U test, Test statistics, p values, degrees
of freedom (df)

Condition Test statistics p values degrees of freedom(df)

CA1 control 294.0 3.168e-05 18

CA1 mEC lesion 4.0 0.333 2

CA3 control 833.0 1.554e-08 30

CA3 mEC lesion 361.0 1.443e-07 19

CA1 LR maze 291.0 0.001 19

CA1 L∗R∗ maze 3.0 0.667 2

Table 10: Fraction of non-active cells (%)

min – max Mean

CA1 control 0.0 - 23.5 11.61

CA1 mEC lesion 5.0 – 5.0 5.00

CA3 control 0. - 66.7 18.1

CA3 mEC lesion 6.25 - 24.56 11.3

CA1 LR maze 0.0 0.0

CA1 L∗R∗ maze 0.0 0.0
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Supplementary Figures560
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Figure S1: Experimental setup of behavioral tasks. (A) Two groups of
rats with and without mEC lesions, are trained to alternate their spatial
directional direction in this 8-shaped maze at the end of the middle arm.
The rats remain at the delay site for 60 seconds after each trial during which
they should maintain a working memory of their previous directional choice.
(B) Mongolian gerbils are trained to run on two mazes, in virtual reality,
distinguished by left and rightward turns and distinct visual cues placed at
the walls of each corridor (top). The gerbils remain stationary for 20 seconds
after each maze run during which they receive a reward. Subsequently the
gerbils run through previously unseen environments where the visual cues
are flipped between the two mazes (bottom).
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Figure S2: MIDs performance evaluation on artificially generated data sets.
(A) Examples of linear binary classification tasks in 2-dimensional space
while varying the by-class overlap. MIDs (gold) appear to be closer to the
ground truth (green) compared to the ANN weights (black) for high degrees
of by-class overlap. (B) Overlap of MIDs and ANN weights with the ground
truth for linear classification tasks (n = 50). MIDs outperform the linear
ANN weight for high dimensionality and high degrees of by-class overlap
which is typically the case for neuronal activity. Stars indicate results below
significance threshold. The feature space is color coded. (C) Rate at which
MIDs outperform the linear ANN weight across repetitions (n = 50).
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Figure S3: MIDs and informative patterns performance evaluation on ar-
tificially generated spiking activity. (A) Schematic of spiking activity for
a binary behavioral task. Dotted line indicates a population vector. (B)
Overlap of MIDs (square markers) and averaged informative patterns (dia-
mond markers) with the ground truth, while varying the noise, sparseness
and amount of noise of the artificial spiking activity. Averaged informa-
tive patterns appear to outperform MIDs for activity with similar structure
(n=50).
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CA1 control rat 3931/day 2/session 1

CA1 mEC-lesioned rat 3928/day 2/session1

CA3 control rat 3958/day 3/session 2

CA3 mEC-lesioned rat 3903/day 1/session 2
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R*L* maze gerbil 2784/day 3

RL maze gerbil 2783/day 1

Figure S4: Examples of MIDs (left) and and raster spike plots (right) only
for relevant time bins for all groups of experiments. (A) CA1 control rat
3931/day 2/session 1. (B) CA1 mEC-lesioned rat 3928/day 2/session1. (C)
CA3 control rat 3958/day 3/session 2. (D) CA3 mEC-lesioned rat 3903/day
1/session 2. (E) RL maze gerbil 2783/day 1. (F) R∗L∗ maze gerbil 2784/day
3.
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A B C

Figure S5: Relevant(green), non-relevant(purple) and all (orange) time bins
across significant sessions for L = 1000 ms time bins. (A) Prediction score
comparison. (B) Firing rate comparison. (C) Sparseness comparison.
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